1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37/*
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
40 *
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
43 *
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
48 *
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
53 *
54 * http://www.national.com/ds/DP/DP83861.pdf
55 *
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
58 */
59
60/*
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
72 *
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
75 *
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 *   you must resort to copying data in order to fix up the payload
78 *   alignment.
79 *
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 *   to turn off transmit checksum offloading, because the chip can't
82 *   compute the checksum on an outgoing frame unless it fits entirely
83 *   within the TX FIFO, which is only 8192 bytes in size. If you have
84 *   TX checksum offload enabled and you transmit attempt to transmit a
85 *   frame larger than 8170 bytes, the transmitter will wedge.
86 *
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
89 */
90
91#ifdef HAVE_KERNEL_OPTION_HEADERS
92#include "opt_device_polling.h"
93#endif
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/bus.h>
98#include <sys/endian.h>
99#include <sys/kernel.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mbuf.h>
103#include <sys/module.h>
104#include <sys/mutex.h>
105#include <sys/rman.h>
106#include <sys/socket.h>
107#include <sys/sockio.h>
108#include <sys/sysctl.h>
109
110#include <net/bpf.h>
111#include <net/if.h>
112#include <net/if_var.h>
113#include <net/if_arp.h>
114#include <net/ethernet.h>
115#include <net/if_dl.h>
116#include <net/if_media.h>
117#include <net/if_types.h>
118#include <net/if_vlan_var.h>
119
120#include <dev/mii/mii.h>
121#include <dev/mii/mii_bitbang.h>
122#include <dev/mii/miivar.h>
123
124#include <dev/pci/pcireg.h>
125#include <dev/pci/pcivar.h>
126
127#include <machine/bus.h>
128
129#include <dev/nge/if_ngereg.h>
130
131/* "device miibus" required.  See GENERIC if you get errors here. */
132#include "miibus_if.h"
133
134MODULE_DEPEND(nge, pci, 1, 1, 1);
135MODULE_DEPEND(nge, ether, 1, 1, 1);
136MODULE_DEPEND(nge, miibus, 1, 1, 1);
137
138#define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
139
140/*
141 * Various supported device vendors/types and their names.
142 */
143static const struct nge_type nge_devs[] = {
144	{ NGE_VENDORID, NGE_DEVICEID,
145	    "National Semiconductor Gigabit Ethernet" },
146	{ 0, 0, NULL }
147};
148
149static int nge_probe(device_t);
150static int nge_attach(device_t);
151static int nge_detach(device_t);
152static int nge_shutdown(device_t);
153static int nge_suspend(device_t);
154static int nge_resume(device_t);
155
156static __inline void nge_discard_rxbuf(struct nge_softc *, int);
157static int nge_newbuf(struct nge_softc *, int);
158static int nge_encap(struct nge_softc *, struct mbuf **);
159#ifndef __NO_STRICT_ALIGNMENT
160static __inline void nge_fixup_rx(struct mbuf *);
161#endif
162static int nge_rxeof(struct nge_softc *);
163static void nge_txeof(struct nge_softc *);
164static void nge_intr(void *);
165static void nge_tick(void *);
166static void nge_stats_update(struct nge_softc *);
167static void nge_start(struct ifnet *);
168static void nge_start_locked(struct ifnet *);
169static int nge_ioctl(struct ifnet *, u_long, caddr_t);
170static void nge_init(void *);
171static void nge_init_locked(struct nge_softc *);
172static int nge_stop_mac(struct nge_softc *);
173static void nge_stop(struct nge_softc *);
174static void nge_wol(struct nge_softc *);
175static void nge_watchdog(struct nge_softc *);
176static int nge_mediachange(struct ifnet *);
177static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
178
179static void nge_delay(struct nge_softc *);
180static void nge_eeprom_idle(struct nge_softc *);
181static void nge_eeprom_putbyte(struct nge_softc *, int);
182static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
183static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
184
185static int nge_miibus_readreg(device_t, int, int);
186static int nge_miibus_writereg(device_t, int, int, int);
187static void nge_miibus_statchg(device_t);
188
189static void nge_rxfilter(struct nge_softc *);
190static void nge_reset(struct nge_softc *);
191static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
192static int nge_dma_alloc(struct nge_softc *);
193static void nge_dma_free(struct nge_softc *);
