if_ti.c revision 142398
1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
35 * Manuals, sample driver and firmware source kits are available
36 * from http://www.alteon.com/support/openkits.
37 *
38 * Written by Bill Paul <wpaul@ctr.columbia.edu>
39 * Electrical Engineering Department
40 * Columbia University, New York City
41 */
42
43/*
44 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
45 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
46 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
47 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
48 * filtering and jumbo (9014 byte) frames. The hardware is largely
49 * controlled by firmware, which must be loaded into the NIC during
50 * initialization.
51 *
52 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
53 * revision, which supports new features such as extended commands,
54 * extended jumbo receive ring desciptors and a mini receive ring.
55 *
56 * Alteon Networks is to be commended for releasing such a vast amount
57 * of development material for the Tigon NIC without requiring an NDA
58 * (although they really should have done it a long time ago). With
59 * any luck, the other vendors will finally wise up and follow Alteon's
60 * stellar example.
61 *
62 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
63 * this driver by #including it as a C header file. This bloats the
64 * driver somewhat, but it's the easiest method considering that the
65 * driver code and firmware code need to be kept in sync. The source
66 * for the firmware is not provided with the FreeBSD distribution since
67 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
68 *
69 * The following people deserve special thanks:
70 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
71 *   for testing
72 * - Raymond Lee of Netgear, for providing a pair of Netgear
73 *   GA620 Tigon 2 boards for testing
74 * - Ulf Zimmermann, for bringing the GA260 to my attention and
75 *   convincing me to write this driver.
76 * - Andrew Gallatin for providing FreeBSD/Alpha support.
77 */
78
79#include <sys/cdefs.h>
80__FBSDID("$FreeBSD: head/sys/dev/ti/if_ti.c 142398 2005-02-24 21:32:56Z imp $");
81
82#include "opt_ti.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/module.h>
91#include <sys/socket.h>
92#include <sys/queue.h>
93#include <sys/conf.h>
94
95#include <net/if.h>
96#include <net/if_arp.h>
97#include <net/ethernet.h>
98#include <net/if_dl.h>
99#include <net/if_media.h>
100#include <net/if_types.h>
101#include <net/if_vlan_var.h>
102
103#include <net/bpf.h>
104
105#include <netinet/in_systm.h>
106#include <netinet/in.h>
107#include <netinet/ip.h>
108
109#include <vm/vm.h>		/* for vtophys */
110#include <vm/pmap.h>		/* for vtophys */
111#include <machine/bus_memio.h>
112#include <machine/bus.h>
113#include <machine/resource.h>
114#include <sys/bus.h>
115#include <sys/rman.h>
116
117/* #define TI_PRIVATE_JUMBOS */
118
119#if !defined(TI_PRIVATE_JUMBOS)
120#include <sys/sockio.h>
121#include <sys/uio.h>
122#include <sys/lock.h>
123#include <sys/sf_buf.h>
124#include <vm/vm_extern.h>
125#include <vm/pmap.h>
126#include <vm/vm_map.h>
127#include <vm/vm_map.h>
128#include <vm/vm_param.h>
129#include <vm/vm_pageout.h>
130#include <sys/vmmeter.h>
131#include <vm/vm_page.h>
132#include <vm/vm_object.h>
133#include <vm/vm_kern.h>
134#include <sys/proc.h>
135#endif /* !TI_PRIVATE_JUMBOS */
136
137#include <dev/pci/pcireg.h>
138#include <dev/pci/pcivar.h>
139
140#include <sys/tiio.h>
141#include <pci/if_tireg.h>
142#include <pci/ti_fw.h>
143#include <pci/ti_fw2.h>
144
145#define TI_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
146/*
147 * We can only turn on header splitting if we're using extended receive
148 * BDs.
149 */
150#if defined(TI_JUMBO_HDRSPLIT) && defined(TI_PRIVATE_JUMBOS)
151#error "options TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS are mutually exclusive"
152#endif /* TI_JUMBO_HDRSPLIT && TI_JUMBO_HDRSPLIT */
153
154struct ti_softc *tis[8];
155
156typedef enum {
157	TI_SWAP_HTON,
158	TI_SWAP_NTOH
159} ti_swap_type;
160
161
162/*
163 * Various supported device vendors/types and their names.
164 */
165
166static struct ti_type ti_devs[] = {
167	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC,
168		"Alteon AceNIC 1000baseSX Gigabit Ethernet" },
169	{ ALT_VENDORID,	ALT_DEVICEID_ACENIC_COPPER,
170		"Alteon AceNIC 1000baseT Gigabit Ethernet" },
171	{ TC_VENDORID,	TC_DEVICEID_3C985,
172		"3Com 3c985-SX Gigabit Ethernet" },
173	{ NG_VENDORID, NG_DEVICEID_GA620,
174		"Netgear GA620 1000baseSX Gigabit Ethernet" },
175	{ NG_VENDORID, NG_DEVICEID_GA620T,
176		"Netgear GA620 1000baseT Gigabit Ethernet" },
177	{ SGI_VENDORID, SGI_DEVICEID_TIGON,
178		"Silicon Graphics Gigabit Ethernet" },
179	{ DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
180		"Farallon PN9000SX Gigabit Ethernet" },
181	{ 0, 0, NULL }
182};
183
184
185static	d_open_t	ti_open;
186static	d_close_t	ti_close;
187static	d_ioctl_t	ti_ioctl2;
188
189static struct cdevsw ti_cdevsw = {
190	.d_version =	D_VERSION,
191	.d_flags =	D_NEEDGIANT,
192	.d_open =	ti_open,
193	.d_close =	ti_close,
194	.d_ioctl =	ti_ioctl2,
195	.d_name =	"ti",
196};
197
198static int ti_probe		(device_t);
199static int ti_attach		(device_t);
200static int ti_detach		(device_t);
201static void ti_txeof		(struct ti_softc *);
202static void ti_rxeof		(struct ti_softc *);
203
204static void ti_stats_update	(struct ti_softc *);
205static int ti_encap		(struct ti_softc *, struct mbuf *, u_int32_t *);
206
207static void ti_intr		(void *);
208static void ti_start		(struct ifnet *);
209static int ti_ioctl		(struct ifnet *, u_long, caddr_t);
210static void ti_init		(void *);
211static void ti_init2		(struct ti_softc *);
212static void ti_stop		(struct ti_softc *);
213static void ti_watchdog		(struct ifnet *);
214static void ti_shutdown		(device_t);
215static int ti_ifmedia_upd	(struct ifnet *);
216static void ti_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static u_int32_t ti_eeprom_putbyte	(struct ti_softc *, int);
219static u_int8_t	ti_eeprom_getbyte	(struct ti_softc *, int, u_int8_t *);
220static int ti_read_eeprom	(struct ti_softc *, caddr_t, int, int);
221
222static void ti_add_mcast	(struct ti_softc *, struct ether_addr *);
223static void ti_del_mcast	(struct ti_softc *, struct ether_addr *);
224static void ti_setmulti		(struct ti_softc *);
225
226static void ti_mem		(struct ti_softc *, u_int32_t,
227					u_int32_t, caddr_t);
228static int ti_copy_mem		(struct ti_softc *, u_int32_t,
229					u_int32_t, caddr_t, int, int);
230static int ti_copy_scratch	(struct ti_softc *, u_int32_t,
231					u_int32_t, caddr_t, int, int, int);
232static int ti_bcopy_swap	(const void *, void *, size_t,
233					ti_swap_type);
234static void ti_loadfw		(struct ti_softc *);
235static void ti_cmd		(struct ti_softc *, struct ti_cmd_desc *);
236static void ti_cmd_ext		(struct ti_softc *, struct ti_cmd_desc *,
237					caddr_t, int);
238static void ti_handle_events	(struct ti_softc *);
239#ifdef TI_PRIVATE_JUMBOS
240static int ti_alloc_jumbo_mem	(struct ti_softc *);
241static void *ti_jalloc		(struct ti_softc *);
242static void ti_jfree		(void *, void *);
243#endif /* TI_PRIVATE_JUMBOS */
244static int ti_newbuf_std	(struct ti_softc *, int, struct mbuf *);
245static int ti_newbuf_mini	(struct ti_softc *, int, struct mbuf *);
246static int ti_newbuf_jumbo	(struct ti_softc *, int, struct mbuf *);
247static int ti_init_rx_ring_std	(struct ti_softc *);
248static void ti_free_rx_ring_std	(struct ti_softc *);
249static int ti_init_rx_ring_jumbo	(struct ti_softc *);
250static void ti_free_rx_ring_jumbo	(struct ti_softc *);
251static int ti_init_rx_ring_mini	(struct ti_softc *);
252static void ti_free_rx_ring_mini	(struct ti_softc *);
253static void ti_free_tx_ring	(struct ti_softc *);
254static int ti_init_tx_ring	(struct ti_softc *);
255
256static int ti_64bitslot_war	(struct ti_softc *);
257static int ti_chipinit		(struct ti_softc *);
258static int ti_gibinit		(struct ti_softc *);
259
260#ifdef TI_JUMBO_HDRSPLIT
261static __inline void ti_hdr_split	(struct mbuf *top, int hdr_len,
262					     int pkt_len, int idx);
263#endif /* TI_JUMBO_HDRSPLIT */
264
265static device_method_t ti_methods[] = {
266	/* Device interface */
267	DEVMETHOD(device_probe,		ti_probe),
268	DEVMETHOD(device_attach,	ti_attach),
269	DEVMETHOD(device_detach,	ti_detach),
270	DEVMETHOD(device_shutdown,	ti_shutdown),
271	{ 0, 0 }
272};
273
274static driver_t ti_driver = {
275	"ti",
276	ti_methods,
277	sizeof(struct ti_softc)
278};
279
280static devclass_t ti_devclass;
281
282DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
283MODULE_DEPEND(ti, pci, 1, 1, 1);
284MODULE_DEPEND(ti, ether, 1, 1, 1);
285
286/*
287 * Send an instruction or address to the EEPROM, check for ACK.
288 */
289static u_int32_t ti_eeprom_putbyte(sc, byte)
290	struct ti_softc		*sc;
291	int			byte;
292{
293	register int		i, ack = 0;
294
295	/*
296	 * Make sure we're in TX mode.
297	 */
298	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
299
300	/*
301	 * Feed in each bit and stobe the clock.
302	 */
303	for (i = 0x80; i; i >>= 1) {
304		if (byte & i) {
305			TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
306		} else {
307			TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
308		}
309		DELAY(1);
310		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
311		DELAY(1);
312		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
313	}
314
315	/*
316	 * Turn off TX mode.
317	 */
318	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
319
320	/*
321	 * Check for ack.
322	 */
323	TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
324	ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
325	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326
327	return (ack);
328}
329
330/*
331 * Read a byte of data stored in the EEPROM at address 'addr.'
332 * We have to send two address bytes since the EEPROM can hold
333 * more than 256 bytes of data.
334 */
335static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
336	struct ti_softc		*sc;
337	int			addr;
338	u_int8_t		*dest;
339{
340	register int		i;
341	u_int8_t		byte = 0;
342
343	EEPROM_START;
344
345	/*
346	 * Send write control code to EEPROM.
347	 */
348	if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
349		printf("ti%d: failed to send write command, status: %x\n",
350		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
351		return (1);
352	}
353
354	/*
355	 * Send first byte of address of byte we want to read.
356	 */
357	if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
358		printf("ti%d: failed to send address, status: %x\n",
359		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
360		return (1);
361	}
362	/*
363	 * Send second byte address of byte we want to read.
364	 */
365	if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
366		printf("ti%d: failed to send address, status: %x\n",
367		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
368		return (1);
369	}
370
371	EEPROM_STOP;
372	EEPROM_START;
373	/*
374	 * Send read control code to EEPROM.
375	 */
376	if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
377		printf("ti%d: failed to send read command, status: %x\n",
378		    sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
379		return (1);
380	}
381
382	/*
383	 * Start reading bits from EEPROM.
384	 */
385	TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
386	for (i = 0x80; i; i >>= 1) {
387		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
388		DELAY(1);
389		if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
390			byte |= i;
391		TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
392		DELAY(1);
393	}
394
395	EEPROM_STOP;
396
397	/*
398	 * No ACK generated for read, so just return byte.
399	 */
400
401	*dest = byte;
402
403	return (0);
404}
405
406/*
407 * Read a sequence of bytes from the EEPROM.
408 */
409static int
410ti_read_eeprom(sc, dest, off, cnt)
411	struct ti_softc		*sc;
412	caddr_t			dest;
413	int			off;
414	int			cnt;
415{
416	int			err = 0, i;
417	u_int8_t		byte = 0;
418
419	for (i = 0; i < cnt; i++) {
420		err = ti_eeprom_getbyte(sc, off + i, &byte);
421		if (err)
422			break;
423		*(dest + i) = byte;
424	}
425
426	return (err ? 1 : 0);
427}
428
429/*
430 * NIC memory access function. Can be used to either clear a section
431 * of NIC local memory or (if buf is non-NULL) copy data into it.
