if_nge.c revision 92739
156055Srwatson/*
274191Srwatson * Copyright (c) 2001 Wind River Systems
356055Srwatson * Copyright (c) 1997, 1998, 1999, 2000, 2001
456055Srwatson *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
556055Srwatson *
656055Srwatson * Redistribution and use in source and binary forms, with or without
756055Srwatson * modification, are permitted provided that the following conditions
856055Srwatson * are met:
956055Srwatson * 1. Redistributions of source code must retain the above copyright
1056055Srwatson *    notice, this list of conditions and the following disclaimer.
1156055Srwatson * 2. Redistributions in binary form must reproduce the above copyright
1256055Srwatson *    notice, this list of conditions and the following disclaimer in the
1356055Srwatson *    documentation and/or other materials provided with the distribution.
1456055Srwatson * 3. All advertising materials mentioning features or use of this software
1556055Srwatson *    must display the following acknowledgement:
1656055Srwatson *	This product includes software developed by Bill Paul.
1756055Srwatson * 4. Neither the name of the author nor the names of any co-contributors
1856055Srwatson *    may be used to endorse or promote products derived from this software
1956055Srwatson *    without specific prior written permission.
2056055Srwatson *
2156055Srwatson * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
2256055Srwatson * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2356055Srwatson * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2456055Srwatson * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
2556055Srwatson * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2656055Srwatson * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2766259Srwatson * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2856055Srwatson * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2956055Srwatson * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
3092986Sobrien * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
3192986Sobrien * THE POSSIBILITY OF SUCH DAMAGE.
3292986Sobrien *
3356055Srwatson * $FreeBSD: head/sys/dev/nge/if_nge.c 92739 2002-03-20 02:08:01Z alfred $
3475185Stmm */
3556055Srwatson
3675185Stmm/*
3756055Srwatson * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38167006Skientzle * for FreeBSD. Datasheets are available from:
39167006Skientzle *
4056055Srwatson * http://www.national.com/ds/DP/DP83820.pdf
4156055Srwatson * http://www.national.com/ds/DP/DP83821.pdf
4256055Srwatson *
43194955Strasz * These chips are used on several low cost gigabit ethernet NICs
4456055Srwatson * sold by D-Link, Addtron, SMC and Asante. Both parts are
4556055Srwatson * virtually the same, except the 83820 is a 64-bit/32-bit part,
4656055Srwatson * while the 83821 is 32-bit only.
47167006Skientzle *
4891032Sjedgar * Many cards also use National gigE transceivers, such as the
4991032Sjedgar * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50194955Strasz * contains a full register description that applies to all of these
51194955Strasz * components:
5256055Srwatson *
5391032Sjedgar * http://www.national.com/ds/DP/DP83861.pdf
5456055Srwatson *
5556055Srwatson * Written by Bill Paul <wpaul@bsdi.com>
5656055Srwatson * BSDi Open Source Solutions
5756055Srwatson */
5856055Srwatson
5956055Srwatson/*
6056055Srwatson * The NatSemi DP83820 and 83821 controllers are enhanced versions
6156055Srwatson * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
6256055Srwatson * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
6356055Srwatson * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
6456055Srwatson * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
6556055Srwatson * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
6656055Srwatson * matching buffers, one perfect address filter buffer and interrupt
6756055Srwatson * moderation. The 83820 supports both 64-bit and 32-bit addressing
6856055Srwatson * and data transfers: the 64-bit support can be toggled on or off
6956055Srwatson * via software. This affects the size of certain fields in the DMA
7056055Srwatson * descriptors.
7156055Srwatson *
7256055Srwatson * There are two bugs/misfeatures in the 83820/83821 that I have
7356055Srwatson * discovered so far:
7456055Srwatson *
7556055Srwatson * - Receive buffers must be aligned on 64-bit boundaries, which means
7656055Srwatson *   you must resort to copying data in order to fix up the payload
7756055Srwatson *   alignment.
7856055Srwatson *
7956055Srwatson * - In order to transmit jumbo frames larger than 8170 bytes, you have
8056055Srwatson *   to turn off transmit checksum offloading, because the chip can't
8156055Srwatson *   compute the checksum on an outgoing frame unless it fits entirely
82194955Strasz *   within the TX FIFO, which is only 8192 bytes in size. If you have
83194955Strasz *   TX checksum offload enabled and you transmit attempt to transmit a
84194955Strasz *   frame larger than 8170 bytes, the transmitter will wedge.
85194955Strasz *
86194955Strasz * To work around the latter problem, TX checksum offload is disabled
87194955Strasz * if the user selects an MTU larger than 8152 (8170 - 18).
88194955Strasz */
89194955Strasz
90194955Strasz#include <sys/param.h>
91194955Strasz#include <sys/systm.h>
92194955Strasz#include <sys/sockio.h>
93194955Strasz#include <sys/mbuf.h>
94194955Strasz#include <sys/malloc.h>
95194955Strasz#include <sys/kernel.h>
96194955Strasz#include <sys/socket.h>
97194955Strasz
98194955Strasz#include <net/if.h>
99194955Strasz#include <net/if_arp.h>
100194955Strasz#include <net/ethernet.h>
101194955Strasz#include <net/if_dl.h>
102194955Strasz#include <net/if_media.h>
103194955Strasz#include <net/if_types.h>
104194955Strasz#include <net/if_vlan_var.h>
105194955Strasz
106194955Strasz#include <net/bpf.h>
107194955Strasz
108194955Strasz#include <vm/vm.h>              /* for vtophys */
109194955Strasz#include <vm/pmap.h>            /* for vtophys */
110194955Strasz#include <machine/clock.h>      /* for DELAY */
111194955Strasz#include <machine/bus_pio.h>
112194955Strasz#include <machine/bus_memio.h>
113194955Strasz#include <machine/bus.h>
114194955Strasz#include <machine/resource.h>
115194955Strasz#include <sys/bus.h>
116194955Strasz#include <sys/rman.h>
117194955Strasz
118194955Strasz#include <dev/mii/mii.h>
119194955Strasz#include <dev/mii/miivar.h>
120194955Strasz
121194955Strasz#include <pci/pcireg.h>
122194955Strasz#include <pci/pcivar.h>
123194955Strasz
124194955Strasz#define NGE_USEIOSPACE
125194955Strasz
126194955Strasz#include <dev/nge/if_ngereg.h>
127194955Strasz
128194955StraszMODULE_DEPEND(nge, miibus, 1, 1, 1);
129194955Strasz
130194955Strasz/* "controller miibus0" required.  See GENERIC if you get errors here. */
131194955Strasz#include "miibus_if.h"
132194955Strasz
133194955Strasz#ifndef lint
134194955Straszstatic const char rcsid[] =
135194955Strasz  "$FreeBSD: head/sys/dev/nge/if_nge.c 92739 2002-03-20 02:08:01Z alfred $";
136194955Strasz#endif
137194955Strasz
138194955Strasz#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139194955Strasz
140194955Strasz/*
141194955Strasz * Various supported device vendors/types and their names.