194static int nge_list_rx_init(struct nge_softc *);
195static int nge_list_tx_init(struct nge_softc *);
196static void nge_sysctl_node(struct nge_softc *);
197static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
198static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
199
200/*
201 * MII bit-bang glue
202 */
203static uint32_t nge_mii_bitbang_read(device_t);
204static void nge_mii_bitbang_write(device_t, uint32_t);
205
206static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
207	nge_mii_bitbang_read,
208	nge_mii_bitbang_write,
209	{
210		NGE_MEAR_MII_DATA,	/* MII_BIT_MDO */
211		NGE_MEAR_MII_DATA,	/* MII_BIT_MDI */
212		NGE_MEAR_MII_CLK,	/* MII_BIT_MDC */
213		NGE_MEAR_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
214		0,			/* MII_BIT_DIR_PHY_HOST */
215	}
216};
217
218static device_method_t nge_methods[] = {
219	/* Device interface */
220	DEVMETHOD(device_probe,		nge_probe),
221	DEVMETHOD(device_attach,	nge_attach),
222	DEVMETHOD(device_detach,	nge_detach),
223	DEVMETHOD(device_shutdown,	nge_shutdown),
224	DEVMETHOD(device_suspend,	nge_suspend),
225	DEVMETHOD(device_resume,	nge_resume),
226
227	/* MII interface */
228	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
229	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
230	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
231
232	DEVMETHOD_END
233};
234
235static driver_t nge_driver = {
236	"nge",
237	nge_methods,
238	sizeof(struct nge_softc)
239};
240
241static devclass_t nge_devclass;
242
243DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
244DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
245
246#define NGE_SETBIT(sc, reg, x)				\
247	CSR_WRITE_4(sc, reg,				\
248		CSR_READ_4(sc, reg) | (x))
249
250#define NGE_CLRBIT(sc, reg, x)				\
251	CSR_WRITE_4(sc, reg,				\
252		CSR_READ_4(sc, reg) & ~(x))
253
254#define SIO_SET(x)					\
255	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
256
257#define SIO_CLR(x)					\
258	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
259
260static void
261nge_delay(struct nge_softc *sc)
262{
263	int idx;
264
265	for (idx = (300 / 33) + 1; idx > 0; idx--)
266		CSR_READ_4(sc, NGE_CSR);
267}
268
269static void
270nge_eeprom_idle(struct nge_softc *sc)
271{
272	int i;
273
274	SIO_SET(NGE_MEAR_EE_CSEL);
275	nge_delay(sc);
276	SIO_SET(NGE_MEAR_EE_CLK);
277	nge_delay(sc);
278
279	for (i = 0; i < 25; i++) {
280		SIO_CLR(NGE_MEAR_EE_CLK);
281		nge_delay(sc);
282		SIO_SET(NGE_MEAR_EE_CLK);
283		nge_delay(sc);
284	}
285
286	SIO_CLR(NGE_MEAR_EE_CLK);
287	nge_delay(sc);
288	SIO_CLR(NGE_MEAR_EE_CSEL);
289	nge_delay(sc);
290	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
291}
292
293/*
294 * Send a read command and address to the EEPROM, check for ACK.
295 */
296static void
297nge_eeprom_putbyte(struct nge_softc *sc, int addr)
298{
299	int d, i;
300
301	d = addr | NGE_EECMD_READ;
302
303	/*
304	 * Feed in each bit and stobe the clock.
305	 */
306	for (i = 0x400; i; i >>= 1) {
307		if (d & i) {
308			SIO_SET(NGE_MEAR_EE_DIN);
309		} else {
310			SIO_CLR(NGE_MEAR_EE_DIN);
311		}
312		nge_delay(sc);
313		SIO_SET(NGE_MEAR_EE_CLK);
314		nge_delay(sc);
315		SIO_CLR(NGE_MEAR_EE_CLK);
316		nge_delay(sc);
317	}
318}
319
320/*
321 * Read a word of data stored in the EEPROM at address 'addr.'
322 */
323static void
324nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
325{
326	int i;
327	uint16_t word = 0;
328
329	/* Force EEPROM to idle state. */
330	nge_eeprom_idle(sc);
331
332	/* Enter EEPROM access mode. */
333	nge_delay(sc);
334	SIO_CLR(NGE_MEAR_EE_CLK);
335	nge_delay(sc);
336	SIO_SET(NGE_MEAR_EE_CSEL);
337	nge_delay(sc);
338
339	/*
340	 * Send address of word we want to read.
341	 */
342	nge_eeprom_putbyte(sc, addr);
343
344	/*
345	 * Start reading bits from EEPROM.
346	 */
347	for (i = 0x8000; i; i >>= 1) {
348		SIO_SET(NGE_MEAR_EE_CLK);
349		nge_delay(sc);
350		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
351			word |= i;
352		nge_delay(sc);
353		SIO_CLR(NGE_MEAR_EE_CLK);
354		nge_delay(sc);
355	}
356
357	/* Turn off EEPROM access mode. */
358	nge_eeprom_idle(sc);
359
360	*dest = word;
361}
362
363/*
364 * Read a sequence of words from the EEPROM.
365 */
366static void
367nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
368{
369	int i;
370	uint16_t word = 0, *ptr;
371
372	for (i = 0; i < cnt; i++) {
373		nge_eeprom_getword(sc, off + i, &word);
374		ptr = (uint16_t *)(dest + (i * 2));
375		*ptr = word;
376	}
377}
378
379/*
380 * Read the MII serial port for the MII bit-bang module.