432 */
433static void
434ti_mem(sc, addr, len, buf)
435	struct ti_softc		*sc;
436	u_int32_t		addr, len;
437	caddr_t			buf;
438{
439	int			segptr, segsize, cnt;
440	caddr_t			ti_winbase, ptr;
441
442	segptr = addr;
443	cnt = len;
444	ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
445	ptr = buf;
446
447	while (cnt) {
448		if (cnt < TI_WINLEN)
449			segsize = cnt;
450		else
451			segsize = TI_WINLEN - (segptr % TI_WINLEN);
452		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
453		if (buf == NULL)
454			bzero((char *)ti_winbase + (segptr &
455			    (TI_WINLEN - 1)), segsize);
456		else {
457			bcopy((char *)ptr, (char *)ti_winbase +
458			    (segptr & (TI_WINLEN - 1)), segsize);
459			ptr += segsize;
460		}
461		segptr += segsize;
462		cnt -= segsize;
463	}
464}
465
466static int
467ti_copy_mem(sc, tigon_addr, len, buf, useraddr, readdata)
468	struct ti_softc		*sc;
469	u_int32_t		tigon_addr, len;
470	caddr_t			buf;
471	int			useraddr, readdata;
472{
473	int		segptr, segsize, cnt;
474	caddr_t		ptr;
475	u_int32_t	origwin;
476	u_int8_t	tmparray[TI_WINLEN], tmparray2[TI_WINLEN];
477	int		resid, segresid;
478	int		first_pass;
479
480	/*
481	 * At the moment, we don't handle non-aligned cases, we just bail.
482	 * If this proves to be a problem, it will be fixed.
483	 */
484	if ((readdata == 0)
485	 && (tigon_addr & 0x3)) {
486		printf("ti%d: ti_copy_mem: tigon address %#x isn't "
487		       "word-aligned\n", sc->ti_unit, tigon_addr);
488		printf("ti%d: ti_copy_mem: unaligned writes aren't yet "
489		       "supported\n", sc->ti_unit);
490		return (EINVAL);
491	}
492
493	segptr = tigon_addr & ~0x3;
494	segresid = tigon_addr - segptr;
495
496	/*
497	 * This is the non-aligned amount left over that we'll need to
498	 * copy.
499	 */
500	resid = len & 0x3;
501
502	/* Add in the left over amount at the front of the buffer */
503	resid += segresid;
504
505	cnt = len & ~0x3;
506	/*
507	 * If resid + segresid is >= 4, add multiples of 4 to the count and
508	 * decrease the residual by that much.
509	 */
510	cnt += resid & ~0x3;
511	resid -= resid & ~0x3;
512
513	ptr = buf;
514
515	first_pass = 1;
516
517	/*
518	 * Make sure we aren't interrupted while we're changing the window
519	 * pointer.
520	 */
521	TI_LOCK(sc);
522
523	/*
524	 * Save the old window base value.
525	 */
526	origwin = CSR_READ_4(sc, TI_WINBASE);
527
528	while (cnt) {
529		bus_size_t ti_offset;
530
531		if (cnt < TI_WINLEN)
532			segsize = cnt;
533		else
534			segsize = TI_WINLEN - (segptr % TI_WINLEN);
535		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
536
537		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN -1));
538
539		if (readdata) {
540
541			bus_space_read_region_4(sc->ti_btag,
542						sc->ti_bhandle, ti_offset,
543						(u_int32_t *)tmparray,
544						segsize >> 2);
545			if (useraddr) {
546				/*
547				 * Yeah, this is a little on the kludgy
548				 * side, but at least this code is only
549				 * used for debugging.
550				 */
551				ti_bcopy_swap(tmparray, tmparray2, segsize,
552					      TI_SWAP_NTOH);
553
554				if (first_pass) {
555					copyout(&tmparray2[segresid], ptr,
556						segsize - segresid);
557					first_pass = 0;
558				} else
559					copyout(tmparray2, ptr, segsize);
560			} else {
561				if (first_pass) {
562
563					ti_bcopy_swap(tmparray, tmparray2,
564						      segsize, TI_SWAP_NTOH);
565					bcopy(&tmparray2[segresid], ptr,
566					      segsize - segresid);
567					first_pass = 0;
568				} else
569					ti_bcopy_swap(tmparray, ptr, segsize,
570						      TI_SWAP_NTOH);
571			}
572
573		} else {
574			if (useraddr) {
575				copyin(ptr, tmparray2, segsize);
576				ti_bcopy_swap(tmparray2, tmparray, segsize,
577					      TI_SWAP_HTON);
578			} else
579				ti_bcopy_swap(ptr, tmparray, segsize,
580					      TI_SWAP_HTON);
581
582			bus_space_write_region_4(sc->ti_btag,
583						 sc->ti_bhandle, ti_offset,
584						 (u_int32_t *)tmparray,
585						 segsize >> 2);
586		}
587		segptr += segsize;
588		ptr += segsize;
589		cnt -= segsize;
590	}
591
592	/*
593	 * Handle leftover, non-word-aligned bytes.
594	 */
595	if (resid != 0) {
596		u_int32_t	tmpval, tmpval2;
597		bus_size_t	ti_offset;
598
599		/*
600		 * Set the segment pointer.
601		 */
602		CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
603
604		ti_offset = TI_WINDOW + (segptr & (TI_WINLEN - 1));
605
606		/*
607		 * First, grab whatever is in our source/destination.
608		 * We'll obviously need this for reads, but also for
609		 * writes, since we'll be doing read/modify/write.
610		 */
611		bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
612					ti_offset, &tmpval, 1);
613
614		/*
615		 * Next, translate this from little-endian to big-endian
616		 * (at least on i386 boxes).
617		 */
618		tmpval2 = ntohl(tmpval);
619
620		if (readdata) {
621			/*
622			 * If we're reading, just copy the leftover number
623			 * of bytes from the host byte order buffer to
624			 * the user's buffer.
625			 */
626			if (useraddr)
627				copyout(&tmpval2, ptr, resid);
628			else
629				bcopy(&tmpval2, ptr, resid);
630		} else {
631			/*
632			 * If we're writing, first copy the bytes to be
633			 * written into the network byte order buffer,
634			 * leaving the rest of the buffer with whatever was
635			 * originally in there.  Then, swap the bytes
636			 * around into host order and write them out.
637			 *
638			 * XXX KDM the read side of this has been verified
639			 * to work, but the write side of it has not been
640			 * verified.  So user beware.
641			 */
642			if (useraddr)
643				copyin(ptr, &tmpval2, resid);
644			else
645				bcopy(ptr, &tmpval2, resid);
646
647			tmpval = htonl(tmpval2);
648
649			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
650						 ti_offset, &tmpval, 1);
651		}
652	}
653
654	CSR_WRITE_4(sc, TI_WINBASE, origwin);
655
656	TI_UNLOCK(sc);
657
658	return (0);
659}
660
661static int
662ti_copy_scratch(sc, tigon_addr, len, buf, useraddr, readdata, cpu)
663	struct ti_softc		*sc;
664	u_int32_t		tigon_addr, len;
665	caddr_t			buf;
666	int			useraddr, readdata;
667	int			cpu;
668{
669	u_int32_t	segptr;
670	int		cnt;
671	u_int32_t	tmpval, tmpval2;
672	caddr_t		ptr;
673
674	/*
675	 * At the moment, we don't handle non-aligned cases, we just bail.
676	 * If this proves to be a problem, it will be fixed.
677	 */
678	if (tigon_addr & 0x3) {
679		printf("ti%d: ti_copy_scratch: tigon address %#x isn't "
680		       "word-aligned\n", sc->ti_unit, tigon_addr);
681		return (EINVAL);
682	}
683
684	if (len & 0x3) {
685		printf("ti%d: ti_copy_scratch: transfer length %d isn't "
686		       "word-aligned\n", sc->ti_unit, len);
687		return (EINVAL);
688	}
689
690	segptr = tigon_addr;
691	cnt = len;
692	ptr = buf;
693
694	TI_LOCK(sc);
695
696	while (cnt) {
697		CSR_WRITE_4(sc, CPU_REG(TI_SRAM_ADDR, cpu), segptr);
698
699		if (readdata) {
700			tmpval2 = CSR_READ_4(sc, CPU_REG(TI_SRAM_DATA, cpu));
701
702			tmpval = ntohl(tmpval2);
703
704			/*
705			 * Note:  I've used this debugging interface
706			 * extensively with Alteon's 12.3.15 firmware,
707			 * compiled with GCC 2.7.2.1 and binutils 2.9.1.
708			 *
709			 * When you compile the firmware without
710			 * optimization, which is necessary sometimes in
711			 * order to properly step through it, you sometimes
712			 * read out a bogus value of 0xc0017c instead of
713			 * whatever was supposed to be in that scratchpad
714			 * location.  That value is on the stack somewhere,
715			 * but I've never been able to figure out what was
716			 * causing the problem.
717			 *
718			 * The address seems to pop up in random places,
719			 * often not in the same place on two subsequent
720			 * reads.
721			 *
722			 * In any case, the underlying data doesn't seem
723			 * to be affected, just the value read out.
724			 *
725			 * KDM, 3/7/2000
726			 */
727
728			if (tmpval2 == 0xc0017c)
729				printf("ti%d: found 0xc0017c at %#x "
730				       "(tmpval2)\n", sc->ti_unit, segptr);
731
732			if (tmpval == 0xc0017c)
733				printf("ti%d: found 0xc0017c at %#x "
734				       "(tmpval)\n", sc->ti_unit, segptr);
735
736			if (useraddr)
737				copyout(&tmpval, ptr, 4);
738			else
739				bcopy(&tmpval, ptr, 4);
740		} else {
741			if (useraddr)
742				copyin(ptr, &tmpval2, 4);
743			else
744				bcopy(ptr, &tmpval2, 4);
745
746			tmpval = htonl(tmpval2);
747
748			CSR_WRITE_4(sc, CPU_REG(TI_SRAM_DATA, cpu), tmpval);
749		}
750
751		cnt -= 4;
752		segptr += 4;
753		ptr += 4;
754	}
755
756	TI_UNLOCK(sc);
757
758	return (0);
759}
760
761static int
762ti_bcopy_swap(src, dst, len, swap_type)
763	const void	*src;
764	void		*dst;
765	size_t		len;
766	ti_swap_type	swap_type;
767{
768	const u_int8_t *tmpsrc;
769	u_int8_t *tmpdst;
770	size_t tmplen;
771
772	if (len & 0x3) {
773		printf("ti_bcopy_swap: length %zd isn't 32-bit aligned\n",
774		       len);
775		return (-1);
776	}
777
778	tmpsrc = src;
779	tmpdst = dst;
780	tmplen = len;
781
782	while (tmplen) {
783		if (swap_type == TI_SWAP_NTOH)
784			*(u_int32_t *)tmpdst =
785				ntohl(*(const u_int32_t *)tmpsrc);
786		else
787			*(u_int32_t *)tmpdst =
788				htonl(*(const u_int32_t *)tmpsrc);
789
790		tmpsrc += 4;
791		tmpdst += 4;
792		tmplen -= 4;
793	}
794
795	return (0);
796}
797
798/*
799 * Load firmware image into the NIC. Check that the firmware revision
800 * is acceptable and see if we want the firmware for the Tigon 1 or
801 * Tigon 2.
802 */
803static void
804ti_loadfw(sc)
805	struct ti_softc		*sc;
806{
807	switch (sc->ti_hwrev) {
808	case TI_HWREV_TIGON:
809		if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
810		    tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
811		    tigonFwReleaseFix != TI_FIRMWARE_FIX) {
812			printf("ti%d: firmware revision mismatch; want "
813			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
814			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
815			    TI_FIRMWARE_FIX, tigonFwReleaseMajor,
816			    tigonFwReleaseMinor, tigonFwReleaseFix);
817			return;
818		}
819		ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
820		    (caddr_t)tigonFwText);
821		ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
822		    (caddr_t)tigonFwData);
823		ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
824		    (caddr_t)tigonFwRodata);
825		ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
826		ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
827		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
828		break;
829	case TI_HWREV_TIGON_II:
830		if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
831		    tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
832		    tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
833			printf("ti%d: firmware revision mismatch; want "
834			    "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
835			    TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
836			    TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
837			    tigon2FwReleaseMinor, tigon2FwReleaseFix);
838			return;
839		}
840		ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
841		    (caddr_t)tigon2FwText);
842		ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
843		    (caddr_t)tigon2FwData);
844		ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
845		    (caddr_t)tigon2FwRodata);
846		ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
847		ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
848		CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
849		break;
850	default:
851		printf("ti%d: can't load firmware: unknown hardware rev\n",
852		    sc->ti_unit);
853		break;
854	}
855}
856
857/*
858 * Send the NIC a command via the command ring.
859 */
860static void
861ti_cmd(sc, cmd)
862	struct ti_softc		*sc;
863	struct ti_cmd_desc	*cmd;
864{
865	u_int32_t		index;
866
867	if (sc->ti_rdata->ti_cmd_ring == NULL)
868		return;
869
870	index = sc->ti_cmd_saved_prodidx;
871	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
872	TI_INC(index, TI_CMD_RING_CNT);
873	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
874	sc->ti_cmd_saved_prodidx = index;
875}
876
877/*
878 * Send the NIC an extended command. The 'len' parameter specifies the
879 * number of command slots to include after the initial command.
880 */
881static void
882ti_cmd_ext(sc, cmd, arg, len)
883	struct ti_softc		*sc;
884	struct ti_cmd_desc	*cmd;
885	caddr_t			arg;
886	int			len;
887{
888	u_int32_t		index;
889	register int		i;
890
891	if (sc->ti_rdata->ti_cmd_ring == NULL)
892		return;
893
894	index = sc->ti_cmd_saved_prodidx;
895	CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
896	TI_INC(index, TI_CMD_RING_CNT);
897	for (i = 0; i < len; i++) {
898		CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
899		    *(u_int32_t *)(&arg[i * 4]));
900		TI_INC(index, TI_CMD_RING_CNT);
901	}
902	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
903	sc->ti_cmd_saved_prodidx = index;
904}
905
906/*
907 * Handle events that have triggered interrupts.