142194955Strasz */
143194955Straszstatic struct nge_type nge_devs[] = {
144194955Strasz	{ NGE_VENDORID, NGE_DEVICEID,
145194955Strasz	    "National Semiconductor Gigabit Ethernet" },
146194955Strasz	{ 0, 0, NULL }
147194955Strasz};
148194955Strasz
149194955Straszstatic int nge_probe		(device_t);
150194955Straszstatic int nge_attach		(device_t);
151194955Straszstatic int nge_detach		(device_t);
152194955Strasz
153194955Straszstatic int nge_alloc_jumbo_mem	(struct nge_softc *);
154194955Straszstatic void nge_free_jumbo_mem	(struct nge_softc *);
155194955Straszstatic void *nge_jalloc		(struct nge_softc *);
156194955Straszstatic void nge_jfree		(caddr_t, void *);
157194955Strasz
158194955Straszstatic int nge_newbuf		(struct nge_softc *,
159194955Strasz					struct nge_desc *, struct mbuf *);
160194955Straszstatic int nge_encap		(struct nge_softc *,
161194955Strasz					struct mbuf *, u_int32_t *);
162194955Straszstatic void nge_rxeof		(struct nge_softc *);
163194955Strasz#ifdef notdef
164194955Straszstatic void nge_rxeoc		(struct nge_softc *);
165194955Strasz#endif
166194955Straszstatic void nge_txeof		(struct nge_softc *);
167194955Straszstatic void nge_intr		(void *);
168194955Straszstatic void nge_tick		(void *);
169194955Straszstatic void nge_start		(struct ifnet *);
170194955Straszstatic int nge_ioctl		(struct ifnet *, u_long, caddr_t);
171194955Straszstatic void nge_init		(void *);
172194955Straszstatic void nge_stop		(struct nge_softc *);
173194955Straszstatic void nge_watchdog		(struct ifnet *);
174194955Straszstatic void nge_shutdown		(device_t);
175194955Straszstatic int nge_ifmedia_upd	(struct ifnet *);
176194955Straszstatic void nge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
177194955Strasz
178194955Straszstatic void nge_delay		(struct nge_softc *);
179194955Straszstatic void nge_eeprom_idle	(struct nge_softc *);
180194955Straszstatic void nge_eeprom_putbyte	(struct nge_softc *, int);
181194955Straszstatic void nge_eeprom_getword	(struct nge_softc *, int, u_int16_t *);
182194955Straszstatic void nge_read_eeprom	(struct nge_softc *, caddr_t, int, int, int);
183194955Strasz
184194955Straszstatic void nge_mii_sync	(struct nge_softc *);
185194955Straszstatic void nge_mii_send	(struct nge_softc *, u_int32_t, int);
186194955Straszstatic int nge_mii_readreg	(struct nge_softc *, struct nge_mii_frame *);
187194955Straszstatic int nge_mii_writereg	(struct nge_softc *, struct nge_mii_frame *);
18856055Srwatson
18966259Srwatsonstatic int nge_miibus_readreg	(device_t, int, int);
19066259Srwatsonstatic int nge_miibus_writereg	(device_t, int, int, int);
19156055Srwatsonstatic void nge_miibus_statchg	(device_t);
19256055Srwatson
19356055Srwatsonstatic void nge_setmulti	(struct nge_softc *);
19456055Srwatsonstatic u_int32_t nge_crc	(struct nge_softc *, caddr_t);
19556055Srwatsonstatic void nge_reset		(struct nge_softc *);
19675928Sjedgarstatic int nge_list_rx_init	(struct nge_softc *);
19775928Sjedgarstatic int nge_list_tx_init	(struct nge_softc *);
19875928Sjedgar
19956055Srwatson#ifdef NGE_USEIOSPACE
20066259Srwatson#define NGE_RES			SYS_RES_IOPORT
20156055Srwatson#define NGE_RID			NGE_PCI_LOIO
20291034Sjedgar#else
20371142Srwatson#define NGE_RES			SYS_RES_MEMORY
20456055Srwatson#define NGE_RID			NGE_PCI_LOMEM
205194955Strasz#endif
20691034Sjedgar
20756055Srwatsonstatic device_method_t nge_methods[] = {
20871142Srwatson	/* Device interface */
20956055Srwatson	DEVMETHOD(device_probe,		nge_probe),
21056055Srwatson	DEVMETHOD(device_attach,	nge_attach),
21166259Srwatson	DEVMETHOD(device_detach,	nge_detach),
21256055Srwatson	DEVMETHOD(device_shutdown,	nge_shutdown),
21356055Srwatson
21466259Srwatson	/* bus interface */
21556055Srwatson	DEVMETHOD(bus_print_child,	bus_generic_print_child),
21656055Srwatson	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
21756055Srwatson
21866259Srwatson	/* MII interface */
21956055Srwatson	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
220194955Strasz	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
221194955Strasz	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
222194955Strasz
22356055Srwatson	{ 0, 0 }
22456055Srwatson};
225194955Strasz
226194955Straszstatic driver_t nge_driver = {
227194955Strasz	"nge",
228194955Strasz	nge_methods,
229194955Strasz	sizeof(struct nge_softc)
23056055Srwatson};
23156055Srwatson
232194955Straszstatic devclass_t nge_devclass;
233194955Strasz
234194955StraszDRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
23556055SrwatsonDRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
23656055Srwatson
237194955Strasz#define NGE_SETBIT(sc, reg, x)				\
238194955Strasz	CSR_WRITE_4(sc, reg,				\
23956055Srwatson		CSR_READ_4(sc, reg) | (x))
24056055Srwatson
24156055Srwatson#define NGE_CLRBIT(sc, reg, x)				\
242194955Strasz	CSR_WRITE_4(sc, reg,				\
243194955Strasz		CSR_READ_4(sc, reg) & ~(x))
24456055Srwatson
24556055Srwatson#define SIO_SET(x)					\
246194955Strasz	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
24756055Srwatson
24856055Srwatson#define SIO_CLR(x)					\
24956055Srwatson	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
25056055Srwatson
25156055Srwatsonstatic void nge_delay(sc)
25266259Srwatson	struct nge_softc	*sc;
25366259Srwatson{
25456055Srwatson	int			idx;
25556055Srwatson
25656055Srwatson	for (idx = (300 / 33) + 1; idx > 0; idx--)
25756055Srwatson		CSR_READ_4(sc, NGE_CSR);
25856055Srwatson
25956055Srwatson	return;
26056055Srwatson}
26156055Srwatson
26256055Srwatsonstatic void nge_eeprom_idle(sc)
26356055Srwatson	struct nge_softc	*sc;
26456055Srwatson{
26571142Srwatson	register int		i;
26656055Srwatson
26756055Srwatson	SIO_SET(NGE_MEAR_EE_CSEL);
268167006Skientzle	nge_delay(sc);
269167006Skientzle	SIO_SET(NGE_MEAR_EE_CLK);
270167006Skientzle	nge_delay(sc);
271167006Skientzle
272167006Skientzle	for (i = 0; i < 25; i++) {
273167006Skientzle		SIO_CLR(NGE_MEAR_EE_CLK);
274167006Skientzle		nge_delay(sc);
275167006Skientzle		SIO_SET(NGE_MEAR_EE_CLK);
276167006Skientzle		nge_delay(sc);
277167006Skientzle	}
278167006Skientzle
279167006Skientzle	SIO_CLR(NGE_MEAR_EE_CLK);
280167006Skientzle	nge_delay(sc);
281167006Skientzle	SIO_CLR(NGE_MEAR_EE_CSEL);
282167006Skientzle	nge_delay(sc);
283167006Skientzle	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
28456055Srwatson
285167006Skientzle	return;
286167006Skientzle}
287167006Skientzle
288167006Skientzle/*
289167006Skientzle * Send a read command and address to the EEPROM, check for ACK.
290167006Skientzle */
291167006Skientzlestatic void nge_eeprom_putbyte(sc, addr)
292167006Skientzle	struct nge_softc	*sc;
293167006Skientzle	int			addr;
294167006Skientzle{
295167006Skientzle	register int		d, i;
296167006Skientzle
297167006Skientzle	d = addr | NGE_EECMD_READ;
298167006Skientzle
29956055Srwatson	/*
300167006Skientzle	 * Feed in each bit and stobe the clock.
301167006Skientzle	 */
302167006Skientzle	for (i = 0x400; i; i >>= 1) {
303167006Skientzle		if (d & i) {
304167006Skientzle			SIO_SET(NGE_MEAR_EE_DIN);
305167006Skientzle		} else {
306167006Skientzle			SIO_CLR(NGE_MEAR_EE_DIN);
307167006Skientzle		}
308167006Skientzle		nge_delay(sc);
309167006Skientzle		SIO_SET(NGE_MEAR_EE_CLK);
310167006Skientzle		nge_delay(sc);
311167006Skientzle		SIO_CLR(NGE_MEAR_EE_CLK);
312167006Skientzle		nge_delay(sc);
313167006Skientzle	}
314167006Skientzle
315167006Skientzle	return;
316167006Skientzle}
317167006Skientzle
318/*
319 * Read a word of data stored in the EEPROM at address 'addr.'