381 */
382static uint32_t
383nge_mii_bitbang_read(device_t dev)
384{
385	struct nge_softc *sc;
386	uint32_t val;
387
388	sc = device_get_softc(dev);
389
390	val = CSR_READ_4(sc, NGE_MEAR);
391	CSR_BARRIER_4(sc, NGE_MEAR,
392	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
393
394	return (val);
395}
396
397/*
398 * Write the MII serial port for the MII bit-bang module.
399 */
400static void
401nge_mii_bitbang_write(device_t dev, uint32_t val)
402{
403	struct nge_softc *sc;
404
405	sc = device_get_softc(dev);
406
407	CSR_WRITE_4(sc, NGE_MEAR, val);
408	CSR_BARRIER_4(sc, NGE_MEAR,
409	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
410}
411
412static int
413nge_miibus_readreg(device_t dev, int phy, int reg)
414{
415	struct nge_softc *sc;
416	int rv;
417
418	sc = device_get_softc(dev);
419	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
420		/* Pretend PHY is at address 0. */
421		if (phy != 0)
422			return (0);
423		switch (reg) {
424		case MII_BMCR:
425			reg = NGE_TBI_BMCR;
426			break;
427		case MII_BMSR:
428			/* 83820/83821 has different bit layout for BMSR. */
429			rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
430			reg = CSR_READ_4(sc, NGE_TBI_BMSR);
431			if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
432				rv |= BMSR_ACOMP;
433			if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
434				rv |= BMSR_LINK;
435			return (rv);
436		case MII_ANAR:
437			reg = NGE_TBI_ANAR;
438			break;
439		case MII_ANLPAR:
440			reg = NGE_TBI_ANLPAR;
441			break;
442		case MII_ANER:
443			reg = NGE_TBI_ANER;
444			break;
445		case MII_EXTSR:
446			reg = NGE_TBI_ESR;
447			break;
448		case MII_PHYIDR1:
449		case MII_PHYIDR2:
450			return (0);
451		default:
452			device_printf(sc->nge_dev,
453			    "bad phy register read : %d\n", reg);
454			return (0);
455		}
456		return (CSR_READ_4(sc, reg));
457	}
458
459	return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
460}
461
462static int
463nge_miibus_writereg(device_t dev, int phy, int reg, int data)
464{
465	struct nge_softc *sc;
466
467	sc = device_get_softc(dev);
468	if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
469		/* Pretend PHY is at address 0. */
470		if (phy != 0)
471			return (0);
472		switch (reg) {
473		case MII_BMCR:
474			reg = NGE_TBI_BMCR;
475			break;
476		case MII_BMSR:
477			return (0);
478		case MII_ANAR:
479			reg = NGE_TBI_ANAR;
480			break;
481		case MII_ANLPAR:
482			reg = NGE_TBI_ANLPAR;
483			break;
484		case MII_ANER:
485			reg = NGE_TBI_ANER;
486			break;
487		case MII_EXTSR:
488			reg = NGE_TBI_ESR;
489			break;
490		case MII_PHYIDR1:
491		case MII_PHYIDR2:
492			return (0);
493		default:
494			device_printf(sc->nge_dev,
495			    "bad phy register write : %d\n", reg);
496			return (0);
497		}
498		CSR_WRITE_4(sc, reg, data);
499		return (0);
500	}
501
502	mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
503
504	return (0);
505}
506
507/*
508 * media status/link state change handler.
509 */
510static void
511nge_miibus_statchg(device_t dev)
512{
513	struct nge_softc *sc;
514	struct mii_data *mii;
515	struct ifnet *ifp;
516	struct nge_txdesc *txd;
517	uint32_t done, reg, status;
518	int i;
519
520	sc = device_get_softc(dev);
521	NGE_LOCK_ASSERT(sc);
522
523	mii = device_get_softc(sc->nge_miibus);
524	ifp = sc->nge_ifp;
525	if (mii == NULL || ifp == NULL ||
526	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
527		return;
528
529	sc->nge_flags &= ~NGE_FLAG_LINK;
530	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
531	    (IFM_AVALID | IFM_ACTIVE)) {
532		switch (IFM_SUBTYPE(mii->mii_media_active)) {
533		case IFM_10_T:
534		case IFM_100_TX:
535		case IFM_1000_T:
536		case IFM_1000_SX:
537		case IFM_1000_LX:
538		case IFM_1000_CX:
539			sc->nge_flags |= NGE_FLAG_LINK;
540			break;
541		default:
542			break;
543		}
544	}
545
546	/* Stop Tx/Rx MACs. */
547	if (nge_stop_mac(sc) == ETIMEDOUT)
548		device_printf(sc->nge_dev,
549		    "%s: unable to stop Tx/Rx MAC\n", __func__);
550	nge_txeof(sc);
551	nge_rxeof(sc);
552	if (sc->nge_head != NULL) {
553		m_freem(sc->nge_head);
554		sc->nge_head = sc->nge_tail = NULL;
555	}
556
557	/* Release queued frames. */
558	for (i = 0; i < NGE_TX_RING_CNT; i++) {
559		txd = &sc->nge_cdata.nge_txdesc[i];
560		if (txd->tx_m != NULL) {
561			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
562			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
563			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
564			    txd->tx_dmamap);
565			m_freem(txd->tx_m);
566			txd->tx_m = NULL;
567		}
568	}
569
570	/* Program MAC with resolved speed/duplex. */
571	if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
572		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