908 */
909static void
910ti_handle_events(sc)
911	struct ti_softc		*sc;
912{
913	struct ti_event_desc	*e;
914
915	if (sc->ti_rdata->ti_event_ring == NULL)
916		return;
917
918	while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
919		e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
920		switch (e->ti_event) {
921		case TI_EV_LINKSTAT_CHANGED:
922			sc->ti_linkstat = e->ti_code;
923			if (e->ti_code == TI_EV_CODE_LINK_UP)
924				printf("ti%d: 10/100 link up\n", sc->ti_unit);
925			else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
926				printf("ti%d: gigabit link up\n", sc->ti_unit);
927			else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
928				printf("ti%d: link down\n", sc->ti_unit);
929			break;
930		case TI_EV_ERROR:
931			if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
932				printf("ti%d: invalid command\n", sc->ti_unit);
933			else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
934				printf("ti%d: unknown command\n", sc->ti_unit);
935			else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
936				printf("ti%d: bad config data\n", sc->ti_unit);
937			break;
938		case TI_EV_FIRMWARE_UP:
939			ti_init2(sc);
940			break;
941		case TI_EV_STATS_UPDATED:
942			ti_stats_update(sc);
943			break;
944		case TI_EV_RESET_JUMBO_RING:
945		case TI_EV_MCAST_UPDATED:
946			/* Who cares. */
947			break;
948		default:
949			printf("ti%d: unknown event: %d\n",
950			    sc->ti_unit, e->ti_event);
951			break;
952		}
953		/* Advance the consumer index. */
954		TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
955		CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
956	}
957}
958
959#ifdef TI_PRIVATE_JUMBOS
960
961/*
962 * Memory management for the jumbo receive ring is a pain in the
963 * butt. We need to allocate at least 9018 bytes of space per frame,
964 * _and_ it has to be contiguous (unless you use the extended
965 * jumbo descriptor format). Using malloc() all the time won't
966 * work: malloc() allocates memory in powers of two, which means we
967 * would end up wasting a considerable amount of space by allocating
968 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
969 * to do our own memory management.
970 *
971 * The driver needs to allocate a contiguous chunk of memory at boot
972 * time. We then chop this up ourselves into 9K pieces and use them
973 * as external mbuf storage.
974 *
975 * One issue here is how much memory to allocate. The jumbo ring has
976 * 256 slots in it, but at 9K per slot than can consume over 2MB of
977 * RAM. This is a bit much, especially considering we also need
978 * RAM for the standard ring and mini ring (on the Tigon 2). To
979 * save space, we only actually allocate enough memory for 64 slots
980 * by default, which works out to between 500 and 600K. This can
981 * be tuned by changing a #define in if_tireg.h.
982 */
983
984static int
985ti_alloc_jumbo_mem(sc)
986	struct ti_softc		*sc;
987{
988	caddr_t			ptr;
989	register int		i;
990	struct ti_jpool_entry   *entry;
991
992	/* Grab a big chunk o' storage. */
993	sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
994		M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
995
996	if (sc->ti_cdata.ti_jumbo_buf == NULL) {
997		printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
998		return (ENOBUFS);
999	}
1000
1001	SLIST_INIT(&sc->ti_jfree_listhead);
1002	SLIST_INIT(&sc->ti_jinuse_listhead);
1003
1004	/*
1005	 * Now divide it up into 9K pieces and save the addresses
1006	 * in an array.
1007	 */
1008	ptr = sc->ti_cdata.ti_jumbo_buf;
1009	for (i = 0; i < TI_JSLOTS; i++) {
1010		sc->ti_cdata.ti_jslots[i] = ptr;
1011		ptr += TI_JLEN;
1012		entry = malloc(sizeof(struct ti_jpool_entry),
1013			       M_DEVBUF, M_NOWAIT);
1014		if (entry == NULL) {
1015			contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM,
1016			           M_DEVBUF);
1017			sc->ti_cdata.ti_jumbo_buf = NULL;
1018			printf("ti%d: no memory for jumbo "
1019			    "buffer queue!\n", sc->ti_unit);
1020			return (ENOBUFS);
1021		}
1022		entry->slot = i;
1023		SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1024	}
1025
1026	return (0);
1027}
1028
1029/*
1030 * Allocate a jumbo buffer.
1031 */
1032static void *ti_jalloc(sc)
1033	struct ti_softc		*sc;
1034{
1035	struct ti_jpool_entry	*entry;
1036
1037	entry = SLIST_FIRST(&sc->ti_jfree_listhead);
1038
1039	if (entry == NULL) {
1040		printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
1041		return (NULL);
1042	}
1043
1044	SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
1045	SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
1046	return (sc->ti_cdata.ti_jslots[entry->slot]);
1047}
1048
1049/*
1050 * Release a jumbo buffer.
1051 */
1052static void
1053ti_jfree(buf, args)
1054	void			*buf;
1055	void			*args;
1056{
1057	struct ti_softc		*sc;
1058	int			i;
1059	struct ti_jpool_entry	*entry;
1060
1061	/* Extract the softc struct pointer. */
1062	sc = (struct ti_softc *)args;
1063
1064	if (sc == NULL)
1065		panic("ti_jfree: didn't get softc pointer!");
1066
1067	/* calculate the slot this buffer belongs to */
1068	i = ((vm_offset_t)buf
1069	     - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
1070
1071	if ((i < 0) || (i >= TI_JSLOTS))
1072		panic("ti_jfree: asked to free buffer that we don't manage!");
1073
1074	entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
1075	if (entry == NULL)
1076		panic("ti_jfree: buffer not in use!");
1077	entry->slot = i;
1078	SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
1079	SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
1080}
1081
1082#endif /* TI_PRIVATE_JUMBOS */
1083
1084/*
1085 * Intialize a standard receive ring descriptor.
1086 */
1087static int
1088ti_newbuf_std(sc, i, m)
1089	struct ti_softc		*sc;
1090	int			i;
1091	struct mbuf		*m;
1092{
1093	struct mbuf		*m_new = NULL;
1094	struct ti_rx_desc	*r;
1095
1096	if (m == NULL) {
1097		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1098		if (m_new == NULL)
1099			return (ENOBUFS);
1100
1101		MCLGET(m_new, M_DONTWAIT);
1102		if (!(m_new->m_flags & M_EXT)) {
1103			m_freem(m_new);
1104			return (ENOBUFS);
1105		}
1106		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1107	} else {
1108		m_new = m;
1109		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1110		m_new->m_data = m_new->m_ext.ext_buf;
1111	}
1112
1113	m_adj(m_new, ETHER_ALIGN);
1114	sc->ti_cdata.ti_rx_std_chain[i] = m_new;
1115	r = &sc->ti_rdata->ti_rx_std_ring[i];
1116	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1117	r->ti_type = TI_BDTYPE_RECV_BD;
1118	r->ti_flags = 0;
1119	if (sc->arpcom.ac_if.if_hwassist)
1120		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1121	r->ti_len = m_new->m_len;
1122	r->ti_idx = i;
1123
1124	return (0);
1125}
1126
1127/*
1128 * Intialize a mini receive ring descriptor. This only applies to
1129 * the Tigon 2.
1130 */
1131static int
1132ti_newbuf_mini(sc, i, m)
1133	struct ti_softc		*sc;
1134	int			i;
1135	struct mbuf		*m;
1136{
1137	struct mbuf		*m_new = NULL;
1138	struct ti_rx_desc	*r;
1139
1140	if (m == NULL) {
1141		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1142		if (m_new == NULL) {
1143			return (ENOBUFS);
1144		}
1145		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1146	} else {
1147		m_new = m;
1148		m_new->m_data = m_new->m_pktdat;
1149		m_new->m_len = m_new->m_pkthdr.len = MHLEN;
1150	}
1151
1152	m_adj(m_new, ETHER_ALIGN);
1153	r = &sc->ti_rdata->ti_rx_mini_ring[i];
1154	sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
1155	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1156	r->ti_type = TI_BDTYPE_RECV_BD;
1157	r->ti_flags = TI_BDFLAG_MINI_RING;
1158	if (sc->arpcom.ac_if.if_hwassist)
1159		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1160	r->ti_len = m_new->m_len;
1161	r->ti_idx = i;
1162
1163	return (0);
1164}
1165
1166#ifdef TI_PRIVATE_JUMBOS
1167
1168/*
1169 * Initialize a jumbo receive ring descriptor. This allocates
1170 * a jumbo buffer from the pool managed internally by the driver.
1171 */
1172static int
1173ti_newbuf_jumbo(sc, i, m)
1174	struct ti_softc		*sc;
1175	int			i;
1176	struct mbuf		*m;
1177{
1178	struct mbuf		*m_new = NULL;
1179	struct ti_rx_desc	*r;
1180
1181	if (m == NULL) {
1182		caddr_t			*buf = NULL;
1183
1184		/* Allocate the mbuf. */
1185		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1186		if (m_new == NULL) {
1187			return (ENOBUFS);
1188		}
1189
1190		/* Allocate the jumbo buffer */
1191		buf = ti_jalloc(sc);
1192		if (buf == NULL) {
1193			m_freem(m_new);
1194			printf("ti%d: jumbo allocation failed "
1195			    "-- packet dropped!\n", sc->ti_unit);
1196			return (ENOBUFS);
1197		}
1198
1199		/* Attach the buffer to the mbuf. */
1200		m_new->m_data = (void *) buf;
1201		m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
1202		MEXTADD(m_new, buf, TI_JUMBO_FRAMELEN, ti_jfree,
1203		    (struct ti_softc *)sc, 0, EXT_NET_DRV);
1204	} else {
1205		m_new = m;
1206		m_new->m_data = m_new->m_ext.ext_buf;
1207		m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
1208	}
1209
1210	m_adj(m_new, ETHER_ALIGN);
1211	/* Set up the descriptor. */
1212	r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
1213	sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
1214	TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
1215	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1216	r->ti_flags = TI_BDFLAG_JUMBO_RING;
1217	if (sc->arpcom.ac_if.if_hwassist)
1218		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
1219	r->ti_len = m_new->m_len;
1220	r->ti_idx = i;
1221
1222	return (0);
1223}
1224
1225#else
1226#include <vm/vm_page.h>
1227
1228#if (PAGE_SIZE == 4096)
1229#define NPAYLOAD 2
1230#else
1231#define NPAYLOAD 1
1232#endif
1233
1234#define TCP_HDR_LEN (52 + sizeof(struct ether_header))
1235#define UDP_HDR_LEN (28 + sizeof(struct ether_header))
1236#define NFS_HDR_LEN (UDP_HDR_LEN)
1237static int HDR_LEN =  TCP_HDR_LEN;
1238
1239
1240/*
1241 * Initialize a jumbo receive ring descriptor. This allocates
1242 * a jumbo buffer from the pool managed internally by the driver.
1243 */
1244static int
1245ti_newbuf_jumbo(sc, idx, m_old)
1246	struct ti_softc		*sc;
1247	int			idx;
1248	struct mbuf		*m_old;
1249{
1250	struct mbuf		*cur, *m_new = NULL;
1251	struct mbuf		*m[3] = {NULL, NULL, NULL};
1252	struct ti_rx_desc_ext	*r;
1253	vm_page_t		frame;
1254	static int		color;
1255				/* 1 extra buf to make nobufs easy*/
1256	struct sf_buf		*sf[3] = {NULL, NULL, NULL};
1257	int			i;
1258
1259	if (m_old != NULL) {
1260		m_new = m_old;
1261		cur = m_old->m_next;
1262		for (i = 0; i <= NPAYLOAD; i++){
1263			m[i] = cur;
1264			cur = cur->m_next;
1265		}
1266	} else {
1267		/* Allocate the mbufs. */
1268		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1269		if (m_new == NULL) {
1270			printf("ti%d: mbuf allocation failed "
1271			       "-- packet dropped!\n", sc->ti_unit);
1272			goto nobufs;
1273		}
1274		MGET(m[NPAYLOAD], M_DONTWAIT, MT_DATA);
1275		if (m[NPAYLOAD] == NULL) {
1276			printf("ti%d: cluster mbuf allocation failed "
1277			       "-- packet dropped!\n", sc->ti_unit);
1278			goto nobufs;
1279		}
1280		MCLGET(m[NPAYLOAD], M_DONTWAIT);
1281		if ((m[NPAYLOAD]->m_flags & M_EXT) == 0) {
1282			printf("ti%d: mbuf allocation failed "
1283			       "-- packet dropped!\n", sc->ti_unit);
1284			goto nobufs;
1285		}
1286		m[NPAYLOAD]->m_len = MCLBYTES;
1287
1288		for (i = 0; i < NPAYLOAD; i++){
1289			MGET(m[i], M_DONTWAIT, MT_DATA);
1290			if (m[i] == NULL) {
1291				printf("ti%d: mbuf allocation failed "
1292				       "-- packet dropped!\n", sc->ti_unit);
1293				goto nobufs;
1294			}
1295			frame = vm_page_alloc(NULL, color++,
1296			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
1297			    VM_ALLOC_WIRED);
1298			if (frame == NULL) {
1299				printf("ti%d: buffer allocation failed "
1300				       "-- packet dropped!\n", sc->ti_unit);
1301				printf("      index %d page %d\n", idx, i);
1302				goto nobufs;
1303			}
1304			sf[i] = sf_buf_alloc(frame, SFB_NOWAIT);
1305			if (sf[i] == NULL) {
1306				vm_page_lock_queues();
1307				vm_page_unwire(frame, 0);
1308				vm_page_free(frame);
1309				vm_page_unlock_queues();
1310				printf("ti%d: buffer allocation failed "
1311				       "-- packet dropped!\n", sc->ti_unit);
1312				printf("      index %d page %d\n", idx, i);
1313				goto nobufs;
1314			}
1315		}
1316		for (i = 0; i < NPAYLOAD; i++){
1317		/* Attach the buffer to the mbuf. */
1318			m[i]->m_data = (void *)sf_buf_kva(sf[i]);
1319			m[i]->m_len = PAGE_SIZE;
1320			MEXTADD(m[i], sf_buf_kva(sf[i]), PAGE_SIZE,
1321			    sf_buf_mext, sf[i], 0, EXT_DISPOSABLE);
1322			m[i]->m_next = m[i+1];
1323		}
1324		/* link the buffers to the header */
1325		m_new->m_next = m[0];
1326		m_new->m_data += ETHER_ALIGN;
1327		if (sc->ti_hdrsplit)
1328			m_new->m_len = MHLEN - ETHER_ALIGN;
1329		else
1330			m_new->m_len = HDR_LEN;
1331		m_new->m_pkthdr.len = NPAYLOAD * PAGE_SIZE + m_new->m_len;
1332	}
1333
1334	/* Set up the descriptor. */
1335	r = &sc->ti_rdata->ti_rx_jumbo_ring[idx];
1336	sc->ti_cdata.ti_rx_jumbo_chain[idx] = m_new;
1337	TI_HOSTADDR(r->ti_addr0) = vtophys(mtod(m_new, caddr_t));
1338	r->ti_len0 = m_new->m_len;
1339
1340	TI_HOSTADDR(r->ti_addr1) = vtophys(mtod(m[0], caddr_t));
1341	r->ti_len1 = PAGE_SIZE;
1342
1343	TI_HOSTADDR(r->ti_addr2) = vtophys(mtod(m[1], caddr_t));
1344	r->ti_len2 = m[1]->m_ext.ext_size; /* could be PAGE_SIZE or MCLBYTES */
1345
1346	if (PAGE_SIZE == 4096) {
1347		TI_HOSTADDR(r->ti_addr3) = vtophys(mtod(m[2], caddr_t));
1348		r->ti_len3 = MCLBYTES;
1349	} else {
1350		r->ti_len3 = 0;
1351	}
1352	r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
1353
1354	r->ti_flags = TI_BDFLAG_JUMBO_RING|TI_RCB_FLAG_USE_EXT_RX_BD;
1355
1356	if (sc->arpcom.ac_if.if_hwassist)
1357		r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
1358
1359	r->ti_idx = idx;
1360
1361	return (0);
1362
1363nobufs:
1364
1365	/*
1366	 * Warning! :
1367	 * This can only be called before the mbufs are strung together.