320 */
321static void nge_eeprom_getword(sc, addr, dest)
322	struct nge_softc	*sc;
323	int			addr;
324	u_int16_t		*dest;
325{
326	register int		i;
327	u_int16_t		word = 0;
328
329	/* Force EEPROM to idle state. */
330	nge_eeprom_idle(sc);
331
332	/* Enter EEPROM access mode. */
333	nge_delay(sc);
334	SIO_CLR(NGE_MEAR_EE_CLK);
335	nge_delay(sc);
336	SIO_SET(NGE_MEAR_EE_CSEL);
337	nge_delay(sc);
338
339	/*
340	 * Send address of word we want to read.
341	 */
342	nge_eeprom_putbyte(sc, addr);
343
344	/*
345	 * Start reading bits from EEPROM.
346	 */
347	for (i = 0x8000; i; i >>= 1) {
348		SIO_SET(NGE_MEAR_EE_CLK);
349		nge_delay(sc);
350		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
351			word |= i;
352		nge_delay(sc);
353		SIO_CLR(NGE_MEAR_EE_CLK);
354		nge_delay(sc);
355	}
356
357	/* Turn off EEPROM access mode. */
358	nge_eeprom_idle(sc);
359
360	*dest = word;
361
362	return;
363}
364
365/*
366 * Read a sequence of words from the EEPROM.
367 */
368static void nge_read_eeprom(sc, dest, off, cnt, swap)
369	struct nge_softc	*sc;
370	caddr_t			dest;
371	int			off;
372	int			cnt;
373	int			swap;
374{
375	int			i;
376	u_int16_t		word = 0, *ptr;
377
378	for (i = 0; i < cnt; i++) {
379		nge_eeprom_getword(sc, off + i, &word);
380		ptr = (u_int16_t *)(dest + (i * 2));
381		if (swap)
382			*ptr = ntohs(word);
383		else
384			*ptr = word;
385	}
386
387	return;
388}
389
390/*
391 * Sync the PHYs by setting data bit and strobing the clock 32 times.
392 */
393static void nge_mii_sync(sc)
394	struct nge_softc		*sc;
395{
396	register int		i;
397
398	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
399
400	for (i = 0; i < 32; i++) {
401		SIO_SET(NGE_MEAR_MII_CLK);
402		DELAY(1);
403		SIO_CLR(NGE_MEAR_MII_CLK);
404		DELAY(1);
405	}
406
407	return;
408}
409
410/*
411 * Clock a series of bits through the MII.
412 */
413static void nge_mii_send(sc, bits, cnt)
414	struct nge_softc		*sc;
415	u_int32_t		bits;
416	int			cnt;
417{
418	int			i;
419
420	SIO_CLR(NGE_MEAR_MII_CLK);
421
422	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
423                if (bits & i) {
424			SIO_SET(NGE_MEAR_MII_DATA);
425                } else {
426			SIO_CLR(NGE_MEAR_MII_DATA);
427                }
428		DELAY(1);
429		SIO_CLR(NGE_MEAR_MII_CLK);
430		DELAY(1);
431		SIO_SET(NGE_MEAR_MII_CLK);
432	}
433}
434
435/*
436 * Read an PHY register through the MII.
437 */
438static int nge_mii_readreg(sc, frame)
439	struct nge_softc		*sc;
440	struct nge_mii_frame	*frame;
441
442{
443	int			i, ack, s;
444
445	s = splimp();
446
447	/*
448	 * Set up frame for RX.
449	 */
450	frame->mii_stdelim = NGE_MII_STARTDELIM;
451	frame->mii_opcode = NGE_MII_READOP;
452	frame->mii_turnaround = 0;
453	frame->mii_data = 0;
454
455	CSR_WRITE_4(sc, NGE_MEAR, 0);
456
457	/*
458 	 * Turn on data xmit.
459	 */
460	SIO_SET(NGE_MEAR_MII_DIR);
461
462	nge_mii_sync(sc);
463
464	/*
465	 * Send command/address info.
466	 */
467	nge_mii_send(sc, frame->mii_stdelim, 2);
468	nge_mii_send(sc, frame->mii_opcode, 2);
469	nge_mii_send(sc, frame->mii_phyaddr, 5);
470	nge_mii_send(sc, frame->mii_regaddr, 5);
471
472	/* Idle bit */
473	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
474	DELAY(1);
475	SIO_SET(NGE_MEAR_MII_CLK);
476	DELAY(1);
477
478	/* Turn off xmit. */
479	SIO_CLR(NGE_MEAR_MII_DIR);
480	/* Check for ack */
481	SIO_CLR(NGE_MEAR_MII_CLK);
482	DELAY(1);
483	SIO_SET(NGE_MEAR_MII_CLK);
484	DELAY(1);
485	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
486
487	/*
488	 * Now try reading data bits. If the ack failed, we still
489	 * need to clock through 16 cycles to keep the PHY(s) in sync.
490	 */
491	if (ack) {
492		for(i = 0; i < 16; i++) {
493			SIO_CLR(NGE_MEAR_MII_CLK);
494			DELAY(1);
495			SIO_SET(NGE_MEAR_MII_CLK);
496			DELAY(1);
497		}
498		goto fail;
499	}
500
501	for (i = 0x8000; i; i >>= 1) {
502		SIO_CLR(NGE_MEAR_MII_CLK);
503		DELAY(1);
504		if (!ack) {
505			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
506				frame->mii_data |= i;
507			DELAY(1);
508		}
509		SIO_SET(NGE_MEAR_MII_CLK);
510		DELAY(1);
511	}
512
513fail:
514
515	SIO_CLR(NGE_MEAR_MII_CLK);
516	DELAY(1);
517	SIO_SET(NGE_MEAR_MII_CLK);
518	DELAY(1);
519
520	splx(s);
521
522	if (ack)
523		return(1);
524	return(0);
525}
526
527/*
528 * Write to a PHY register through the MII.
529 */
530static int nge_mii_writereg(sc, frame)
531	struct nge_softc		*sc;
532	struct nge_mii_frame	*frame;
533
534{
535	int			s;
536
537	s = splimp();
538	/*
539	 * Set up frame for TX.
540	 */
541
542	frame->mii_stdelim = NGE_MII_STARTDELIM;
543	frame->mii_opcode = NGE_MII_WRITEOP;
544	frame->mii_turnaround = NGE_MII_TURNAROUND;
545
546	/*
547 	 * Turn on data output.
548	 */
549	SIO_SET(NGE_MEAR_MII_DIR);
550
551	nge_mii_sync(sc);
552
553	nge_mii_send(sc, frame->mii_stdelim, 2);
554	nge_mii_send(sc, frame->mii_opcode, 2);
555	nge_mii_send(sc, frame->mii_phyaddr, 5);
556	nge_mii_send(sc, frame->mii_regaddr, 5);
557	nge_mii_send(sc, frame->mii_turnaround, 2);
558	nge_mii_send(sc, frame->mii_data, 16);
559
560	/* Idle bit. */
561	SIO_SET(NGE_MEAR_MII_CLK);
562	DELAY(1);
563	SIO_CLR(NGE_MEAR_MII_CLK);
564	DELAY(1);
565
566	/*
567	 * Turn off xmit.