573			NGE_SETBIT(sc, NGE_TX_CFG,
574			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
575			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
576#ifdef notyet
577			/* Enable flow-control. */
578			if ((IFM_OPTIONS(mii->mii_media_active) &
579			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
580				NGE_SETBIT(sc, NGE_PAUSECSR,
581				    NGE_PAUSECSR_PAUSE_ENB);
582#endif
583		} else {
584			NGE_CLRBIT(sc, NGE_TX_CFG,
585			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
586			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
587			NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
588		}
589		/* If we have a 1000Mbps link, set the mode_1000 bit. */
590		reg = CSR_READ_4(sc, NGE_CFG);
591		switch (IFM_SUBTYPE(mii->mii_media_active)) {
592		case IFM_1000_SX:
593		case IFM_1000_LX:
594		case IFM_1000_CX:
595		case IFM_1000_T:
596			reg |= NGE_CFG_MODE_1000;
597			break;
598		default:
599			reg &= ~NGE_CFG_MODE_1000;
600			break;
601		}
602		CSR_WRITE_4(sc, NGE_CFG, reg);
603
604		/* Reset Tx/Rx MAC. */
605		reg = CSR_READ_4(sc, NGE_CSR);
606		reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
607		CSR_WRITE_4(sc, NGE_CSR, reg);
608		/* Check the completion of reset. */
609		done = 0;
610		for (i = 0; i < NGE_TIMEOUT; i++) {
611			DELAY(1);
612			status = CSR_READ_4(sc, NGE_ISR);
613			if ((status & NGE_ISR_RX_RESET_DONE) != 0)
614				done |= NGE_ISR_RX_RESET_DONE;
615			if ((status & NGE_ISR_TX_RESET_DONE) != 0)
616				done |= NGE_ISR_TX_RESET_DONE;
617			if (done ==
618			    (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
619				break;
620		}
621		if (i == NGE_TIMEOUT)
622			device_printf(sc->nge_dev,
623			    "%s: unable to reset Tx/Rx MAC\n", __func__);
624		/* Reuse Rx buffer and reset consumer pointer. */
625		sc->nge_cdata.nge_rx_cons = 0;
626		/*
627		 * It seems that resetting Rx/Tx MAC results in
628		 * resetting Tx/Rx descriptor pointer registers such
629		 * that reloading Tx/Rx lists address are needed.
630		 */
631		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
632		    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
633		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
634		    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
635		CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
636		    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
637		CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
638		    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
639		/* Reinitialize Tx buffers. */
640		nge_list_tx_init(sc);
641
642		/* Restart Rx MAC. */
643		reg = CSR_READ_4(sc, NGE_CSR);
644		reg |= NGE_CSR_RX_ENABLE;
645		CSR_WRITE_4(sc, NGE_CSR, reg);
646		for (i = 0; i < NGE_TIMEOUT; i++) {
647			if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
648				break;
649			DELAY(1);
650		}
651		if (i == NGE_TIMEOUT)
652			device_printf(sc->nge_dev,
653			    "%s: unable to restart Rx MAC\n", __func__);
654	}
655
656	/* Data LED off for TBI mode */
657	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
658		CSR_WRITE_4(sc, NGE_GPIO,
659		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
660}
661
662static void
663nge_rxfilter(struct nge_softc *sc)
664{
665	struct ifnet *ifp;
666	struct ifmultiaddr *ifma;
667	uint32_t h, i, rxfilt;
668	int bit, index;
669
670	NGE_LOCK_ASSERT(sc);
671	ifp = sc->nge_ifp;
672
673	/* Make sure to stop Rx filtering. */
674	rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
675	rxfilt &= ~NGE_RXFILTCTL_ENABLE;
676	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
677	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
678
679	rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
680	rxfilt &= ~NGE_RXFILTCTL_BROAD;
681	/*
682	 * We don't want to use the hash table for matching unicast
683	 * addresses.
684	 */
685	rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
686
687	/*
688	 * For the NatSemi chip, we have to explicitly enable the
689	 * reception of ARP frames, as well as turn on the 'perfect
690	 * match' filter where we store the station address, otherwise
691	 * we won't receive unicasts meant for this host.
692	 */
693	rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
694
695	/*
696	 * Set the capture broadcast bit to capture broadcast frames.
697	 */
698	if ((ifp->if_flags & IFF_BROADCAST) != 0)
699		rxfilt |= NGE_RXFILTCTL_BROAD;
700
701	if ((ifp->if_flags & IFF_PROMISC) != 0 ||
702	    (ifp->if_flags & IFF_ALLMULTI) != 0) {
703		rxfilt |= NGE_RXFILTCTL_ALLMULTI;
704		if ((ifp->if_flags & IFF_PROMISC) != 0)
705			rxfilt |= NGE_RXFILTCTL_ALLPHYS;
706		goto done;
707	}
708
709	/*
710	 * We have to explicitly enable the multicast hash table
711	 * on the NatSemi chip if we want to use it, which we do.