1368	 * If the mbufs are strung together, m_freem() will free the chain,
1369	 * so that the later mbufs will be freed multiple times.
1370	 */
1371	if (m_new)
1372		m_freem(m_new);
1373
1374	for (i = 0; i < 3; i++) {
1375		if (m[i])
1376			m_freem(m[i]);
1377		if (sf[i])
1378			sf_buf_mext((void *)sf_buf_kva(sf[i]), sf[i]);
1379	}
1380	return (ENOBUFS);
1381}
1382#endif
1383
1384
1385
1386/*
1387 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1388 * that's 1MB or memory, which is a lot. For now, we fill only the first
1389 * 256 ring entries and hope that our CPU is fast enough to keep up with
1390 * the NIC.
1391 */
1392static int
1393ti_init_rx_ring_std(sc)
1394	struct ti_softc		*sc;
1395{
1396	register int		i;
1397	struct ti_cmd_desc	cmd;
1398
1399	for (i = 0; i < TI_SSLOTS; i++) {
1400		if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
1401			return (ENOBUFS);
1402	};
1403
1404	TI_UPDATE_STDPROD(sc, i - 1);
1405	sc->ti_std = i - 1;
1406
1407	return (0);
1408}
1409
1410static void
1411ti_free_rx_ring_std(sc)
1412	struct ti_softc		*sc;
1413{
1414	register int		i;
1415
1416	for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
1417		if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
1418			m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
1419			sc->ti_cdata.ti_rx_std_chain[i] = NULL;
1420		}
1421		bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
1422		    sizeof(struct ti_rx_desc));
1423	}
1424}
1425
1426static int
1427ti_init_rx_ring_jumbo(sc)
1428	struct ti_softc		*sc;
1429{
1430	register int		i;
1431	struct ti_cmd_desc	cmd;
1432
1433	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1434		if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1435			return (ENOBUFS);
1436	};
1437
1438	TI_UPDATE_JUMBOPROD(sc, i - 1);
1439	sc->ti_jumbo = i - 1;
1440
1441	return (0);
1442}
1443
1444static void
1445ti_free_rx_ring_jumbo(sc)
1446	struct ti_softc		*sc;
1447{
1448	register int		i;
1449
1450	for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
1451		if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
1452			m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
1453			sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
1454		}
1455		bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
1456		    sizeof(struct ti_rx_desc));
1457	}
1458}
1459
1460static int
1461ti_init_rx_ring_mini(sc)
1462	struct ti_softc		*sc;
1463{
1464	register int		i;
1465
1466	for (i = 0; i < TI_MSLOTS; i++) {
1467		if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
1468			return (ENOBUFS);
1469	};
1470
1471	TI_UPDATE_MINIPROD(sc, i - 1);
1472	sc->ti_mini = i - 1;
1473
1474	return (0);
1475}
1476
1477static void
1478ti_free_rx_ring_mini(sc)
1479	struct ti_softc		*sc;
1480{
1481	register int		i;
1482
1483	for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1484		if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1485			m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1486			sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1487		}
1488		bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1489		    sizeof(struct ti_rx_desc));
1490	}
1491}
1492
1493static void
1494ti_free_tx_ring(sc)
1495	struct ti_softc		*sc;
1496{
1497	register int		i;
1498
1499	if (sc->ti_rdata->ti_tx_ring == NULL)
1500		return;
1501
1502	for (i = 0; i < TI_TX_RING_CNT; i++) {
1503		if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1504			m_freem(sc->ti_cdata.ti_tx_chain[i]);
1505			sc->ti_cdata.ti_tx_chain[i] = NULL;
1506		}
1507		bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1508		    sizeof(struct ti_tx_desc));
1509	}
1510}
1511
1512static int
1513ti_init_tx_ring(sc)
1514	struct ti_softc		*sc;
1515{
1516	sc->ti_txcnt = 0;
1517	sc->ti_tx_saved_considx = 0;
1518	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1519	return (0);
1520}
1521
1522/*
1523 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1524 * but we have to support the old way too so that Tigon 1 cards will
1525 * work.
1526 */
1527static void
1528ti_add_mcast(sc, addr)
1529	struct ti_softc		*sc;
1530	struct ether_addr	*addr;
1531{
1532	struct ti_cmd_desc	cmd;
1533	u_int16_t		*m;
1534	u_int32_t		ext[2] = {0, 0};
1535
1536	m = (u_int16_t *)&addr->octet[0];
1537
1538	switch (sc->ti_hwrev) {
1539	case TI_HWREV_TIGON:
1540		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1541		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1542		TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1543		break;
1544	case TI_HWREV_TIGON_II:
1545		ext[0] = htons(m[0]);
1546		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1547		TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1548		break;
1549	default:
1550		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1551		break;
1552	}
1553}
1554
1555static void
1556ti_del_mcast(sc, addr)
1557	struct ti_softc		*sc;
1558	struct ether_addr	*addr;
1559{
1560	struct ti_cmd_desc	cmd;
1561	u_int16_t		*m;
1562	u_int32_t		ext[2] = {0, 0};
1563
1564	m = (u_int16_t *)&addr->octet[0];
1565
1566	switch (sc->ti_hwrev) {
1567	case TI_HWREV_TIGON:
1568		CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1569		CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1570		TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1571		break;
1572	case TI_HWREV_TIGON_II:
1573		ext[0] = htons(m[0]);
1574		ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1575		TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1576		break;
1577	default:
1578		printf("ti%d: unknown hwrev\n", sc->ti_unit);
1579		break;
1580	}
1581}
1582
1583/*
1584 * Configure the Tigon's multicast address filter.
1585 *
1586 * The actual multicast table management is a bit of a pain, thanks to
1587 * slight brain damage on the part of both Alteon and us. With our
1588 * multicast code, we are only alerted when the multicast address table
1589 * changes and at that point we only have the current list of addresses:
1590 * we only know the current state, not the previous state, so we don't
1591 * actually know what addresses were removed or added. The firmware has
1592 * state, but we can't get our grubby mits on it, and there is no 'delete
1593 * all multicast addresses' command. Hence, we have to maintain our own
1594 * state so we know what addresses have been programmed into the NIC at
1595 * any given time.
1596 */
1597static void
1598ti_setmulti(sc)
1599	struct ti_softc		*sc;
1600{
1601	struct ifnet		*ifp;
1602	struct ifmultiaddr	*ifma;
1603	struct ti_cmd_desc	cmd;
1604	struct ti_mc_entry	*mc;
1605	u_int32_t		intrs;
1606
1607	ifp = &sc->arpcom.ac_if;
1608
1609	if (ifp->if_flags & IFF_ALLMULTI) {
1610		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1611		return;
1612	} else {
1613		TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1614	}
1615
1616	/* Disable interrupts. */
1617	intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1618	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1619
1620	/* First, zot all the existing filters. */
1621	while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
1622		mc = SLIST_FIRST(&sc->ti_mc_listhead);
1623		ti_del_mcast(sc, &mc->mc_addr);
1624		SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1625		free(mc, M_DEVBUF);
1626	}
1627
1628	/* Now program new ones. */
1629	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1630		if (ifma->ifma_addr->sa_family != AF_LINK)
1631			continue;
1632		mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1633		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1634		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1635		SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1636		ti_add_mcast(sc, &mc->mc_addr);
1637	}
1638
1639	/* Re-enable interrupts. */
1640	CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1641}
1642
1643/*
1644 * Check to see if the BIOS has configured us for a 64 bit slot when
1645 * we aren't actually in one. If we detect this condition, we can work
1646 * around it on the Tigon 2 by setting a bit in the PCI state register,
1647 * but for the Tigon 1 we must give up and abort the interface attach.
1648 */
1649static int ti_64bitslot_war(sc)
1650	struct ti_softc		*sc;
1651{
1652	if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1653		CSR_WRITE_4(sc, 0x600, 0);
1654		CSR_WRITE_4(sc, 0x604, 0);
1655		CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1656		if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1657			if (sc->ti_hwrev == TI_HWREV_TIGON)
1658				return (EINVAL);
1659			else {
1660				TI_SETBIT(sc, TI_PCI_STATE,
1661				    TI_PCISTATE_32BIT_BUS);
1662				return (0);
1663			}
1664		}
1665	}
1666
1667	return (0);
1668}
1669
1670/*
1671 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1672 * self-test results.
1673 */
1674static int
1675ti_chipinit(sc)
1676	struct ti_softc		*sc;
1677{
1678	u_int32_t		cacheline;
1679	u_int32_t		pci_writemax = 0;
1680	u_int32_t		hdrsplit;
1681
1682	/* Initialize link to down state. */
1683	sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1684
1685	if (sc->arpcom.ac_if.if_capenable & IFCAP_HWCSUM)
1686		sc->arpcom.ac_if.if_hwassist = TI_CSUM_FEATURES;
1687	else
1688		sc->arpcom.ac_if.if_hwassist = 0;
1689
1690	/* Set endianness before we access any non-PCI registers. */
1691#if BYTE_ORDER == BIG_ENDIAN
1692	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1693	    TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1694#else
1695	CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1696	    TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1697#endif
1698
1699	/* Check the ROM failed bit to see if self-tests passed. */
1700	if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1701		printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1702		return (ENODEV);
1703	}
1704
1705	/* Halt the CPU. */
1706	TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1707
1708	/* Figure out the hardware revision. */
1709	switch (CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1710	case TI_REV_TIGON_I:
1711		sc->ti_hwrev = TI_HWREV_TIGON;
1712		break;
1713	case TI_REV_TIGON_II:
1714		sc->ti_hwrev = TI_HWREV_TIGON_II;
1715		break;
1716	default:
1717		printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1718		return (ENODEV);
1719	}
1720
1721	/* Do special setup for Tigon 2. */
1722	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1723		TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1724		TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1725		TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1726	}
1727
1728	/*
1729	 * We don't have firmware source for the Tigon 1, so Tigon 1 boards
1730	 * can't do header splitting.
1731	 */
1732#ifdef TI_JUMBO_HDRSPLIT
1733	if (sc->ti_hwrev != TI_HWREV_TIGON)
1734		sc->ti_hdrsplit = 1;
1735	else
1736		printf("ti%d: can't do header splitting on a Tigon I board\n",
1737		       sc->ti_unit);
1738#endif /* TI_JUMBO_HDRSPLIT */
1739
1740	/* Set up the PCI state register. */
1741	CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1742	if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1743		TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1744	}
1745
1746	/* Clear the read/write max DMA parameters. */
1747	TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1748	    TI_PCISTATE_READ_MAXDMA));
1749
1750	/* Get cache line size. */
1751	cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1752
1753	/*
1754	 * If the system has set enabled the PCI memory write
1755	 * and invalidate command in the command register, set
1756	 * the write max parameter accordingly. This is necessary
1757	 * to use MWI with the Tigon 2.