568	 */
569	SIO_CLR(NGE_MEAR_MII_DIR);
570
571	splx(s);
572
573	return(0);
574}
575
576static int nge_miibus_readreg(dev, phy, reg)
577	device_t		dev;
578	int			phy, reg;
579{
580	struct nge_softc	*sc;
581	struct nge_mii_frame	frame;
582
583	sc = device_get_softc(dev);
584
585	bzero((char *)&frame, sizeof(frame));
586
587	frame.mii_phyaddr = phy;
588	frame.mii_regaddr = reg;
589	nge_mii_readreg(sc, &frame);
590
591	return(frame.mii_data);
592}
593
594static int nge_miibus_writereg(dev, phy, reg, data)
595	device_t		dev;
596	int			phy, reg, data;
597{
598	struct nge_softc	*sc;
599	struct nge_mii_frame	frame;
600
601	sc = device_get_softc(dev);
602
603	bzero((char *)&frame, sizeof(frame));
604
605	frame.mii_phyaddr = phy;
606	frame.mii_regaddr = reg;
607	frame.mii_data = data;
608	nge_mii_writereg(sc, &frame);
609
610	return(0);
611}
612
613static void nge_miibus_statchg(dev)
614	device_t		dev;
615{
616	struct nge_softc	*sc;
617	struct mii_data		*mii;
618
619	sc = device_get_softc(dev);
620	mii = device_get_softc(sc->nge_miibus);
621
622	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
623		NGE_SETBIT(sc, NGE_TX_CFG,
624		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
625		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
626	} else {
627		NGE_CLRBIT(sc, NGE_TX_CFG,
628		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
629		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
630	}
631
632	/* If we have a 1000Mbps link, set the mode_1000 bit. */
633	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
634	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
635		NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
636	} else {
637		NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
638	}
639
640	return;
641}
642
643static u_int32_t nge_crc(sc, addr)
644	struct nge_softc	*sc;
645	caddr_t			addr;
646{
647	u_int32_t		crc, carry;
648	int			i, j;
649	u_int8_t		c;
650
651	/* Compute CRC for the address value. */
652	crc = 0xFFFFFFFF; /* initial value */
653
654	for (i = 0; i < 6; i++) {
655		c = *(addr + i);
656		for (j = 0; j < 8; j++) {
657			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
658			crc <<= 1;
659			c >>= 1;
660			if (carry)
661				crc = (crc ^ 0x04c11db6) | carry;
662		}
663	}
664
665	/*
666	 * return the filter bit position
667	 */
668
669	return((crc >> 21) & 0x00000FFF);
670}
671
672static void nge_setmulti(sc)
673	struct nge_softc	*sc;
674{
675	struct ifnet		*ifp;
676	struct ifmultiaddr	*ifma;
677	u_int32_t		h = 0, i, filtsave;
678	int			bit, index;
679
680	ifp = &sc->arpcom.ac_if;
681
682	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
683		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
684		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
685		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
686		return;
687	}
688
689	/*
690	 * We have to explicitly enable the multicast hash table
691	 * on the NatSemi chip if we want to use it, which we do.
692	 * We also have to tell it that we don't want to use the
693	 * hash table for matching unicast addresses.
694	 */
695	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
696	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
697	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
698
699	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
700
701	/* first, zot all the existing hash bits */
702	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
703		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
704		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
705	}
706
707	/*
708	 * From the 11 bits returned by the crc routine, the top 7
709	 * bits represent the 16-bit word in the mcast hash table
710	 * that needs to be updated, and the lower 4 bits represent
711	 * which bit within that byte needs to be set.
712	 */
713	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
714		if (ifma->ifma_addr->sa_family != AF_LINK)
715			continue;
716		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
717		index = (h >> 4) & 0x7F;
718		bit = h & 0xF;
719		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
720		    NGE_FILTADDR_MCAST_LO + (index * 2));
721		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
722	}
723
724	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
725
726	return;
727}
728
729static void nge_reset(sc)
730	struct nge_softc	*sc;
731{
732	register int		i;
733
734	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
735
736	for (i = 0; i < NGE_TIMEOUT; i++) {
737		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
738			break;
739	}
740
741	if (i == NGE_TIMEOUT)
742		printf("nge%d: reset never completed\n", sc->nge_unit);
743
744	/* Wait a little while for the chip to get its brains in order. */
745	DELAY(1000);
746
747	/*
748	 * If this is a NetSemi chip, make sure to clear
749	 * PME mode.
750	 */
751	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
752	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
753
754        return;
755}
756
757/*
758 * Probe for an NatSemi chip. Check the PCI vendor and device
759 * IDs against our list and return a device name if we find a match.
760 */
761static int nge_probe(dev)
762	device_t		dev;
763{
764	struct nge_type		*t;
765
766	t = nge_devs;
767
768	while(t->nge_name != NULL) {
769		if ((pci_get_vendor(dev) == t->nge_vid) &&
770		    (pci_get_device(dev) == t->nge_did)) {
771			device_set_desc(dev, t->nge_name);
772			return(0);
773		}
774		t++;
775	}
776
777	return(ENXIO);
778}
779
780/*
781 * Attach the interface. Allocate softc structures, do ifmedia
782 * setup and ethernet/BPF attach.
783 */
784static int nge_attach(dev)
785	device_t		dev;
786{
787	int			s;
788	u_char			eaddr[ETHER_ADDR_LEN];
789	u_int32_t		command;
790	struct nge_softc	*sc;
791	struct ifnet		*ifp;
792	int			unit, error = 0, rid;
793
794	s = splimp();
795
796	sc = device_get_softc(dev);
797	unit = device_get_unit(dev);
798	bzero(sc, sizeof(struct nge_softc));
799
800	mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_DEF|MTX_RECURSE);
801
802	/*
803	 * Handle power management nonsense.
804	 */
805	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
806		u_int32_t		iobase, membase, irq;
807
808		/* Save important PCI config data. */
809		iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
810		membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
811		irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
812
813		/* Reset the power state. */
814		printf("nge%d: chip is in D%d power mode "
815		    "-- setting to D0\n", unit,
816		    pci_get_powerstate(dev));
817		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
818
819		/* Restore PCI config data. */
820		pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
821		pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
822		pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
823	}
824
825	/*
826	 * Map control/status registers.
827	 */
828	pci_enable_busmaster(dev);
829	pci_enable_io(dev, SYS_RES_IOPORT);
830	pci_enable_io(dev, SYS_RES_MEMORY);
831	command = pci_read_config(dev, PCIR_COMMAND, 4);
832
833#ifdef NGE_USEIOSPACE
834	if (!(command & PCIM_CMD_PORTEN)) {
835		printf("nge%d: failed to enable I/O ports!\n", unit);
836		error = ENXIO;;
837		goto fail;
838	}
839#else
840	if (!(command & PCIM_CMD_MEMEN)) {
841		printf("nge%d: failed to enable memory mapping!\n", unit);
842		error = ENXIO;;
843		goto fail;
844	}
845#endif
846
847	rid = NGE_RID;
848	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
849	    0, ~0, 1, RF_ACTIVE);
850
851	if (sc->nge_res == NULL) {
852		printf("nge%d: couldn't map ports/memory\n", unit);
853		error = ENXIO;
854		goto fail;
855	}
856
857	sc->nge_btag = rman_get_bustag(sc->nge_res);
858	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
859
860	/* Allocate interrupt */
861	rid = 0;
862	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
863	    RF_SHAREABLE | RF_ACTIVE);
864
865	if (sc->nge_irq == NULL) {
866		printf("nge%d: couldn't map interrupt\n", unit);
867		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
868		error = ENXIO;
869		goto fail;
870	}
871
872	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
873	    nge_intr, sc, &sc->nge_intrhand);
874
875	if (error) {
876		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
877		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
878		printf("nge%d: couldn't set up irq\n", unit);
879		goto fail;
880	}
881
882	/* Reset the adapter. */
883	nge_reset(sc);
884
885	/*
886	 * Get station address from the EEPROM.
887	 */
888	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
889	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
890	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
891
892	/*
893	 * A NatSemi chip was detected. Inform the world.
894	 */
895	printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":");
896
897	sc->nge_unit = unit;
898	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
899
900	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
901	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
902
903	if (sc->nge_ldata == NULL) {
904		printf("nge%d: no memory for list buffers!\n", unit);
905		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
906		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
907		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
908		error = ENXIO;
909		goto fail;
910	}
911	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
912
913	/* Try to allocate memory for jumbo buffers. */
914	if (nge_alloc_jumbo_mem(sc)) {
915		printf("nge%d: jumbo buffer allocation failed\n",
916                    sc->nge_unit);
917		contigfree(sc->nge_ldata,
918		    sizeof(struct nge_list_data), M_DEVBUF);
919		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
920		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
921		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
922		error = ENXIO;
923		goto fail;
924	}
925
926	ifp = &sc->arpcom.ac_if;
927	ifp->if_softc = sc;
928	ifp->if_unit = unit;
929	ifp->if_name = "nge";
930	ifp->if_mtu = ETHERMTU;
931	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
932	ifp->if_ioctl = nge_ioctl;
933	ifp->if_output = ether_output;
934	ifp->if_start = nge_start;
935	ifp->if_watchdog = nge_watchdog;
936	ifp->if_init = nge_init;
937	ifp->if_baudrate = 1000000000;
938	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
939	ifp->if_hwassist = NGE_CSUM_FEATURES;
940	ifp->if_capabilities = IFCAP_HWCSUM;
941	ifp->if_capenable = ifp->if_capabilities;
942
943	/*
944	 * Do MII setup.