712	 */
713	rxfilt |= NGE_RXFILTCTL_MCHASH;
714
715	/* first, zot all the existing hash bits */
716	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
717		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
718		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
719	}
720
721	/*
722	 * From the 11 bits returned by the crc routine, the top 7
723	 * bits represent the 16-bit word in the mcast hash table
724	 * that needs to be updated, and the lower 4 bits represent
725	 * which bit within that byte needs to be set.
726	 */
727	if_maddr_rlock(ifp);
728	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
729		if (ifma->ifma_addr->sa_family != AF_LINK)
730			continue;
731		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
732		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
733		index = (h >> 4) & 0x7F;
734		bit = h & 0xF;
735		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
736		    NGE_FILTADDR_MCAST_LO + (index * 2));
737		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
738	}
739	if_maddr_runlock(ifp);
740
741done:
742	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
743	/* Turn the receive filter on. */
744	rxfilt |= NGE_RXFILTCTL_ENABLE;
745	CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
746	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
747}
748
749static void
750nge_reset(struct nge_softc *sc)
751{
752	uint32_t v;
753	int i;
754
755	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
756
757	for (i = 0; i < NGE_TIMEOUT; i++) {
758		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
759			break;
760		DELAY(1);
761	}
762
763	if (i == NGE_TIMEOUT)
764		device_printf(sc->nge_dev, "reset never completed\n");
765
766	/* Wait a little while for the chip to get its brains in order. */
767	DELAY(1000);
768
769	/*
770	 * If this is a NetSemi chip, make sure to clear
771	 * PME mode.
772	 */
773	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
774	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
775
776	/* Clear WOL events which may interfere normal Rx filter opertaion. */
777	CSR_WRITE_4(sc, NGE_WOLCSR, 0);
778
779	/*
780	 * Only DP83820 supports 64bits addressing/data transfers and
781	 * 64bit addressing requires different descriptor structures.
782	 * To make it simple, disable 64bit addressing/data transfers.
783	 */
784	v = CSR_READ_4(sc, NGE_CFG);
785	v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
786	CSR_WRITE_4(sc, NGE_CFG, v);
787}
788
789/*
790 * Probe for a NatSemi chip. Check the PCI vendor and device
791 * IDs against our list and return a device name if we find a match.
792 */
793static int
794nge_probe(device_t dev)
795{
796	const struct nge_type *t;
797
798	t = nge_devs;
799
800	while (t->nge_name != NULL) {
801		if ((pci_get_vendor(dev) == t->nge_vid) &&
802		    (pci_get_device(dev) == t->nge_did)) {
803			device_set_desc(dev, t->nge_name);
804			return (BUS_PROBE_DEFAULT);
805		}
806		t++;
807	}
808
809	return (ENXIO);
810}
811
812/*
813 * Attach the interface. Allocate softc structures, do ifmedia
814 * setup and ethernet/BPF attach.
815 */
816static int
817nge_attach(device_t dev)
818{
819	uint8_t eaddr[ETHER_ADDR_LEN];
820	uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
821	struct nge_softc *sc;
822	struct ifnet *ifp;
823	int error, i, rid;
824
825	error = 0;
826	sc = device_get_softc(dev);
827	sc->nge_dev = dev;
828
829	NGE_LOCK_INIT(sc, device_get_nameunit(dev));
830	callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
831
832	/*
833	 * Map control/status registers.
834	 */
835	pci_enable_busmaster(dev);
836
837#ifdef NGE_USEIOSPACE
838	sc->nge_res_type = SYS_RES_IOPORT;
839	sc->nge_res_id = PCIR_BAR(0);
840#else
841	sc->nge_res_type = SYS_RES_MEMORY;
842	sc->nge_res_id = PCIR_BAR(1);
843#endif
844	sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
845	    &sc->nge_res_id, RF_ACTIVE);
846
847	if (sc->nge_res == NULL) {
848		if (sc->nge_res_type == SYS_RES_MEMORY) {
849			sc->nge_res_type = SYS_RES_IOPORT;
850			sc->nge_res_id = PCIR_BAR(0);
851		} else {
852			sc->nge_res_type = SYS_RES_MEMORY;
853			sc->nge_res_id = PCIR_BAR(1);
854		}
855		sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
856		    &sc->nge_res_id, RF_ACTIVE);
857		if (sc->nge_res == NULL) {
858			device_printf(dev, "couldn't allocate %s resources\n",
859			    sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
860			    "I/O");
861			NGE_LOCK_DESTROY(sc);
862			return (ENXIO);
863		}
864	}
865
866	/* Allocate interrupt */
867	rid = 0;
868	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
869	    RF_SHAREABLE | RF_ACTIVE);
870
871	if (sc->nge_irq == NULL) {
872		device_printf(dev, "couldn't map interrupt\n");
873		error = ENXIO;
874		goto fail;
875	}
876
877	/* Enable MWI. */
878	reg = pci_read_config(dev, PCIR_COMMAND, 2);
879	reg |= PCIM_CMD_MWRICEN;
880	pci_write_config(dev, PCIR_COMMAND, reg, 2);
881
882	/* Reset the adapter. */
883	nge_reset(sc);
884
885	/*
886	 * Get station address from the EEPROM.