1758	 */
1759	if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1760		switch (cacheline) {
1761		case 1:
1762		case 4:
1763		case 8:
1764		case 16:
1765		case 32:
1766		case 64:
1767			break;
1768		default:
1769		/* Disable PCI memory write and invalidate. */
1770			if (bootverbose)
1771				printf("ti%d: cache line size %d not "
1772				    "supported; disabling PCI MWI\n",
1773				    sc->ti_unit, cacheline);
1774			CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1775			    TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1776			break;
1777		}
1778	}
1779
1780#ifdef __brokenalpha__
1781	/*
1782	 * From the Alteon sample driver:
1783	 * Must insure that we do not cross an 8K (bytes) boundary
1784	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1785	 * restriction on some ALPHA platforms with early revision
1786	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1787	 */
1788	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1789#else
1790	TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1791#endif
1792
1793	/* This sets the min dma param all the way up (0xff). */
1794	TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1795
1796	if (sc->ti_hdrsplit)
1797		hdrsplit = TI_OPMODE_JUMBO_HDRSPLIT;
1798	else
1799		hdrsplit = 0;
1800
1801	/* Configure DMA variables. */
1802#if BYTE_ORDER == BIG_ENDIAN
1803	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1804	    TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1805	    TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1806	    TI_OPMODE_DONT_FRAG_JUMBO | hdrsplit);
1807#else /* BYTE_ORDER */
1808	CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1809	    TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1810	    TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB | hdrsplit);
1811#endif /* BYTE_ORDER */
1812
1813	/*
1814	 * Only allow 1 DMA channel to be active at a time.
1815	 * I don't think this is a good idea, but without it
1816	 * the firmware racks up lots of nicDmaReadRingFull
1817	 * errors.  This is not compatible with hardware checksums.
1818	 */
1819	if (sc->arpcom.ac_if.if_hwassist == 0)
1820		TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1821
1822	/* Recommended settings from Tigon manual. */
1823	CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1824	CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1825
1826	if (ti_64bitslot_war(sc)) {
1827		printf("ti%d: bios thinks we're in a 64 bit slot, "
1828		    "but we aren't", sc->ti_unit);
1829		return (EINVAL);
1830	}
1831
1832	return (0);
1833}
1834
1835/*
1836 * Initialize the general information block and firmware, and
1837 * start the CPU(s) running.
1838 */
1839static int
1840ti_gibinit(sc)
1841	struct ti_softc		*sc;
1842{
1843	struct ti_rcb		*rcb;
1844	int			i;
1845	struct ifnet		*ifp;
1846
1847	ifp = &sc->arpcom.ac_if;
1848
1849	/* Disable interrupts for now. */
1850	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1851
1852	/* Tell the chip where to find the general information block. */
1853	CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1854	CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1855
1856	/* Load the firmware into SRAM. */
1857	ti_loadfw(sc);
1858
1859	/* Set up the contents of the general info and ring control blocks. */
1860
1861	/* Set up the event ring and producer pointer. */
1862	rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1863
1864	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1865	rcb->ti_flags = 0;
1866	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1867	    vtophys(&sc->ti_ev_prodidx);
1868	sc->ti_ev_prodidx.ti_idx = 0;
1869	CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1870	sc->ti_ev_saved_considx = 0;
1871
1872	/* Set up the command ring and producer mailbox. */
1873	rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1874
1875	sc->ti_rdata->ti_cmd_ring =
1876	    (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1877	TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1878	rcb->ti_flags = 0;
1879	rcb->ti_max_len = 0;
1880	for (i = 0; i < TI_CMD_RING_CNT; i++) {
1881		CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1882	}
1883	CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1884	CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1885	sc->ti_cmd_saved_prodidx = 0;
1886
1887	/*
1888	 * Assign the address of the stats refresh buffer.
1889	 * We re-use the current stats buffer for this to
1890	 * conserve memory.
1891	 */
1892	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1893	    vtophys(&sc->ti_rdata->ti_info.ti_stats);
1894
1895	/* Set up the standard receive ring. */
1896	rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1897	TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1898	rcb->ti_max_len = TI_FRAMELEN;
1899	rcb->ti_flags = 0;
1900	if (sc->arpcom.ac_if.if_hwassist)
1901		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1902		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1903	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1904
1905	/* Set up the jumbo receive ring. */
1906	rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1907	TI_HOSTADDR(rcb->ti_hostaddr) =
1908	    vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1909
1910#ifdef TI_PRIVATE_JUMBOS
1911	rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1912	rcb->ti_flags = 0;
1913#else
1914	rcb->ti_max_len = PAGE_SIZE;
1915	rcb->ti_flags = TI_RCB_FLAG_USE_EXT_RX_BD;
1916#endif
1917	if (sc->arpcom.ac_if.if_hwassist)
1918		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1919		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1920	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1921
1922	/*
1923	 * Set up the mini ring. Only activated on the
1924	 * Tigon 2 but the slot in the config block is
1925	 * still there on the Tigon 1.
1926	 */
1927	rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1928	TI_HOSTADDR(rcb->ti_hostaddr) =
1929	    vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1930	rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1931	if (sc->ti_hwrev == TI_HWREV_TIGON)
1932		rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1933	else
1934		rcb->ti_flags = 0;
1935	if (sc->arpcom.ac_if.if_hwassist)
1936		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1937		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1938	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1939
1940	/*
1941	 * Set up the receive return ring.
1942	 */
1943	rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1944	TI_HOSTADDR(rcb->ti_hostaddr) =
1945	    vtophys(&sc->ti_rdata->ti_rx_return_ring);
1946	rcb->ti_flags = 0;
1947	rcb->ti_max_len = TI_RETURN_RING_CNT;
1948	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1949	    vtophys(&sc->ti_return_prodidx);
1950
1951	/*
1952	 * Set up the tx ring. Note: for the Tigon 2, we have the option
1953	 * of putting the transmit ring in the host's address space and
1954	 * letting the chip DMA it instead of leaving the ring in the NIC's
1955	 * memory and accessing it through the shared memory region. We
1956	 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1957	 * so we have to revert to the shared memory scheme if we detect
1958	 * a Tigon 1 chip.
1959	 */
1960	CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1961	if (sc->ti_hwrev == TI_HWREV_TIGON) {
1962		sc->ti_rdata->ti_tx_ring_nic =
1963		    (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1964	}
1965	bzero((char *)sc->ti_rdata->ti_tx_ring,
1966	    TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1967	rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1968	if (sc->ti_hwrev == TI_HWREV_TIGON)
1969		rcb->ti_flags = 0;
1970	else
1971		rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1972	rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1973	if (sc->arpcom.ac_if.if_hwassist)
1974		rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1975		     TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1976	rcb->ti_max_len = TI_TX_RING_CNT;
1977	if (sc->ti_hwrev == TI_HWREV_TIGON)
1978		TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1979	else
1980		TI_HOSTADDR(rcb->ti_hostaddr) =
1981		    vtophys(&sc->ti_rdata->ti_tx_ring);
1982	TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1983	    vtophys(&sc->ti_tx_considx);
1984
1985	/* Set up tuneables */
1986#if 0
1987	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1988		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1989		    (sc->ti_rx_coal_ticks / 10));
1990	else
1991#endif
1992		CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1993	CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1994	CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1995	CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1996	CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1997	CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1998
1999	/* Turn interrupts on. */
2000	CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
2001	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2002
2003	/* Start CPU. */
2004	TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
2005
2006	return (0);
2007}
2008
2009/*
2010 * Probe for a Tigon chip. Check the PCI vendor and device IDs
2011 * against our list and return its name if we find a match.
2012 */
2013static int
2014ti_probe(dev)
2015	device_t		dev;
2016{
2017	struct ti_type		*t;
2018
2019	t = ti_devs;
2020
2021	while (t->ti_name != NULL) {
2022		if ((pci_get_vendor(dev) == t->ti_vid) &&
2023		    (pci_get_device(dev) == t->ti_did)) {
2024			device_set_desc(dev, t->ti_name);
2025			return (BUS_PROBE_DEFAULT);
2026		}
2027		t++;
2028	}
2029
2030	return (ENXIO);
2031}
2032
2033static int
2034ti_attach(dev)
2035	device_t		dev;
2036{
2037	struct ifnet		*ifp;
2038	struct ti_softc		*sc;
2039	int			unit, error = 0, rid;
2040
2041	sc = device_get_softc(dev);
2042	unit = device_get_unit(dev);
2043
2044	mtx_init(&sc->ti_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
2045	    MTX_DEF | MTX_RECURSE);
2046	ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
2047	sc->arpcom.ac_if.if_capabilities = IFCAP_HWCSUM |
2048	    IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2049	sc->arpcom.ac_if.if_capenable = sc->arpcom.ac_if.if_capabilities;
2050
2051	/*
2052	 * Map control/status registers.
2053	 */
2054	pci_enable_busmaster(dev);
2055
2056	rid = TI_PCI_LOMEM;
2057	sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2058	    RF_ACTIVE|PCI_RF_DENSE);
2059
2060	if (sc->ti_res == NULL) {
2061		printf ("ti%d: couldn't map memory\n", unit);
2062		error = ENXIO;
2063		goto fail;
2064	}
2065
2066	sc->ti_btag = rman_get_bustag(sc->ti_res);
2067	sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
2068	sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
2069
2070	/* Allocate interrupt */
2071	rid = 0;
2072
2073	sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2074	    RF_SHAREABLE | RF_ACTIVE);
2075
2076	if (sc->ti_irq == NULL) {
2077		printf("ti%d: couldn't map interrupt\n", unit);
2078		error = ENXIO;
2079		goto fail;
2080	}
2081
2082	sc->ti_unit = unit;
2083
2084	if (ti_chipinit(sc)) {
2085		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2086		error = ENXIO;
2087		goto fail;
2088	}
2089
2090	/* Zero out the NIC's on-board SRAM. */
2091	ti_mem(sc, 0x2000, 0x100000 - 0x2000,  NULL);
2092
2093	/* Init again -- zeroing memory may have clobbered some registers. */
2094	if (ti_chipinit(sc)) {
2095		printf("ti%d: chip initialization failed\n", sc->ti_unit);
2096		error = ENXIO;
2097		goto fail;
2098	}
2099
2100	/*
2101	 * Get station address from the EEPROM. Note: the manual states
2102	 * that the MAC address is at offset 0x8c, however the data is
2103	 * stored as two longwords (since that's how it's loaded into
2104	 * the NIC). This means the MAC address is actually preceded
2105	 * by two zero bytes. We need to skip over those.
2106	 */
2107	if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
2108				TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2109		printf("ti%d: failed to read station address\n", unit);
2110		error = ENXIO;
2111		goto fail;
2112	}
2113
2114	/* Allocate the general information block and ring buffers. */
2115	sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
2116	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2117
2118	if (sc->ti_rdata == NULL) {
2119		printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
2120		error = ENXIO;
2121		goto fail;
2122	}
2123
2124	bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
2125
2126	/* Try to allocate memory for jumbo buffers. */
2127#ifdef TI_PRIVATE_JUMBOS
2128	if (ti_alloc_jumbo_mem(sc)) {
2129		printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
2130		error = ENXIO;
2131		goto fail;
2132	}
2133#endif
2134
2135	/*
2136	 * We really need a better way to tell a 1000baseTX card
2137	 * from a 1000baseSX one, since in theory there could be
2138	 * OEMed 1000baseTX cards from lame vendors who aren't
2139	 * clever enough to change the PCI ID. For the moment
2140	 * though, the AceNIC is the only copper card available.
2141	 */
2142	if (pci_get_vendor(dev) == ALT_VENDORID &&
2143	    pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
2144		sc->ti_copper = 1;
2145	/* Ok, it's not the only copper card available. */
2146	if (pci_get_vendor(dev) == NG_VENDORID &&
2147	    pci_get_device(dev) == NG_DEVICEID_GA620T)
2148		sc->ti_copper = 1;
2149
2150	/* Set default tuneable values. */
2151	sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
2152#if 0
2153	sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
2154#endif
2155	sc->ti_rx_coal_ticks = 170;
2156	sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
2157	sc->ti_rx_max_coal_bds = 64;
2158#if 0
2159	sc->ti_tx_max_coal_bds = 128;
2160#endif
2161	sc->ti_tx_max_coal_bds = 32;
2162	sc->ti_tx_buf_ratio = 21;
2163
2164	/* Set up ifnet structure */
2165	ifp = &sc->arpcom.ac_if;
2166	ifp->if_softc = sc;
2167	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2168	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2169	    IFF_NEEDSGIANT;
2170	tis[unit] = sc;
2171	ifp->if_ioctl = ti_ioctl;
2172	ifp->if_start = ti_start;
2173	ifp->if_watchdog = ti_watchdog;
2174	ifp->if_init = ti_init;
2175	ifp->if_mtu = ETHERMTU;
2176	ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
2177
2178	/* Set up ifmedia support. */
2179	if (sc->ti_copper) {
2180		/*
2181		 * Copper cards allow manual 10/100 mode selection,
2182		 * but not manual 1000baseTX mode selection. Why?
2183		 * Becuase currently there's no way to specify the
2184		 * master/slave setting through the firmware interface,
2185		 * so Alteon decided to just bag it and handle it
2186		 * via autonegotiation.
2187		 */
2188		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
2189		ifmedia_add(&sc->ifmedia,
2190		    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
2191		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
2192		ifmedia_add(&sc->ifmedia,
2193		    IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
2194		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
2195		ifmedia_add(&sc->ifmedia,
2196		    IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
2197	} else {
2198		/* Fiber cards don't support 10/100 modes. */
2199		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2200		ifmedia_add(&sc->ifmedia,
2201		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2202	}
2203	ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2204	ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
2205
2206	/*
2207	 * We're assuming here that card initialization is a sequential
2208	 * thing.  If it isn't, multiple cards probing at the same time
2209	 * could stomp on the list of softcs here.