945	 */
946	if (mii_phy_probe(dev, &sc->nge_miibus,
947	    nge_ifmedia_upd, nge_ifmedia_sts)) {
948		printf("nge%d: MII without any PHY!\n", sc->nge_unit);
949		nge_free_jumbo_mem(sc);
950		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
951		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
952		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
953		error = ENXIO;
954		goto fail;
955	}
956
957	/*
958	 * Call MI attach routine.
959	 */
960	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
961	callout_handle_init(&sc->nge_stat_ch);
962
963fail:
964	splx(s);
965	mtx_destroy(&sc->nge_mtx);
966	return(error);
967}
968
969static int nge_detach(dev)
970	device_t		dev;
971{
972	struct nge_softc	*sc;
973	struct ifnet		*ifp;
974	int			s;
975
976	s = splimp();
977
978	sc = device_get_softc(dev);
979	ifp = &sc->arpcom.ac_if;
980
981	nge_reset(sc);
982	nge_stop(sc);
983	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
984
985	bus_generic_detach(dev);
986	device_delete_child(dev, sc->nge_miibus);
987
988	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
989	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
990	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
991
992	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
993	nge_free_jumbo_mem(sc);
994
995	splx(s);
996	mtx_destroy(&sc->nge_mtx);
997
998	return(0);
999}
1000
1001/*
1002 * Initialize the transmit descriptors.
1003 */
1004static int nge_list_tx_init(sc)
1005	struct nge_softc	*sc;
1006{
1007	struct nge_list_data	*ld;
1008	struct nge_ring_data	*cd;
1009	int			i;
1010
1011	cd = &sc->nge_cdata;
1012	ld = sc->nge_ldata;
1013
1014	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1015		if (i == (NGE_TX_LIST_CNT - 1)) {
1016			ld->nge_tx_list[i].nge_nextdesc =
1017			    &ld->nge_tx_list[0];
1018			ld->nge_tx_list[i].nge_next =
1019			    vtophys(&ld->nge_tx_list[0]);
1020		} else {
1021			ld->nge_tx_list[i].nge_nextdesc =
1022			    &ld->nge_tx_list[i + 1];
1023			ld->nge_tx_list[i].nge_next =
1024			    vtophys(&ld->nge_tx_list[i + 1]);
1025		}
1026		ld->nge_tx_list[i].nge_mbuf = NULL;
1027		ld->nge_tx_list[i].nge_ptr = 0;
1028		ld->nge_tx_list[i].nge_ctl = 0;
1029	}
1030
1031	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1032
1033	return(0);
1034}
1035
1036
1037/*
1038 * Initialize the RX descriptors and allocate mbufs for them. Note that
1039 * we arrange the descriptors in a closed ring, so that the last descriptor
1040 * points back to the first.
1041 */
1042static int nge_list_rx_init(sc)
1043	struct nge_softc	*sc;
1044{
1045	struct nge_list_data	*ld;
1046	struct nge_ring_data	*cd;
1047	int			i;
1048
1049	ld = sc->nge_ldata;
1050	cd = &sc->nge_cdata;
1051
1052	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1053		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1054			return(ENOBUFS);
1055		if (i == (NGE_RX_LIST_CNT - 1)) {
1056			ld->nge_rx_list[i].nge_nextdesc =
1057			    &ld->nge_rx_list[0];
1058			ld->nge_rx_list[i].nge_next =
1059			    vtophys(&ld->nge_rx_list[0]);
1060		} else {
1061			ld->nge_rx_list[i].nge_nextdesc =
1062			    &ld->nge_rx_list[i + 1];
1063			ld->nge_rx_list[i].nge_next =
1064			    vtophys(&ld->nge_rx_list[i + 1]);
1065		}
1066	}
1067
1068	cd->nge_rx_prod = 0;
1069
1070	return(0);
1071}
1072
1073/*
1074 * Initialize an RX descriptor and attach an MBUF cluster.
1075 */
1076static int nge_newbuf(sc, c, m)
1077	struct nge_softc	*sc;
1078	struct nge_desc		*c;
1079	struct mbuf		*m;
1080{
1081	struct mbuf		*m_new = NULL;
1082	caddr_t			*buf = NULL;
1083
1084	if (m == NULL) {
1085		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1086		if (m_new == NULL) {
1087			printf("nge%d: no memory for rx list "
1088			    "-- packet dropped!\n", sc->nge_unit);
1089			return(ENOBUFS);
1090		}
1091
1092		/* Allocate the jumbo buffer */
1093		buf = nge_jalloc(sc);
1094		if (buf == NULL) {
1095#ifdef NGE_VERBOSE
1096			printf("nge%d: jumbo allocation failed "
1097			    "-- packet dropped!\n", sc->nge_unit);
1098#endif
1099			m_freem(m_new);
1100			return(ENOBUFS);
1101		}
1102		/* Attach the buffer to the mbuf */
1103		m_new->m_data = (void *)buf;
1104		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1105		MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree,
1106		    (struct nge_softc *)sc, 0, EXT_NET_DRV);
1107	} else {
1108		m_new = m;
1109		m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN;
1110		m_new->m_data = m_new->m_ext.ext_buf;
1111	}
1112
1113	m_adj(m_new, sizeof(u_int64_t));
1114
1115	c->nge_mbuf = m_new;
1116	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1117	c->nge_ctl = m_new->m_len;
1118	c->nge_extsts = 0;
1119
1120	return(0);
1121}
1122
1123static int nge_alloc_jumbo_mem(sc)
1124	struct nge_softc	*sc;
1125{
1126	caddr_t			ptr;
1127	register int		i;
1128	struct nge_jpool_entry   *entry;
1129
1130	/* Grab a big chunk o' storage. */
1131	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1132	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1133
1134	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1135		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1136		return(ENOBUFS);
1137	}
1138
1139	SLIST_INIT(&sc->nge_jfree_listhead);
1140	SLIST_INIT(&sc->nge_jinuse_listhead);
1141
1142	/*
1143	 * Now divide it up into 9K pieces and save the addresses
1144	 * in an array.
1145	 */
1146	ptr = sc->nge_cdata.nge_jumbo_buf;
1147	for (i = 0; i < NGE_JSLOTS; i++) {
1148		sc->nge_cdata.nge_jslots[i] = ptr;
1149		ptr += NGE_JLEN;
1150		entry = malloc(sizeof(struct nge_jpool_entry),
1151		    M_DEVBUF, M_NOWAIT);
1152		if (entry == NULL) {
1153			printf("nge%d: no memory for jumbo "
1154			    "buffer queue!\n", sc->nge_unit);
1155			return(ENOBUFS);
1156		}
1157		entry->slot = i;
1158		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1159		    entry, jpool_entries);
1160	}
1161
1162	return(0);
1163}
1164
1165static void nge_free_jumbo_mem(sc)
1166	struct nge_softc	*sc;
1167{
1168	register int		i;
1169	struct nge_jpool_entry   *entry;
1170
1171	for (i = 0; i < NGE_JSLOTS; i++) {
1172		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1173		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1174		free(entry, M_DEVBUF);
1175	}
1176
1177	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1178
1179	return;
1180}
1181
1182/*
1183 * Allocate a jumbo buffer.
1184 */
1185static void *nge_jalloc(sc)
1186	struct nge_softc	*sc;
1187{
1188	struct nge_jpool_entry   *entry;
1189
1190	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1191
1192	if (entry == NULL) {
1193#ifdef NGE_VERBOSE
1194		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1195#endif
1196		return(NULL);
1197	}
1198
1199	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1200	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1201	return(sc->nge_cdata.nge_jslots[entry->slot]);
1202}
1203
1204/*
1205 * Release a jumbo buffer.