887	 */
888	nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
889	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
890		ea[i] = le16toh(ea[i]);
891	ea_temp = ea[0];
892	ea[0] = ea[2];
893	ea[2] = ea_temp;
894	bcopy(ea, eaddr, sizeof(eaddr));
895
896	if (nge_dma_alloc(sc) != 0) {
897		error = ENXIO;
898		goto fail;
899	}
900
901	nge_sysctl_node(sc);
902
903	ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
904	if (ifp == NULL) {
905		device_printf(dev, "can not allocate ifnet structure\n");
906		error = ENOSPC;
907		goto fail;
908	}
909	ifp->if_softc = sc;
910	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
911	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
912	ifp->if_ioctl = nge_ioctl;
913	ifp->if_start = nge_start;
914	ifp->if_init = nge_init;
915	ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
916	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
917	IFQ_SET_READY(&ifp->if_snd);
918	ifp->if_hwassist = NGE_CSUM_FEATURES;
919	ifp->if_capabilities = IFCAP_HWCSUM;
920	/*
921	 * It seems that some hardwares doesn't provide 3.3V auxiliary
922	 * supply(3VAUX) to drive PME such that checking PCI power
923	 * management capability is necessary.
924	 */
925	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
926		ifp->if_capabilities |= IFCAP_WOL;
927	ifp->if_capenable = ifp->if_capabilities;
928
929	if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
930		sc->nge_flags |= NGE_FLAG_TBI;
931		device_printf(dev, "Using TBI\n");
932		/* Configure GPIO. */
933		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
934		    | NGE_GPIO_GP4_OUT
935		    | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
936		    | NGE_GPIO_GP3_OUTENB
937		    | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
938	}
939
940	/*
941	 * Do MII setup.
942	 */
943	error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
944	    nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
945	if (error != 0) {
946		device_printf(dev, "attaching PHYs failed\n");
947		goto fail;
948	}
949
950	/*
951	 * Call MI attach routine.
952	 */
953	ether_ifattach(ifp, eaddr);
954
955	/* VLAN capability setup. */
956	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
957	ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
958	ifp->if_capenable = ifp->if_capabilities;
959#ifdef DEVICE_POLLING
960	ifp->if_capabilities |= IFCAP_POLLING;
961#endif
962	/*
963	 * Tell the upper layer(s) we support long frames.
964	 * Must appear after the call to ether_ifattach() because
965	 * ether_ifattach() sets ifi_hdrlen to the default value.
966	 */
967	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
968
969	/*
970	 * Hookup IRQ last.
971	 */
972	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
973	    NULL, nge_intr, sc, &sc->nge_intrhand);
974	if (error) {
975		device_printf(dev, "couldn't set up irq\n");
976		goto fail;
977	}
978
979fail:
980	if (error != 0)
981		nge_detach(dev);
982	return (error);
983}
984
985static int
986nge_detach(device_t dev)
987{
988	struct nge_softc *sc;
989	struct ifnet *ifp;
990
991	sc = device_get_softc(dev);
992	ifp = sc->nge_ifp;
993
994#ifdef DEVICE_POLLING
995	if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
996		ether_poll_deregister(ifp);
997#endif
998
999	if (device_is_attached(dev)) {
1000		NGE_LOCK(sc);
1001		sc->nge_flags |= NGE_FLAG_DETACH;
1002		nge_stop(sc);
1003		NGE_UNLOCK(sc);
1004		callout_drain(&sc->nge_stat_ch);
1005		if (ifp != NULL)
1006			ether_ifdetach(ifp);
1007	}
1008
1009	if (sc->nge_miibus != NULL) {
1010		device_delete_child(dev, sc->nge_miibus);
1011		sc->nge_miibus = NULL;
1012	}
1013	bus_generic_detach(dev);
1014	if (sc->nge_intrhand != NULL)
1015		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1016	if (sc->nge_irq != NULL)
1017		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1018	if (sc->nge_res != NULL)
1019		bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1020		    sc->nge_res);
1021
1022	nge_dma_free(sc);
1023	if (ifp != NULL)
1024		if_free(ifp);
1025
1026	NGE_LOCK_DESTROY(sc);
1027
1028	return (0);
1029}
1030
1031struct nge_dmamap_arg {
1032	bus_addr_t	nge_busaddr;
1033};
1034
1035static void
1036nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1037{
1038	struct nge_dmamap_arg *ctx;
1039
1040	if (error != 0)
1041		return;
1042	ctx = arg;
1043	ctx->nge_busaddr = segs[0].ds_addr;
1044}
1045
1046static int
1047nge_dma_alloc(struct nge_softc *sc)
1048{
1049	struct nge_dmamap_arg ctx;
1050	struct nge_txdesc *txd;
1051	struct nge_rxdesc *rxd;
1052	int error, i;
1053