2210	 */
2211
2212	/* Register the device */
2213	sc->dev = make_dev(&ti_cdevsw, sc->ti_unit, UID_ROOT, GID_OPERATOR,
2214			   0600, "ti%d", sc->ti_unit);
2215	sc->dev->si_drv1 = sc;
2216
2217	/*
2218	 * Call MI attach routine.
2219	 */
2220	ether_ifattach(ifp, sc->arpcom.ac_enaddr);
2221
2222	/* Hook interrupt last to avoid having to lock softc */
2223	error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
2224	   ti_intr, sc, &sc->ti_intrhand);
2225
2226	if (error) {
2227		printf("ti%d: couldn't set up irq\n", unit);
2228		ether_ifdetach(ifp);
2229		goto fail;
2230	}
2231
2232fail:
2233	if (sc && error)
2234		ti_detach(dev);
2235
2236	return (error);
2237}
2238
2239/*
2240 * Shutdown hardware and free up resources. This can be called any
2241 * time after the mutex has been initialized. It is called in both
2242 * the error case in attach and the normal detach case so it needs
2243 * to be careful about only freeing resources that have actually been
2244 * allocated.
2245 */
2246static int
2247ti_detach(dev)
2248	device_t		dev;
2249{
2250	struct ti_softc		*sc;
2251	struct ifnet		*ifp;
2252
2253	sc = device_get_softc(dev);
2254	destroy_dev(sc->dev);
2255	KASSERT(mtx_initialized(&sc->ti_mtx), ("ti mutex not initialized"));
2256	TI_LOCK(sc);
2257	ifp = &sc->arpcom.ac_if;
2258
2259	/* These should only be active if attach succeeded */
2260	if (device_is_attached(dev)) {
2261		ti_stop(sc);
2262		ether_ifdetach(ifp);
2263		bus_generic_detach(dev);
2264	}
2265	ifmedia_removeall(&sc->ifmedia);
2266
2267	if (sc->ti_intrhand)
2268		bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
2269	if (sc->ti_irq)
2270		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
2271	if (sc->ti_res) {
2272		bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM,
2273		    sc->ti_res);
2274	}
2275
2276#ifdef TI_PRIVATE_JUMBOS
2277	if (sc->ti_cdata.ti_jumbo_buf)
2278		contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
2279#endif
2280	if (sc->ti_rdata)
2281		contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
2282
2283	TI_UNLOCK(sc);
2284	mtx_destroy(&sc->ti_mtx);
2285
2286	return (0);
2287}
2288
2289#ifdef TI_JUMBO_HDRSPLIT
2290/*
2291 * If hdr_len is 0, that means that header splitting wasn't done on
2292 * this packet for some reason.  The two most likely reasons are that
2293 * the protocol isn't a supported protocol for splitting, or this
2294 * packet had a fragment offset that wasn't 0.
2295 *
2296 * The header length, if it is non-zero, will always be the length of
2297 * the headers on the packet, but that length could be longer than the
2298 * first mbuf.  So we take the minimum of the two as the actual
2299 * length.
2300 */
2301static __inline void
2302ti_hdr_split(struct mbuf *top, int hdr_len, int pkt_len, int idx)
2303{
2304	int i = 0;
2305	int lengths[4] = {0, 0, 0, 0};
2306	struct mbuf *m, *mp;
2307
2308	if (hdr_len != 0)
2309		top->m_len = min(hdr_len, top->m_len);
2310	pkt_len -= top->m_len;
2311	lengths[i++] = top->m_len;
2312
2313	mp = top;
2314	for (m = top->m_next; m && pkt_len; m = m->m_next) {
2315		m->m_len = m->m_ext.ext_size = min(m->m_len, pkt_len);
2316		pkt_len -= m->m_len;
2317		lengths[i++] = m->m_len;
2318		mp = m;
2319	}
2320
2321#if 0
2322	if (hdr_len != 0)
2323		printf("got split packet: ");
2324	else
2325		printf("got non-split packet: ");
2326
2327	printf("%d,%d,%d,%d = %d\n", lengths[0],
2328	    lengths[1], lengths[2], lengths[3],
2329	    lengths[0] + lengths[1] + lengths[2] +
2330	    lengths[3]);
2331#endif
2332
2333	if (pkt_len)
2334		panic("header splitting didn't");
2335
2336	if (m) {
2337		m_freem(m);
2338		mp->m_next = NULL;
2339
2340	}
2341	if (mp->m_next != NULL)
2342		panic("ti_hdr_split: last mbuf in chain should be null");
2343}
2344#endif /* TI_JUMBO_HDRSPLIT */
2345
2346/*
2347 * Frame reception handling. This is called if there's a frame
2348 * on the receive return list.
2349 *
2350 * Note: we have to be able to handle three possibilities here:
2351 * 1) the frame is from the mini receive ring (can only happen)
2352 *    on Tigon 2 boards)
2353 * 2) the frame is from the jumbo recieve ring
2354 * 3) the frame is from the standard receive ring
2355 */
2356
2357static void
2358ti_rxeof(sc)
2359	struct ti_softc		*sc;
2360{
2361	struct ifnet		*ifp;
2362	struct ti_cmd_desc	cmd;
2363
2364	TI_LOCK_ASSERT(sc);
2365
2366	ifp = &sc->arpcom.ac_if;
2367
2368	while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
2369		struct ti_rx_desc	*cur_rx;
2370		u_int32_t		rxidx;
2371		struct mbuf		*m = NULL;
2372		u_int16_t		vlan_tag = 0;
2373		int			have_tag = 0;
2374
2375		cur_rx =
2376		    &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
2377		rxidx = cur_rx->ti_idx;
2378		TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
2379
2380		if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2381			have_tag = 1;
2382			vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
2383		}
2384
2385		if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
2386
2387			TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
2388			m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
2389			sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
2390			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2391				ifp->if_ierrors++;
2392				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2393				continue;
2394			}
2395			if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
2396				ifp->if_ierrors++;
2397				ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
2398				continue;
2399			}
2400#ifdef TI_PRIVATE_JUMBOS
2401			m->m_len = cur_rx->ti_len;
2402#else /* TI_PRIVATE_JUMBOS */
2403#ifdef TI_JUMBO_HDRSPLIT
2404			if (sc->ti_hdrsplit)
2405				ti_hdr_split(m, TI_HOSTADDR(cur_rx->ti_addr),
2406					     cur_rx->ti_len, rxidx);
2407			else
2408#endif /* TI_JUMBO_HDRSPLIT */
2409			m_adj(m, cur_rx->ti_len - m->m_pkthdr.len);
2410#endif /* TI_PRIVATE_JUMBOS */
2411		} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
2412			TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
2413			m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
2414			sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
2415			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2416				ifp->if_ierrors++;
2417				ti_newbuf_mini(sc, sc->ti_mini, m);
2418				continue;
2419			}
2420			if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
2421				ifp->if_ierrors++;
2422				ti_newbuf_mini(sc, sc->ti_mini, m);
2423				continue;
2424			}
2425			m->m_len = cur_rx->ti_len;
2426		} else {
2427			TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
2428			m = sc->ti_cdata.ti_rx_std_chain[rxidx];
2429			sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
2430			if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
2431				ifp->if_ierrors++;
2432				ti_newbuf_std(sc, sc->ti_std, m);
2433				continue;
2434			}
2435			if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
2436				ifp->if_ierrors++;
2437				ti_newbuf_std(sc, sc->ti_std, m);
2438				continue;
2439			}
2440			m->m_len = cur_rx->ti_len;
2441		}
2442
2443		m->m_pkthdr.len = cur_rx->ti_len;
2444		ifp->if_ipackets++;
2445		m->m_pkthdr.rcvif = ifp;
2446
2447		if (ifp->if_hwassist) {
2448			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
2449			    CSUM_DATA_VALID;
2450			if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
2451				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2452			m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
2453		}
2454
2455		/*
2456		 * If we received a packet with a vlan tag,
2457		 * tag it before passing the packet upward.
2458		 */
2459		if (have_tag)
2460			VLAN_INPUT_TAG(ifp, m, vlan_tag, continue);
2461		TI_UNLOCK(sc);
2462		(*ifp->if_input)(ifp, m);
2463		TI_LOCK(sc);
2464	}
2465
2466	/* Only necessary on the Tigon 1. */
2467	if (sc->ti_hwrev == TI_HWREV_TIGON)
2468		CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2469		    sc->ti_rx_saved_considx);
2470
2471	TI_UPDATE_STDPROD(sc, sc->ti_std);
2472	TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2473	TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2474}
2475
2476static void
2477ti_txeof(sc)
2478	struct ti_softc		*sc;
2479{
2480	struct ti_tx_desc	*cur_tx = NULL;
2481	struct ifnet		*ifp;
2482
2483	ifp = &sc->arpcom.ac_if;
2484
2485	/*
2486	 * Go through our tx ring and free mbufs for those
2487	 * frames that have been sent.
2488	 */
2489	while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2490		u_int32_t		idx = 0;
2491
2492		idx = sc->ti_tx_saved_considx;
2493		if (sc->ti_hwrev == TI_HWREV_TIGON) {
2494			if (idx > 383)
2495				CSR_WRITE_4(sc, TI_WINBASE,
2496				    TI_TX_RING_BASE + 6144);
2497			else if (idx > 255)
2498				CSR_WRITE_4(sc, TI_WINBASE,
2499				    TI_TX_RING_BASE + 4096);
2500			else if (idx > 127)
2501				CSR_WRITE_4(sc, TI_WINBASE,
2502				    TI_TX_RING_BASE + 2048);
2503			else
2504				CSR_WRITE_4(sc, TI_WINBASE,
2505				    TI_TX_RING_BASE);
2506			cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
2507		} else
2508			cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2509		if (cur_tx->ti_flags & TI_BDFLAG_END)
2510			ifp->if_opackets++;
2511		if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2512			m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2513			sc->ti_cdata.ti_tx_chain[idx] = NULL;
2514		}
2515		sc->ti_txcnt--;
2516		TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2517		ifp->if_timer = 0;
2518	}
2519
2520	if (cur_tx != NULL)
2521		ifp->if_flags &= ~IFF_OACTIVE;
2522}
2523
2524static void
2525ti_intr(xsc)
2526	void			*xsc;
2527{
2528	struct ti_softc		*sc;
2529	struct ifnet		*ifp;
2530
2531	sc = xsc;
2532	TI_LOCK(sc);
2533	ifp = &sc->arpcom.ac_if;
2534
2535/*#ifdef notdef*/
2536	/* Avoid this for now -- checking this register is expensive. */
2537	/* Make sure this is really our interrupt. */
2538	if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) {
2539		TI_UNLOCK(sc);
2540		return;
2541	}
2542/*#endif*/
2543
2544	/* Ack interrupt and stop others from occuring. */
2545	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2546
2547	if (ifp->if_flags & IFF_RUNNING) {
2548		/* Check RX return ring producer/consumer */
2549		ti_rxeof(sc);
2550
2551		/* Check TX ring producer/consumer */
2552		ti_txeof(sc);
2553	}
2554
2555	ti_handle_events(sc);
2556
2557	/* Re-enable interrupts. */
2558	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2559
2560	if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
2561		ti_start(ifp);
2562
2563	TI_UNLOCK(sc);
2564}
2565
2566static void
2567ti_stats_update(sc)
2568	struct ti_softc		*sc;
2569{
2570	struct ifnet		*ifp;
2571
2572	ifp = &sc->arpcom.ac_if;
2573
2574	ifp->if_collisions +=
2575	   (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2576	   sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2577	   sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2578	   sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2579	   ifp->if_collisions;
2580}
2581
2582/*
2583 * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2584 * pointers to descriptors.
2585 */
2586static int
2587ti_encap(sc, m_head, txidx)
2588	struct ti_softc		*sc;
2589	struct mbuf		*m_head;
2590	u_int32_t		*txidx;
2591{
2592	struct ti_tx_desc	*f = NULL;
2593	struct mbuf		*m;
2594	u_int32_t		frag, cur, cnt = 0;
2595	u_int16_t		csum_flags = 0;
2596	struct m_tag		*mtag;
2597
2598	m = m_head;
2599	cur = frag = *txidx;
2600
2601	if (m_head->m_pkthdr.csum_flags) {
2602		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2603			csum_flags |= TI_BDFLAG_IP_CKSUM;
2604		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2605			csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2606		if (m_head->m_flags & M_LASTFRAG)
2607			csum_flags |= TI_BDFLAG_IP_FRAG_END;
2608		else if (m_head->m_flags & M_FRAG)
2609			csum_flags |= TI_BDFLAG_IP_FRAG;
2610	}
2611
2612	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m);
2613
2614	/*
2615	 * Start packing the mbufs in this chain into
2616	 * the fragment pointers. Stop when we run out
2617	 * of fragments or hit the end of the mbuf chain.
2618	 */
2619	for (m = m_head; m != NULL; m = m->m_next) {
2620		if (m->m_len != 0) {
2621			if (sc->ti_hwrev == TI_HWREV_TIGON) {
2622				if (frag > 383)
2623					CSR_WRITE_4(sc, TI_WINBASE,
2624					    TI_TX_RING_BASE + 6144);
2625				else if (frag > 255)
2626					CSR_WRITE_4(sc, TI_WINBASE,
2627					    TI_TX_RING_BASE + 4096);
2628				else if (frag > 127)
2629					CSR_WRITE_4(sc, TI_WINBASE,
2630					    TI_TX_RING_BASE + 2048);
2631				else
2632					CSR_WRITE_4(sc, TI_WINBASE,
2633					    TI_TX_RING_BASE);
2634				f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2635			} else
2636				f = &sc->ti_rdata->ti_tx_ring[frag];
2637			if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2638				break;
2639			TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2640			f->ti_len = m->m_len;
2641			f->ti_flags = csum_flags;
2642
2643			if (mtag != NULL) {
2644				f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2645				f->ti_vlan_tag = VLAN_TAG_VALUE(mtag) & 0xfff;
2646			} else {
2647				f->ti_vlan_tag = 0;
2648			}
2649
2650			/*
2651			 * Sanity check: avoid coming within 16 descriptors
2652			 * of the end of the ring.