1206 */
1207static void nge_jfree(buf, args)
1208	caddr_t			buf;
1209	void			*args;
1210{
1211	struct nge_softc	*sc;
1212	int		        i;
1213	struct nge_jpool_entry   *entry;
1214
1215	/* Extract the softc struct pointer. */
1216	sc = args;
1217
1218	if (sc == NULL)
1219		panic("nge_jfree: can't find softc pointer!");
1220
1221	/* calculate the slot this buffer belongs to */
1222	i = ((vm_offset_t)buf
1223	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1224
1225	if ((i < 0) || (i >= NGE_JSLOTS))
1226		panic("nge_jfree: asked to free buffer that we don't manage!");
1227
1228	entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1229	if (entry == NULL)
1230		panic("nge_jfree: buffer not in use!");
1231	entry->slot = i;
1232	SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries);
1233	SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries);
1234
1235	return;
1236}
1237/*
1238 * A frame has been uploaded: pass the resulting mbuf chain up to
1239 * the higher level protocols.
1240 */
1241static void nge_rxeof(sc)
1242	struct nge_softc	*sc;
1243{
1244        struct ether_header	*eh;
1245        struct mbuf		*m;
1246        struct ifnet		*ifp;
1247	struct nge_desc		*cur_rx;
1248	int			i, total_len = 0;
1249	u_int32_t		rxstat;
1250
1251	ifp = &sc->arpcom.ac_if;
1252	i = sc->nge_cdata.nge_rx_prod;
1253
1254	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1255		struct mbuf		*m0 = NULL;
1256		u_int32_t		extsts;
1257
1258		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1259		rxstat = cur_rx->nge_rxstat;
1260		extsts = cur_rx->nge_extsts;
1261		m = cur_rx->nge_mbuf;
1262		cur_rx->nge_mbuf = NULL;
1263		total_len = NGE_RXBYTES(cur_rx);
1264		NGE_INC(i, NGE_RX_LIST_CNT);
1265
1266		/*
1267		 * If an error occurs, update stats, clear the
1268		 * status word and leave the mbuf cluster in place:
1269		 * it should simply get re-used next time this descriptor
1270	 	 * comes up in the ring.
1271		 */
1272		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1273			ifp->if_ierrors++;
1274			nge_newbuf(sc, cur_rx, m);
1275			continue;
1276		}
1277
1278
1279		/*
1280		 * Ok. NatSemi really screwed up here. This is the
1281		 * only gigE chip I know of with alignment constraints
1282		 * on receive buffers. RX buffers must be 64-bit aligned.
1283		 */
1284#ifdef __i386__
1285		/*
1286		 * By popular demand, ignore the alignment problems
1287		 * on the Intel x86 platform. The performance hit
1288		 * incurred due to unaligned accesses is much smaller
1289		 * than the hit produced by forcing buffer copies all
1290		 * the time, especially with jumbo frames. We still
1291		 * need to fix up the alignment everywhere else though.
1292		 */
1293		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1294#endif
1295			m0 = m_devget(mtod(m, char *), total_len,
1296			    ETHER_ALIGN, ifp, NULL);
1297			nge_newbuf(sc, cur_rx, m);
1298			if (m0 == NULL) {
1299				printf("nge%d: no receive buffers "
1300				    "available -- packet dropped!\n",
1301				    sc->nge_unit);
1302				ifp->if_ierrors++;
1303				continue;
1304			}
1305			m = m0;
1306#ifdef __i386__
1307		} else {
1308			m->m_pkthdr.rcvif = ifp;
1309			m->m_pkthdr.len = m->m_len = total_len;
1310		}
1311#endif
1312
1313		ifp->if_ipackets++;
1314		eh = mtod(m, struct ether_header *);
1315
1316		/* Remove header from mbuf and pass it on. */
1317		m_adj(m, sizeof(struct ether_header));
1318
1319		/* Do IP checksum checking. */
1320		if (extsts & NGE_RXEXTSTS_IPPKT)
1321			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1322		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1323			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1324		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1325		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1326		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1327		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1328			m->m_pkthdr.csum_flags |=
1329			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1330			m->m_pkthdr.csum_data = 0xffff;
1331		}
1332
1333		/*
1334		 * If we received a packet with a vlan tag, pass it
1335		 * to vlan_input() instead of ether_input().
1336		 */
1337		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1338			VLAN_INPUT_TAG(eh, m, extsts & NGE_RXEXTSTS_VTCI);
1339                        continue;
1340                }
1341
1342		ether_input(ifp, eh, m);
1343	}
1344
1345	sc->nge_cdata.nge_rx_prod = i;
1346
1347	return;
1348}
1349
1350#ifdef notdef
1351void nge_rxeoc(sc)
1352	struct nge_softc	*sc;
1353{
1354	struct ifnet		*ifp;
1355
1356	ifp = &sc->arpcom.ac_if;
1357	nge_rxeof(sc);
1358	ifp->if_flags &= ~IFF_RUNNING;
1359	nge_init(sc);
1360	return;
1361}
1362#endif
1363
1364/*
1365 * A frame was downloaded to the chip. It's safe for us to clean up
1366 * the list buffers.
1367 */
1368
1369static void nge_txeof(sc)
1370	struct nge_softc	*sc;
1371{
1372	struct nge_desc		*cur_tx = NULL;
1373	struct ifnet		*ifp;
1374	u_int32_t		idx;
1375
1376	ifp = &sc->arpcom.ac_if;
1377
1378	/* Clear the timeout timer. */
1379	ifp->if_timer = 0;
1380
1381	/*
1382	 * Go through our tx list and free mbufs for those
1383	 * frames that have been transmitted.
1384	 */
1385	idx = sc->nge_cdata.nge_tx_cons;
1386	while (idx != sc->nge_cdata.nge_tx_prod) {
1387		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1388
1389		if (NGE_OWNDESC(cur_tx))
1390			break;
1391
1392		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1393			sc->nge_cdata.nge_tx_cnt--;
1394			NGE_INC(idx, NGE_TX_LIST_CNT);
1395			continue;
1396		}
1397
1398		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1399			ifp->if_oerrors++;
1400			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1401				ifp->if_collisions++;
1402			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1403				ifp->if_collisions++;
1404		}
1405
1406		ifp->if_collisions +=
1407		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1408
1409		ifp->if_opackets++;
1410		if (cur_tx->nge_mbuf != NULL) {
1411			m_freem(cur_tx->nge_mbuf);
1412			cur_tx->nge_mbuf = NULL;
1413		}
1414
1415		sc->nge_cdata.nge_tx_cnt--;
1416		NGE_INC(idx, NGE_TX_LIST_CNT);
1417		ifp->if_timer = 0;
1418	}
1419
1420	sc->nge_cdata.nge_tx_cons = idx;
1421
1422	if (cur_tx != NULL)
1423		ifp->if_flags &= ~IFF_OACTIVE;
1424
1425	return;
1426}
1427
1428static void nge_tick(xsc)
1429	void			*xsc;
1430{
1431	struct nge_softc	*sc;
1432	struct mii_data		*mii;
1433	struct ifnet		*ifp;
1434	int			s;
1435
1436	s = splimp();
1437
1438	sc = xsc;
1439	ifp = &sc->arpcom.ac_if;
1440
1441	mii = device_get_softc(sc->nge_miibus);
1442	mii_tick(mii);
1443
1444	if (!sc->nge_link) {
1445		if (mii->mii_media_status & IFM_ACTIVE &&
1446		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1447			sc->nge_link++;
1448			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1449				printf("nge%d: gigabit link up\n",
1450				    sc->nge_unit);
1451			if (ifp->if_snd.ifq_head != NULL)
1452				nge_start(ifp);
1453		} else
1454			sc->nge_stat_ch = timeout(nge_tick, sc, hz);
1455	}
1456
1457
1458	splx(s);
1459
1460	return;
1461}
1462
1463static void nge_intr(arg)
1464	void			*arg;
1465{
1466	struct nge_softc	*sc;
1467	struct ifnet		*ifp;
1468	u_int32_t		status;
1469
1470	sc = arg;
1471	ifp = &sc->arpcom.ac_if;
1472
1473	/* Supress unwanted interrupts */
1474	if (!(ifp->if_flags & IFF_UP)) {
1475		nge_stop(sc);
1476		return;
1477	}
1478
1479	/* Disable interrupts. */
1480	CSR_WRITE_4(sc, NGE_IER, 0);
1481
1482	for (;;) {
1483		/* Reading the ISR register clears all interrupts. */
1484		status = CSR_READ_4(sc, NGE_ISR);
1485
1486		if ((status & NGE_INTRS) == 0)
1487			break;
1488
1489		if ((status & NGE_ISR_TX_DESC_OK) ||
1490		    (status & NGE_ISR_TX_ERR) ||
1491		    (status & NGE_ISR_TX_OK) ||
1492		    (status & NGE_ISR_TX_IDLE))
1493			nge_txeof(sc);
1494
1495		if ((status & NGE_ISR_RX_DESC_OK) ||
1496		    (status & NGE_ISR_RX_ERR) ||
1497		    (status & NGE_ISR_RX_OFLOW) ||
1498		    (status & NGE_ISR_RX_OK))
1499			nge_rxeof(sc);
1500#ifdef notdef
1501		if ((status & NGE_ISR_RX_OFLOW))
1502			nge_rxeoc(sc);
1503#endif
1504		if (status & NGE_ISR_SYSERR) {
1505			nge_reset(sc);
1506			ifp->if_flags &= ~IFF_RUNNING;
1507			nge_init(sc);
1508		}
1509
1510		if (status & NGE_IMR_PHY_INTR) {
1511			sc->nge_link = 0;
1512			nge_tick(sc);
1513		}
1514	}
1515
1516	/* Re-enable interrupts. */
1517	CSR_WRITE_4(sc, NGE_IER, 1);
1518
1519	if (ifp->if_snd.ifq_head != NULL)
1520		nge_start(ifp);
1521
1522	return;
1523}
1524
1525/*
1526 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1527 * pointers to the fragment pointers.