1054	/* Create parent DMA tag. */
1055	error = bus_dma_tag_create(
1056	    bus_get_dma_tag(sc->nge_dev),	/* parent */
1057	    1, 0,			/* alignment, boundary */
1058	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1059	    BUS_SPACE_MAXADDR,		/* highaddr */
1060	    NULL, NULL,			/* filter, filterarg */
1061	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1062	    0,				/* nsegments */
1063	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1064	    0,				/* flags */
1065	    NULL, NULL,			/* lockfunc, lockarg */
1066	    &sc->nge_cdata.nge_parent_tag);
1067	if (error != 0) {
1068		device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1069		goto fail;
1070	}
1071	/* Create tag for Tx ring. */
1072	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1073	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1074	    BUS_SPACE_MAXADDR,		/* lowaddr */
1075	    BUS_SPACE_MAXADDR,		/* highaddr */
1076	    NULL, NULL,			/* filter, filterarg */
1077	    NGE_TX_RING_SIZE,		/* maxsize */
1078	    1,				/* nsegments */
1079	    NGE_TX_RING_SIZE,		/* maxsegsize */
1080	    0,				/* flags */
1081	    NULL, NULL,			/* lockfunc, lockarg */
1082	    &sc->nge_cdata.nge_tx_ring_tag);
1083	if (error != 0) {
1084		device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1085		goto fail;
1086	}
1087
1088	/* Create tag for Rx ring. */
1089	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1090	    NGE_RING_ALIGN, 0,		/* alignment, boundary */
1091	    BUS_SPACE_MAXADDR,		/* lowaddr */
1092	    BUS_SPACE_MAXADDR,		/* highaddr */
1093	    NULL, NULL,			/* filter, filterarg */
1094	    NGE_RX_RING_SIZE,		/* maxsize */
1095	    1,				/* nsegments */
1096	    NGE_RX_RING_SIZE,		/* maxsegsize */
1097	    0,				/* flags */
1098	    NULL, NULL,			/* lockfunc, lockarg */
1099	    &sc->nge_cdata.nge_rx_ring_tag);
1100	if (error != 0) {
1101		device_printf(sc->nge_dev,
1102		    "failed to create Rx ring DMA tag\n");
1103		goto fail;
1104	}
1105
1106	/* Create tag for Tx buffers. */
1107	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1108	    1, 0,			/* alignment, boundary */
1109	    BUS_SPACE_MAXADDR,		/* lowaddr */
1110	    BUS_SPACE_MAXADDR,		/* highaddr */
1111	    NULL, NULL,			/* filter, filterarg */
1112	    MCLBYTES * NGE_MAXTXSEGS,	/* maxsize */
1113	    NGE_MAXTXSEGS,		/* nsegments */
1114	    MCLBYTES,			/* maxsegsize */
1115	    0,				/* flags */
1116	    NULL, NULL,			/* lockfunc, lockarg */
1117	    &sc->nge_cdata.nge_tx_tag);
1118	if (error != 0) {
1119		device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1120		goto fail;
1121	}
1122
1123	/* Create tag for Rx buffers. */
1124	error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1125	    NGE_RX_ALIGN, 0,		/* alignment, boundary */
1126	    BUS_SPACE_MAXADDR,		/* lowaddr */
1127	    BUS_SPACE_MAXADDR,		/* highaddr */
1128	    NULL, NULL,			/* filter, filterarg */
1129	    MCLBYTES,			/* maxsize */
1130	    1,				/* nsegments */
1131	    MCLBYTES,			/* maxsegsize */
1132	    0,				/* flags */
1133	    NULL, NULL,			/* lockfunc, lockarg */
1134	    &sc->nge_cdata.nge_rx_tag);
1135	if (error != 0) {
1136		device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1137		goto fail;
1138	}
1139
1140	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1141	error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1142	    (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1143	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1144	if (error != 0) {
1145		device_printf(sc->nge_dev,
1146		    "failed to allocate DMA'able memory for Tx ring\n");
1147		goto fail;
1148	}
1149
1150	ctx.nge_busaddr = 0;
1151	error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1152	    sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1153	    NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1154	if (error != 0 || ctx.nge_busaddr == 0) {
1155		device_printf(sc->nge_dev,
1156		    "failed to load DMA'able memory for Tx ring\n");
1157		goto fail;
1158	}
1159	sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1160
1161	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1162	error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1163	    (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1164	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1165	if (error != 0) {
1166		device_printf(sc->nge_dev,
1167		    "failed to allocate DMA'able memory for Rx ring\n");
1168		goto fail;
1169	}
1170
1171	ctx.nge_busaddr = 0;