2653			 */
2654			if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2655				return (ENOBUFS);
2656			cur = frag;
2657			TI_INC(frag, TI_TX_RING_CNT);
2658			cnt++;
2659		}
2660	}
2661
2662	if (m != NULL)
2663		return (ENOBUFS);
2664
2665	if (frag == sc->ti_tx_saved_considx)
2666		return (ENOBUFS);
2667
2668	if (sc->ti_hwrev == TI_HWREV_TIGON)
2669		sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2670	            TI_BDFLAG_END;
2671	else
2672		sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2673	sc->ti_cdata.ti_tx_chain[cur] = m_head;
2674	sc->ti_txcnt += cnt;
2675
2676	*txidx = frag;
2677
2678	return (0);
2679}
2680
2681/*
2682 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2683 * to the mbuf data regions directly in the transmit descriptors.
2684 */
2685static void
2686ti_start(ifp)
2687	struct ifnet		*ifp;
2688{
2689	struct ti_softc		*sc;
2690	struct mbuf		*m_head = NULL;
2691	u_int32_t		prodidx = 0;
2692
2693	sc = ifp->if_softc;
2694	TI_LOCK(sc);
2695
2696	prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2697
2698	while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2699		IF_DEQUEUE(&ifp->if_snd, m_head);
2700		if (m_head == NULL)
2701			break;
2702
2703		/*
2704		 * XXX
2705		 * safety overkill.  If this is a fragmented packet chain
2706		 * with delayed TCP/UDP checksums, then only encapsulate
2707		 * it if we have enough descriptors to handle the entire
2708		 * chain at once.
2709		 * (paranoia -- may not actually be needed)
2710		 */
2711		if (m_head->m_flags & M_FIRSTFRAG &&
2712		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2713			if ((TI_TX_RING_CNT - sc->ti_txcnt) <
2714			    m_head->m_pkthdr.csum_data + 16) {
2715				IF_PREPEND(&ifp->if_snd, m_head);
2716				ifp->if_flags |= IFF_OACTIVE;
2717				break;
2718			}
2719		}
2720
2721		/*
2722		 * Pack the data into the transmit ring. If we
2723		 * don't have room, set the OACTIVE flag and wait
2724		 * for the NIC to drain the ring.
2725		 */
2726		if (ti_encap(sc, m_head, &prodidx)) {
2727			IF_PREPEND(&ifp->if_snd, m_head);
2728			ifp->if_flags |= IFF_OACTIVE;
2729			break;
2730		}
2731
2732		/*
2733		 * If there's a BPF listener, bounce a copy of this frame
2734		 * to him.
2735		 */
2736		BPF_MTAP(ifp, m_head);
2737	}
2738
2739	/* Transmit */
2740	CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2741
2742	/*
2743	 * Set a timeout in case the chip goes out to lunch.
2744	 */
2745	ifp->if_timer = 5;
2746	TI_UNLOCK(sc);
2747}
2748
2749static void
2750ti_init(xsc)
2751	void			*xsc;
2752{
2753	struct ti_softc		*sc = xsc;
2754
2755	/* Cancel pending I/O and flush buffers. */
2756	ti_stop(sc);
2757
2758	TI_LOCK(sc);
2759	/* Init the gen info block, ring control blocks and firmware. */
2760	if (ti_gibinit(sc)) {
2761		printf("ti%d: initialization failure\n", sc->ti_unit);
2762		TI_UNLOCK(sc);
2763		return;
2764	}
2765
2766	TI_UNLOCK(sc);
2767}
2768
2769static void ti_init2(sc)
2770	struct ti_softc		*sc;
2771{
2772	struct ti_cmd_desc	cmd;
2773	struct ifnet		*ifp;
2774	u_int16_t		*m;
2775	struct ifmedia		*ifm;
2776	int			tmp;
2777
2778	ifp = &sc->arpcom.ac_if;
2779
2780	/* Specify MTU and interface index. */
2781	CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->ti_unit);
2782	CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2783	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
2784	TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2785
2786	/* Load our MAC address. */
2787	m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2788	CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2789	CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2790	TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2791
2792	/* Enable or disable promiscuous mode as needed. */
2793	if (ifp->if_flags & IFF_PROMISC) {
2794		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2795	} else {
2796		TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2797	}
2798
2799	/* Program multicast filter. */
2800	ti_setmulti(sc);
2801
2802	/*
2803	 * If this is a Tigon 1, we should tell the
2804	 * firmware to use software packet filtering.
2805	 */
2806	if (sc->ti_hwrev == TI_HWREV_TIGON) {
2807		TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2808	}
2809
2810	/* Init RX ring. */
2811	ti_init_rx_ring_std(sc);
2812
2813	/* Init jumbo RX ring. */
2814	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2815		ti_init_rx_ring_jumbo(sc);
2816
2817	/*
2818	 * If this is a Tigon 2, we can also configure the
2819	 * mini ring.
2820	 */
2821	if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2822		ti_init_rx_ring_mini(sc);
2823
2824	CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2825	sc->ti_rx_saved_considx = 0;
2826
2827	/* Init TX ring. */
2828	ti_init_tx_ring(sc);
2829
2830	/* Tell firmware we're alive. */
2831	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2832
2833	/* Enable host interrupts. */
2834	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2835
2836	ifp->if_flags |= IFF_RUNNING;
2837	ifp->if_flags &= ~IFF_OACTIVE;
2838
2839	/*
2840	 * Make sure to set media properly. We have to do this
2841	 * here since we have to issue commands in order to set
2842	 * the link negotiation and we can't issue commands until
2843	 * the firmware is running.
2844	 */
2845	ifm = &sc->ifmedia;
2846	tmp = ifm->ifm_media;
2847	ifm->ifm_media = ifm->ifm_cur->ifm_media;
2848	ti_ifmedia_upd(ifp);
2849	ifm->ifm_media = tmp;
2850}
2851
2852/*
2853 * Set media options.
2854 */
2855static int
2856ti_ifmedia_upd(ifp)
2857	struct ifnet		*ifp;
2858{
2859	struct ti_softc		*sc;
2860	struct ifmedia		*ifm;
2861	struct ti_cmd_desc	cmd;
2862	u_int32_t		flowctl;
2863
2864	sc = ifp->if_softc;
2865	ifm = &sc->ifmedia;
2866
2867	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2868		return (EINVAL);
2869
2870	flowctl = 0;
2871
2872	switch (IFM_SUBTYPE(ifm->ifm_media)) {
2873	case IFM_AUTO:
2874		/*
2875		 * Transmit flow control doesn't work on the Tigon 1.
2876		 */
2877		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2878
2879		/*
2880		 * Transmit flow control can also cause problems on the
2881		 * Tigon 2, apparantly with both the copper and fiber
2882		 * boards.  The symptom is that the interface will just
2883		 * hang.  This was reproduced with Alteon 180 switches.
2884		 */
2885#if 0
2886		if (sc->ti_hwrev != TI_HWREV_TIGON)
2887			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2888#endif
2889
2890		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2891		    TI_GLNK_FULL_DUPLEX| flowctl |
2892		    TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2893
2894		flowctl = TI_LNK_RX_FLOWCTL_Y;
2895#if 0
2896		if (sc->ti_hwrev != TI_HWREV_TIGON)
2897			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2898#endif
2899
2900		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2901		    TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX| flowctl |
2902		    TI_LNK_AUTONEGENB|TI_LNK_ENB);
2903		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2904		    TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2905		break;
2906	case IFM_1000_SX:
2907	case IFM_1000_T:
2908		flowctl = TI_GLNK_RX_FLOWCTL_Y;
2909#if 0
2910		if (sc->ti_hwrev != TI_HWREV_TIGON)
2911			flowctl |= TI_GLNK_TX_FLOWCTL_Y;
2912#endif
2913
2914		CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2915		    flowctl |TI_GLNK_ENB);
2916		CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2917		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2918			TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2919		}
2920		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2921		    TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2922		break;
2923	case IFM_100_FX:
2924	case IFM_10_FL:
2925	case IFM_100_TX:
2926	case IFM_10_T:
2927		flowctl = TI_LNK_RX_FLOWCTL_Y;
2928#if 0
2929		if (sc->ti_hwrev != TI_HWREV_TIGON)
2930			flowctl |= TI_LNK_TX_FLOWCTL_Y;
2931#endif
2932
2933		CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2934		CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF|flowctl);
2935		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2936		    IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2937			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2938		} else {
2939			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2940		}
2941		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2942			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2943		} else {
2944			TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2945		}
2946		TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2947		    TI_CMD_CODE_NEGOTIATE_10_100, 0);
2948		break;
2949	}
2950
2951	return (0);
2952}
2953
2954/*
2955 * Report current media status.
2956 */
2957static void
2958ti_ifmedia_sts(ifp, ifmr)
2959	struct ifnet		*ifp;
2960	struct ifmediareq	*ifmr;
2961{
2962	struct ti_softc		*sc;
2963	u_int32_t		media = 0;
2964
2965	sc = ifp->if_softc;
2966
2967	ifmr->ifm_status = IFM_AVALID;
2968	ifmr->ifm_active = IFM_ETHER;
2969
2970	if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2971		return;
2972
2973	ifmr->ifm_status |= IFM_ACTIVE;
2974
2975	if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2976		media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2977		if (sc->ti_copper)
2978			ifmr->ifm_active |= IFM_1000_T;
2979		else
2980			ifmr->ifm_active |= IFM_1000_SX;
2981		if (media & TI_GLNK_FULL_DUPLEX)
2982			ifmr->ifm_active |= IFM_FDX;
2983		else
2984			ifmr->ifm_active |= IFM_HDX;
2985	} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2986		media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2987		if (sc->ti_copper) {
2988			if (media & TI_LNK_100MB)
2989				ifmr->ifm_active |= IFM_100_TX;
2990			if (media & TI_LNK_10MB)
2991				ifmr->ifm_active |= IFM_10_T;
2992		} else {
2993			if (media & TI_LNK_100MB)
2994				ifmr->ifm_active |= IFM_100_FX;
2995			if (media & TI_LNK_10MB)
2996				ifmr->ifm_active |= IFM_10_FL;
2997		}
2998		if (media & TI_LNK_FULL_DUPLEX)
2999			ifmr->ifm_active |= IFM_FDX;
3000		if (media & TI_LNK_HALF_DUPLEX)
3001			ifmr->ifm_active |= IFM_HDX;
3002	}
3003}
3004
3005static int
3006ti_ioctl(ifp, command, data)
3007	struct ifnet		*ifp;
3008	u_long			command;
3009	caddr_t			data;
3010{
3011	struct ti_softc		*sc = ifp->if_softc;
3012	struct ifreq		*ifr = (struct ifreq *) data;
3013	int			mask, error = 0;
3014	struct ti_cmd_desc	cmd;
3015
3016	TI_LOCK(sc);
3017
3018	switch (command) {
3019	case SIOCSIFMTU:
3020		if (ifr->ifr_mtu > TI_JUMBO_MTU)
3021			error = EINVAL;
3022		else {
3023			ifp->if_mtu = ifr->ifr_mtu;
3024			ti_init(sc);
3025		}
3026		break;
3027	case SIOCSIFFLAGS:
3028		if (ifp->if_flags & IFF_UP) {
3029			/*
3030			 * If only the state of the PROMISC flag changed,
3031			 * then just use the 'set promisc mode' command
3032			 * instead of reinitializing the entire NIC. Doing
3033			 * a full re-init means reloading the firmware and
3034			 * waiting for it to start up, which may take a
3035			 * second or two.
3036			 */
3037			if (ifp->if_flags & IFF_RUNNING &&
3038			    ifp->if_flags & IFF_PROMISC &&
3039			    !(sc->ti_if_flags & IFF_PROMISC)) {
3040				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3041				    TI_CMD_CODE_PROMISC_ENB, 0);
3042			} else if (ifp->if_flags & IFF_RUNNING &&
3043			    !(ifp->if_flags & IFF_PROMISC) &&
3044			    sc->ti_if_flags & IFF_PROMISC) {
3045				TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
3046				    TI_CMD_CODE_PROMISC_DIS, 0);
3047			} else
3048				ti_init(sc);
3049		} else {
3050			if (ifp->if_flags & IFF_RUNNING) {
3051				ti_stop(sc);
3052			}
3053		}
3054		sc->ti_if_flags = ifp->if_flags;
3055		error = 0;
3056		break;
3057	case SIOCADDMULTI:
3058	case SIOCDELMULTI:
3059		if (ifp->if_flags & IFF_RUNNING) {
3060			ti_setmulti(sc);
3061			error = 0;
3062		}
3063		break;
3064	case SIOCSIFMEDIA:
3065	case SIOCGIFMEDIA:
3066		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
3067		break;
3068	case SIOCSIFCAP:
3069		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3070		if (mask & IFCAP_HWCSUM) {
3071			if (IFCAP_HWCSUM & ifp->if_capenable)
3072				ifp->if_capenable &= ~IFCAP_HWCSUM;
3073			else
3074				ifp->if_capenable |= IFCAP_HWCSUM;
3075			if (ifp->if_flags & IFF_RUNNING)
3076				ti_init(sc);
3077		}
3078		error = 0;
3079		break;
3080	default:
3081		error = ether_ioctl(ifp, command, data);
3082		break;
3083	}
3084
3085	TI_UNLOCK(sc);
3086
3087	return (error);
3088}
3089
3090static int
3091ti_open(struct cdev *dev, int flags, int fmt, struct thread *td)
3092{
3093	struct ti_softc *sc;
3094
3095	sc = dev->si_drv1;
3096	if (sc == NULL)
3097		return (ENODEV);
3098
3099	TI_LOCK(sc);
3100	sc->ti_flags |= TI_FLAG_DEBUGING;
3101	TI_UNLOCK(sc);
3102
3103	return (0);
3104}
3105
3106static int
3107ti_close(struct cdev *dev, int flag, int fmt, struct thread *td)
3108{
3109	struct ti_softc *sc;
3110
3111	sc = dev->si_drv1;
3112	if (sc == NULL)
3113		return (ENODEV);
3114
3115	TI_LOCK(sc);
3116	sc->ti_flags &= ~TI_FLAG_DEBUGING;
3117	TI_UNLOCK(sc);
3118
3119	return (0);
3120}
3121
3122/*
3123 * This ioctl routine goes along with the Tigon character device.