1528 */
1529static int nge_encap(sc, m_head, txidx)
1530	struct nge_softc	*sc;
1531	struct mbuf		*m_head;
1532	u_int32_t		*txidx;
1533{
1534	struct nge_desc		*f = NULL;
1535	struct mbuf		*m;
1536	int			frag, cur, cnt = 0;
1537	struct ifvlan		*ifv = NULL;
1538
1539	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1540	    m_head->m_pkthdr.rcvif != NULL &&
1541	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1542		ifv = m_head->m_pkthdr.rcvif->if_softc;
1543
1544	/*
1545 	 * Start packing the mbufs in this chain into
1546	 * the fragment pointers. Stop when we run out
1547 	 * of fragments or hit the end of the mbuf chain.
1548	 */
1549	m = m_head;
1550	cur = frag = *txidx;
1551
1552	for (m = m_head; m != NULL; m = m->m_next) {
1553		if (m->m_len != 0) {
1554			if ((NGE_TX_LIST_CNT -
1555			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1556				return(ENOBUFS);
1557			f = &sc->nge_ldata->nge_tx_list[frag];
1558			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1559			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1560			if (cnt != 0)
1561				f->nge_ctl |= NGE_CMDSTS_OWN;
1562			cur = frag;
1563			NGE_INC(frag, NGE_TX_LIST_CNT);
1564			cnt++;
1565		}
1566	}
1567
1568	if (m != NULL)
1569		return(ENOBUFS);
1570
1571	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1572	if (m_head->m_pkthdr.csum_flags) {
1573		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1574			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1575			    NGE_TXEXTSTS_IPCSUM;
1576		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1577			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1578			    NGE_TXEXTSTS_TCPCSUM;
1579		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1580			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1581			    NGE_TXEXTSTS_UDPCSUM;
1582	}
1583
1584	if (ifv != NULL) {
1585		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1586			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1587	}
1588
1589	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1590	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1591	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1592	sc->nge_cdata.nge_tx_cnt += cnt;
1593	*txidx = frag;
1594
1595	return(0);
1596}
1597
1598/*
1599 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1600 * to the mbuf data regions directly in the transmit lists. We also save a
1601 * copy of the pointers since the transmit list fragment pointers are
1602 * physical addresses.
1603 */
1604
1605static void nge_start(ifp)
1606	struct ifnet		*ifp;
1607{
1608	struct nge_softc	*sc;
1609	struct mbuf		*m_head = NULL;
1610	u_int32_t		idx;
1611
1612	sc = ifp->if_softc;
1613
1614	if (!sc->nge_link)
1615		return;
1616
1617	idx = sc->nge_cdata.nge_tx_prod;
1618
1619	if (ifp->if_flags & IFF_OACTIVE)
1620		return;
1621
1622	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1623		IF_DEQUEUE(&ifp->if_snd, m_head);
1624		if (m_head == NULL)
1625			break;
1626
1627		if (nge_encap(sc, m_head, &idx)) {
1628			IF_PREPEND(&ifp->if_snd, m_head);
1629			ifp->if_flags |= IFF_OACTIVE;
1630			break;
1631		}
1632
1633		/*
1634		 * If there's a BPF listener, bounce a copy of this frame
1635		 * to him.
1636		 */
1637		if (ifp->if_bpf)
1638			bpf_mtap(ifp, m_head);
1639
1640	}
1641
1642	/* Transmit */
1643	sc->nge_cdata.nge_tx_prod = idx;
1644	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1645
1646	/*
1647	 * Set a timeout in case the chip goes out to lunch.
1648	 */
1649	ifp->if_timer = 5;
1650
1651	return;
1652}
1653
1654static void nge_init(xsc)
1655	void			*xsc;
1656{
1657	struct nge_softc	*sc = xsc;
1658	struct ifnet		*ifp = &sc->arpcom.ac_if;
1659	struct mii_data		*mii;
1660	int			s;
1661
1662	if (ifp->if_flags & IFF_RUNNING)
1663		return;
1664
1665	s = splimp();
1666
1667	/*
1668	 * Cancel pending I/O and free all RX/TX buffers.
1669	 */
1670	nge_stop(sc);
1671
1672	mii = device_get_softc(sc->nge_miibus);
1673
1674	/* Set MAC address */
1675	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1676	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1677	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1678	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1679	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1680	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1681	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1682	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1683	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1684
1685	/* Init circular RX list. */
1686	if (nge_list_rx_init(sc) == ENOBUFS) {
1687		printf("nge%d: initialization failed: no "
1688			"memory for rx buffers\n", sc->nge_unit);
1689		nge_stop(sc);
1690		(void)splx(s);
1691		return;
1692	}
1693
1694	/*
1695	 * Init tx descriptors.
1696	 */
1697	nge_list_tx_init(sc);
1698
1699	/*
1700	 * For the NatSemi chip, we have to explicitly enable the
1701	 * reception of ARP frames, as well as turn on the 'perfect
1702	 * match' filter where we store the station address, otherwise
1703	 * we won't receive unicasts meant for this host.
1704	 */
1705	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1706	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1707
1708	 /* If we want promiscuous mode, set the allframes bit. */
1709	if (ifp->if_flags & IFF_PROMISC) {
1710		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1711	} else {
1712		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1713	}
1714
1715	/*
1716	 * Set the capture broadcast bit to capture broadcast frames.
1717	 */
1718	if (ifp->if_flags & IFF_BROADCAST) {
1719		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1720	} else {
1721		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1722	}
1723
1724	/*
1725	 * Load the multicast filter.
1726	 */
1727	nge_setmulti(sc);
1728
1729	/* Turn the receive filter on */
1730	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1731
1732	/*
1733	 * Load the address of the RX and TX lists.
1734	 */
1735	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1736	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1737	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1738	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1739
1740	/* Set RX configuration */
1741	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1742	/*
1743	 * Enable hardware checksum validation for all IPv4
1744	 * packets, do not reject packets with bad checksums.
1745	 */
1746	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1747
1748	/*
1749	 * Tell the chip to detect and strip VLAN tag info from
1750	 * received frames. The tag will be provided in the extsts
1751	 * field in the RX descriptors.
1752	 */
1753	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1754	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1755
1756	/* Set TX configuration */
1757	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1758
1759	/*
1760	 * Enable TX IPv4 checksumming on a per-packet basis.
1761	 */
1762	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1763
1764	/*
1765	 * Tell the chip to insert VLAN tags on a per-packet basis as
1766	 * dictated by the code in the frame encapsulation routine.