3124 */
3125static int
3126ti_ioctl2(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
3127{
3128	int error;
3129	struct ti_softc *sc;
3130
3131	sc = dev->si_drv1;
3132	if (sc == NULL)
3133		return (ENODEV);
3134
3135	error = 0;
3136
3137	switch (cmd) {
3138	case TIIOCGETSTATS:
3139	{
3140		struct ti_stats *outstats;
3141
3142		outstats = (struct ti_stats *)addr;
3143
3144		bcopy(&sc->ti_rdata->ti_info.ti_stats, outstats,
3145		      sizeof(struct ti_stats));
3146		break;
3147	}
3148	case TIIOCGETPARAMS:
3149	{
3150		struct ti_params	*params;
3151
3152		params = (struct ti_params *)addr;
3153
3154		params->ti_stat_ticks = sc->ti_stat_ticks;
3155		params->ti_rx_coal_ticks = sc->ti_rx_coal_ticks;
3156		params->ti_tx_coal_ticks = sc->ti_tx_coal_ticks;
3157		params->ti_rx_max_coal_bds = sc->ti_rx_max_coal_bds;
3158		params->ti_tx_max_coal_bds = sc->ti_tx_max_coal_bds;
3159		params->ti_tx_buf_ratio = sc->ti_tx_buf_ratio;
3160		params->param_mask = TI_PARAM_ALL;
3161
3162		error = 0;
3163
3164		break;
3165	}
3166	case TIIOCSETPARAMS:
3167	{
3168		struct ti_params *params;
3169
3170		params = (struct ti_params *)addr;
3171
3172		if (params->param_mask & TI_PARAM_STAT_TICKS) {
3173			sc->ti_stat_ticks = params->ti_stat_ticks;
3174			CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
3175		}
3176
3177		if (params->param_mask & TI_PARAM_RX_COAL_TICKS) {
3178			sc->ti_rx_coal_ticks = params->ti_rx_coal_ticks;
3179			CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
3180				    sc->ti_rx_coal_ticks);
3181		}
3182
3183		if (params->param_mask & TI_PARAM_TX_COAL_TICKS) {
3184			sc->ti_tx_coal_ticks = params->ti_tx_coal_ticks;
3185			CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS,
3186				    sc->ti_tx_coal_ticks);
3187		}
3188
3189		if (params->param_mask & TI_PARAM_RX_COAL_BDS) {
3190			sc->ti_rx_max_coal_bds = params->ti_rx_max_coal_bds;
3191			CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD,
3192				    sc->ti_rx_max_coal_bds);
3193		}
3194
3195		if (params->param_mask & TI_PARAM_TX_COAL_BDS) {
3196			sc->ti_tx_max_coal_bds = params->ti_tx_max_coal_bds;
3197			CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD,
3198				    sc->ti_tx_max_coal_bds);
3199		}
3200
3201		if (params->param_mask & TI_PARAM_TX_BUF_RATIO) {
3202			sc->ti_tx_buf_ratio = params->ti_tx_buf_ratio;
3203			CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO,
3204				    sc->ti_tx_buf_ratio);
3205		}
3206
3207		error = 0;
3208
3209		break;
3210	}
3211	case TIIOCSETTRACE: {
3212		ti_trace_type	trace_type;
3213
3214		trace_type = *(ti_trace_type *)addr;
3215
3216		/*
3217		 * Set tracing to whatever the user asked for.  Setting
3218		 * this register to 0 should have the effect of disabling
3219		 * tracing.
3220		 */
3221		CSR_WRITE_4(sc, TI_GCR_NIC_TRACING, trace_type);
3222
3223		error = 0;
3224
3225		break;
3226	}
3227	case TIIOCGETTRACE: {
3228		struct ti_trace_buf	*trace_buf;
3229		u_int32_t		trace_start, cur_trace_ptr, trace_len;
3230
3231		trace_buf = (struct ti_trace_buf *)addr;
3232
3233		trace_start = CSR_READ_4(sc, TI_GCR_NICTRACE_START);
3234		cur_trace_ptr = CSR_READ_4(sc, TI_GCR_NICTRACE_PTR);
3235		trace_len = CSR_READ_4(sc, TI_GCR_NICTRACE_LEN);
3236
3237#if 0
3238		printf("ti%d: trace_start = %#x, cur_trace_ptr = %#x, "
3239		       "trace_len = %d\n", sc->ti_unit, trace_start,
3240		       cur_trace_ptr, trace_len);
3241		printf("ti%d: trace_buf->buf_len = %d\n", sc->ti_unit,
3242		       trace_buf->buf_len);
3243#endif
3244
3245		error = ti_copy_mem(sc, trace_start, min(trace_len,
3246				    trace_buf->buf_len),
3247				    (caddr_t)trace_buf->buf, 1, 1);
3248
3249		if (error == 0) {
3250			trace_buf->fill_len = min(trace_len,
3251						  trace_buf->buf_len);
3252			if (cur_trace_ptr < trace_start)
3253				trace_buf->cur_trace_ptr =
3254					trace_start - cur_trace_ptr;
3255			else
3256				trace_buf->cur_trace_ptr =
3257					cur_trace_ptr - trace_start;
3258		} else
3259			trace_buf->fill_len = 0;
3260
3261		break;
3262	}
3263
3264	/*
3265	 * For debugging, five ioctls are needed:
3266	 * ALT_ATTACH
3267	 * ALT_READ_TG_REG
3268	 * ALT_WRITE_TG_REG
3269	 * ALT_READ_TG_MEM
3270	 * ALT_WRITE_TG_MEM
3271	 */
3272	case ALT_ATTACH:
3273		/*
3274		 * From what I can tell, Alteon's Solaris Tigon driver
3275		 * only has one character device, so you have to attach
3276		 * to the Tigon board you're interested in.  This seems
3277		 * like a not-so-good way to do things, since unless you
3278		 * subsequently specify the unit number of the device
3279		 * you're interested in in every ioctl, you'll only be
3280		 * able to debug one board at a time.
3281		 */
3282		error = 0;
3283		break;
3284	case ALT_READ_TG_MEM:
3285	case ALT_WRITE_TG_MEM:
3286	{
3287		struct tg_mem *mem_param;
3288		u_int32_t sram_end, scratch_end;
3289
3290		mem_param = (struct tg_mem *)addr;
3291
3292		if (sc->ti_hwrev == TI_HWREV_TIGON) {
3293			sram_end = TI_END_SRAM_I;
3294			scratch_end = TI_END_SCRATCH_I;
3295		} else {
3296			sram_end = TI_END_SRAM_II;
3297			scratch_end = TI_END_SCRATCH_II;
3298		}
3299
3300		/*
3301		 * For now, we'll only handle accessing regular SRAM,
3302		 * nothing else.
3303		 */
3304		if ((mem_param->tgAddr >= TI_BEG_SRAM)
3305		 && ((mem_param->tgAddr + mem_param->len) <= sram_end)) {
3306			/*
3307			 * In this instance, we always copy to/from user
3308			 * space, so the user space argument is set to 1.
3309			 */
3310			error = ti_copy_mem(sc, mem_param->tgAddr,
3311					    mem_param->len,
3312					    mem_param->userAddr, 1,
3313					    (cmd == ALT_READ_TG_MEM) ? 1 : 0);
3314		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH)
3315			&& (mem_param->tgAddr <= scratch_end)) {
3316			error = ti_copy_scratch(sc, mem_param->tgAddr,
3317						mem_param->len,
3318						mem_param->userAddr, 1,
3319						(cmd == ALT_READ_TG_MEM) ?
3320						1 : 0, TI_PROCESSOR_A);
3321		} else if ((mem_param->tgAddr >= TI_BEG_SCRATCH_B_DEBUG)
3322			&& (mem_param->tgAddr <= TI_BEG_SCRATCH_B_DEBUG)) {
3323			if (sc->ti_hwrev == TI_HWREV_TIGON) {
3324				printf("ti%d:  invalid memory range for "
3325				       "Tigon I\n", sc->ti_unit);
3326				error = EINVAL;
3327				break;
3328			}
3329			error = ti_copy_scratch(sc, mem_param->tgAddr -
3330						TI_SCRATCH_DEBUG_OFF,
3331						mem_param->len,
3332						mem_param->userAddr, 1,
3333						(cmd == ALT_READ_TG_MEM) ?
3334						1 : 0, TI_PROCESSOR_B);
3335		} else {
3336			printf("ti%d: memory address %#x len %d is out of "
3337			       "supported range\n", sc->ti_unit,
3338			        mem_param->tgAddr, mem_param->len);
3339			error = EINVAL;
3340		}
3341
3342		break;
3343	}
3344	case ALT_READ_TG_REG:
3345	case ALT_WRITE_TG_REG:
3346	{
3347		struct tg_reg	*regs;
3348		u_int32_t	tmpval;
3349
3350		regs = (struct tg_reg *)addr;
3351
3352		/*
3353		 * Make sure the address in question isn't out of range.
3354		 */
3355		if (regs->addr > TI_REG_MAX) {
3356			error = EINVAL;
3357			break;
3358		}
3359		if (cmd == ALT_READ_TG_REG) {
3360			bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
3361						regs->addr, &tmpval, 1);
3362			regs->data = ntohl(tmpval);
3363#if 0
3364			if ((regs->addr == TI_CPU_STATE)
3365			 || (regs->addr == TI_CPU_CTL_B)) {
3366				printf("ti%d: register %#x = %#x\n",
3367				       sc->ti_unit, regs->addr, tmpval);
3368			}
3369#endif
3370		} else {
3371			tmpval = htonl(regs->data);
3372			bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
3373						 regs->addr, &tmpval, 1);
3374		}
3375
3376		break;
3377	}
3378	default:
3379		error = ENOTTY;
3380		break;
3381	}
3382	return (error);
3383}
3384
3385static void
3386ti_watchdog(ifp)
3387	struct ifnet		*ifp;
3388{
3389	struct ti_softc		*sc;
3390
3391	sc = ifp->if_softc;
3392	TI_LOCK(sc);
3393
3394	/*
3395	 * When we're debugging, the chip is often stopped for long periods
3396	 * of time, and that would normally cause the watchdog timer to fire.
3397	 * Since that impedes debugging, we don't want to do that.
3398	 */
3399	if (sc->ti_flags & TI_FLAG_DEBUGING) {
3400		TI_UNLOCK(sc);
3401		return;
3402	}
3403
3404	printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
3405	ti_stop(sc);
3406	ti_init(sc);
3407
3408	ifp->if_oerrors++;
3409	TI_UNLOCK(sc);
3410}
3411
3412/*
3413 * Stop the adapter and free any mbufs allocated to the
3414 * RX and TX lists.
3415 */
3416static void
3417ti_stop(sc)
3418	struct ti_softc		*sc;
3419{
3420	struct ifnet		*ifp;
3421	struct ti_cmd_desc	cmd;
3422
3423	TI_LOCK(sc);
3424
3425	ifp = &sc->arpcom.ac_if;
3426
3427	/* Disable host interrupts. */
3428	CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
3429	/*
3430	 * Tell firmware we're shutting down.
3431	 */
3432	TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
3433
3434	/* Halt and reinitialize. */
3435	ti_chipinit(sc);
3436	ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
3437	ti_chipinit(sc);
3438
3439	/* Free the RX lists. */
3440	ti_free_rx_ring_std(sc);
3441
3442	/* Free jumbo RX list. */
3443	ti_free_rx_ring_jumbo(sc);
3444
3445	/* Free mini RX list. */
3446	ti_free_rx_ring_mini(sc);
3447
3448	/* Free TX buffers. */
3449	ti_free_tx_ring(sc);
3450
3451	sc->ti_ev_prodidx.ti_idx = 0;
3452	sc->ti_return_prodidx.ti_idx = 0;
3453	sc->ti_tx_considx.ti_idx = 0;
3454	sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
3455
3456	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3457	TI_UNLOCK(sc);
3458}
3459
3460/*
3461 * Stop all chip I/O so that the kernel's probe routines don't
3462 * get confused by errant DMAs when rebooting.
3463 */
3464static void
3465ti_shutdown(dev)
3466	device_t		dev;
3467{
3468	struct ti_softc		*sc;
3469
3470	sc = device_get_softc(dev);
3471	TI_LOCK(sc);
3472	ti_chipinit(sc);
3473	TI_UNLOCK(sc);
3474}
3475