1767	 */
1768	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1769
1770	/* Set full/half duplex mode. */
1771	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1772		NGE_SETBIT(sc, NGE_TX_CFG,
1773		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1774		NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1775	} else {
1776		NGE_CLRBIT(sc, NGE_TX_CFG,
1777		    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1778		NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1779	}
1780
1781	/*
1782	 * Enable the delivery of PHY interrupts based on
1783	 * link/speed/duplex status changes. Also enable the
1784	 * extsts field in the DMA descriptors (needed for
1785	 * TCP/IP checksum offload on transmit).
1786	 */
1787	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1788	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1789
1790	/*
1791	 * Configure interrupt holdoff (moderation). We can
1792	 * have the chip delay interrupt delivery for a certain
1793	 * period. Units are in 100us, and the max setting
1794	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1795	 */
1796	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1797
1798	/*
1799	 * Enable interrupts.
1800	 */
1801	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1802	CSR_WRITE_4(sc, NGE_IER, 1);
1803
1804	/* Enable receiver and transmitter. */
1805	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1806	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1807
1808	nge_ifmedia_upd(ifp);
1809
1810	ifp->if_flags |= IFF_RUNNING;
1811	ifp->if_flags &= ~IFF_OACTIVE;
1812
1813	(void)splx(s);
1814
1815	return;
1816}
1817
1818/*
1819 * Set media options.
1820 */
1821static int nge_ifmedia_upd(ifp)
1822	struct ifnet		*ifp;
1823{
1824	struct nge_softc	*sc;
1825	struct mii_data		*mii;
1826
1827	sc = ifp->if_softc;
1828
1829	mii = device_get_softc(sc->nge_miibus);
1830	sc->nge_link = 0;
1831	if (mii->mii_instance) {
1832		struct mii_softc	*miisc;
1833		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1834		    miisc = LIST_NEXT(miisc, mii_list))
1835			mii_phy_reset(miisc);
1836	}
1837	mii_mediachg(mii);
1838
1839	return(0);
1840}
1841
1842/*
1843 * Report current media status.
1844 */
1845static void nge_ifmedia_sts(ifp, ifmr)
1846	struct ifnet		*ifp;
1847	struct ifmediareq	*ifmr;
1848{
1849	struct nge_softc	*sc;
1850	struct mii_data		*mii;
1851
1852	sc = ifp->if_softc;
1853
1854	mii = device_get_softc(sc->nge_miibus);
1855	mii_pollstat(mii);
1856	ifmr->ifm_active = mii->mii_media_active;
1857	ifmr->ifm_status = mii->mii_media_status;
1858
1859	return;
1860}
1861
1862static int nge_ioctl(ifp, command, data)
1863	struct ifnet		*ifp;
1864	u_long			command;
1865	caddr_t			data;
1866{
1867	struct nge_softc	*sc = ifp->if_softc;
1868	struct ifreq		*ifr = (struct ifreq *) data;
1869	struct mii_data		*mii;
1870	int			s, error = 0;
1871
1872	s = splimp();
1873
1874	switch(command) {
1875	case SIOCSIFADDR:
1876	case SIOCGIFADDR:
1877		error = ether_ioctl(ifp, command, data);
1878		break;
1879	case SIOCSIFMTU:
1880		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
1881			error = EINVAL;
1882		else {
1883			ifp->if_mtu = ifr->ifr_mtu;
1884			/*
1885			 * Workaround: if the MTU is larger than
1886			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1887			 * TX checksum offloading.
1888			 */
1889			if (ifr->ifr_mtu >= 8152)
1890				ifp->if_hwassist = 0;
1891			else
1892				ifp->if_hwassist = NGE_CSUM_FEATURES;
1893		}
1894		break;
1895	case SIOCSIFFLAGS:
1896		if (ifp->if_flags & IFF_UP) {
1897			if (ifp->if_flags & IFF_RUNNING &&
1898			    ifp->if_flags & IFF_PROMISC &&
1899			    !(sc->nge_if_flags & IFF_PROMISC)) {
1900				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1901				    NGE_RXFILTCTL_ALLPHYS|
1902				    NGE_RXFILTCTL_ALLMULTI);
1903			} else if (ifp->if_flags & IFF_RUNNING &&
1904			    !(ifp->if_flags & IFF_PROMISC) &&
1905			    sc->nge_if_flags & IFF_PROMISC) {
1906				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1907				    NGE_RXFILTCTL_ALLPHYS);
1908				if (!(ifp->if_flags & IFF_ALLMULTI))
1909					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1910					    NGE_RXFILTCTL_ALLMULTI);
1911			} else {
1912				ifp->if_flags &= ~IFF_RUNNING;
1913				nge_init(sc);
1914			}
1915		} else {
1916			if (ifp->if_flags & IFF_RUNNING)
1917				nge_stop(sc);
1918		}
1919		sc->nge_if_flags = ifp->if_flags;
1920		error = 0;
1921		break;
1922	case SIOCADDMULTI:
1923	case SIOCDELMULTI:
1924		nge_setmulti(sc);
1925		error = 0;
1926		break;
1927	case SIOCGIFMEDIA:
1928	case SIOCSIFMEDIA:
1929		mii = device_get_softc(sc->nge_miibus);
1930		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1931		break;
1932	default:
1933		error = EINVAL;
1934		break;
1935	}
1936
1937	(void)splx(s);
1938
1939	return(error);
1940}
1941
1942static void nge_watchdog(ifp)
1943	struct ifnet		*ifp;
1944{
1945	struct nge_softc	*sc;
1946
1947	sc = ifp->if_softc;
1948
1949	ifp->if_oerrors++;
1950	printf("nge%d: watchdog timeout\n", sc->nge_unit);
1951
1952	nge_stop(sc);
1953	nge_reset(sc);
1954	ifp->if_flags &= ~IFF_RUNNING;
1955	nge_init(sc);
1956
1957	if (ifp->if_snd.ifq_head != NULL)
1958		nge_start(ifp);
1959
1960	return;
1961}
1962
1963/*
1964 * Stop the adapter and free any mbufs allocated to the
1965 * RX and TX lists.
1966 */
1967static void nge_stop(sc)
1968	struct nge_softc	*sc;
1969{
1970	register int		i;
1971	struct ifnet		*ifp;
1972	struct ifmedia_entry	*ifm;
1973	struct mii_data		*mii;
1974	int			mtmp, itmp;
1975
1976	ifp = &sc->arpcom.ac_if;
1977	ifp->if_timer = 0;
1978	mii = device_get_softc(sc->nge_miibus);
1979
1980	untimeout(nge_tick, sc, sc->nge_stat_ch);
1981	CSR_WRITE_4(sc, NGE_IER, 0);
1982	CSR_WRITE_4(sc, NGE_IMR, 0);
1983	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
1984	DELAY(1000);
1985	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
1986	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
1987
1988	/*
1989	 * Isolate/power down the PHY, but leave the media selection
1990	 * unchanged so that things will be put back to normal when
1991	 * we bring the interface back up.
1992	 */
1993	itmp = ifp->if_flags;
1994	ifp->if_flags |= IFF_UP;
1995	ifm = mii->mii_media.ifm_cur;
1996	mtmp = ifm->ifm_media;
1997	ifm->ifm_media = IFM_ETHER|IFM_NONE;
1998	mii_mediachg(mii);
1999	ifm->ifm_media = mtmp;
2000	ifp->if_flags = itmp;
2001
2002	sc->nge_link = 0;
2003
2004	/*
2005	 * Free data in the RX lists.
2006	 */
2007	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2008		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2009			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2010			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2011		}
2012	}
2013	bzero((char *)&sc->nge_ldata->nge_rx_list,
2014		sizeof(sc->nge_ldata->nge_rx_list));
2015
2016	/*
2017	 * Free the TX list buffers.
2018	 */
2019	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2020		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2021			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2022			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2023		}
2024	}
2025
2026	bzero((char *)&sc->nge_ldata->nge_tx_list,
2027		sizeof(sc->nge_ldata->nge_tx_list));
2028
2029	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030
2031	return;
2032}
2033
2034/*
2035 * Stop all chip I/O so that the kernel's probe routines don't
2036 * get confused by errant DMAs when rebooting.
2037 */
2038static void nge_shutdown(dev)
2039	device_t		dev;
2040{
2041	struct nge_softc	*sc;
2042
2043	sc = device_get_softc(dev);
2044
2045	nge_reset(sc);
2046	nge_stop(sc);
2047
2048	return;
2049}
2050