1172	error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1173	    sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1174	    NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1175	if (error != 0 || ctx.nge_busaddr == 0) {
1176		device_printf(sc->nge_dev,
1177		    "failed to load DMA'able memory for Rx ring\n");
1178		goto fail;
1179	}
1180	sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1181
1182	/* Create DMA maps for Tx buffers. */
1183	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1184		txd = &sc->nge_cdata.nge_txdesc[i];
1185		txd->tx_m = NULL;
1186		txd->tx_dmamap = NULL;
1187		error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1188		    &txd->tx_dmamap);
1189		if (error != 0) {
1190			device_printf(sc->nge_dev,
1191			    "failed to create Tx dmamap\n");
1192			goto fail;
1193		}
1194	}
1195	/* Create DMA maps for Rx buffers. */
1196	if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1197	    &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1198		device_printf(sc->nge_dev,
1199		    "failed to create spare Rx dmamap\n");
1200		goto fail;
1201	}
1202	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1203		rxd = &sc->nge_cdata.nge_rxdesc[i];
1204		rxd->rx_m = NULL;
1205		rxd->rx_dmamap = NULL;
1206		error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1207		    &rxd->rx_dmamap);
1208		if (error != 0) {
1209			device_printf(sc->nge_dev,
1210			    "failed to create Rx dmamap\n");
1211			goto fail;
1212		}
1213	}
1214
1215fail:
1216	return (error);
1217}
1218
1219static void
1220nge_dma_free(struct nge_softc *sc)
1221{
1222	struct nge_txdesc *txd;
1223	struct nge_rxdesc *rxd;
1224	int i;
1225
1226	/* Tx ring. */
1227	if (sc->nge_cdata.nge_tx_ring_tag) {
1228		if (sc->nge_rdata.nge_tx_ring_paddr)
1229			bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1230			    sc->nge_cdata.nge_tx_ring_map);
1231		if (sc->nge_rdata.nge_tx_ring)
1232			bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1233			    sc->nge_rdata.nge_tx_ring,
1234			    sc->nge_cdata.nge_tx_ring_map);
1235		sc->nge_rdata.nge_tx_ring = NULL;
1236		sc->nge_rdata.nge_tx_ring_paddr = 0;
1237		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1238		sc->nge_cdata.nge_tx_ring_tag = NULL;
1239	}
1240	/* Rx ring. */
1241	if (sc->nge_cdata.nge_rx_ring_tag) {
1242		if (sc->nge_rdata.nge_rx_ring_paddr)
1243			bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1244			    sc->nge_cdata.nge_rx_ring_map);
1245		if (sc->nge_rdata.nge_rx_ring)
1246			bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1247			    sc->nge_rdata.nge_rx_ring,
1248			    sc->nge_cdata.nge_rx_ring_map);
1249		sc->nge_rdata.nge_rx_ring = NULL;
1250		sc->nge_rdata.nge_rx_ring_paddr = 0;
1251		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1252		sc->nge_cdata.nge_rx_ring_tag = NULL;
1253	}
1254	/* Tx buffers. */
1255	if (sc->nge_cdata.nge_tx_tag) {
1256		for (i = 0; i < NGE_TX_RING_CNT; i++) {
1257			txd = &sc->nge_cdata.nge_txdesc[i];
1258			if (txd->tx_dmamap) {
1259				bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1260				    txd->tx_dmamap);
1261				txd->tx_dmamap = NULL;
1262			}
1263		}
1264		bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1265		sc->nge_cdata.nge_tx_tag = NULL;
1266	}
1267	/* Rx buffers. */
1268	if (sc->nge_cdata.nge_rx_tag) {
1269		for (i = 0; i < NGE_RX_RING_CNT; i++) {
1270			rxd = &sc->nge_cdata.nge_rxdesc[i];
1271			if (rxd->rx_dmamap) {
1272				bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1273				    rxd->rx_dmamap);
1274				rxd->rx_dmamap = NULL;
1275			}
1276		}
1277		if (sc->nge_cdata.nge_rx_sparemap) {
1278			bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1279			    sc->nge_cdata.nge_rx_sparemap);
1280			sc->nge_cdata.nge_rx_sparemap = 0;
1281		}
1282		bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1283		sc->nge_cdata.nge_rx_tag = NULL;
1284	}
1285
1286	if (sc->nge_cdata.nge_parent_tag) {
1287		bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1288		sc->nge_cdata.nge_parent_tag = NULL;
1289	}
1290}
1291
1292/*
1293 * Initialize the transmit descriptors.
1294 */
1295static int
1296nge_list_tx_init(struct nge_softc *sc)
1297{
1298	struct nge_ring_data *rd;
1299	struct nge_txdesc *txd;
1300	bus_addr_t addr;
1301	int i;
1302
1303	sc->nge_cdata.nge_tx_prod = 0;
1304	sc->nge_cdata.nge_tx_cons = 0;
1305	sc->nge_cdata.nge_tx_cnt = 0;
1306
1307	rd = &sc->nge_rdata;
1308	bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1309	for (i = 0; i < NGE_TX_RING_CNT; i++) {
1310		if (i == NGE_TX_RING_CNT - 1)
1311			addr = NGE_TX_RING_ADDR(sc, 0);
1312		else
1313			addr = NGE_TX_RING_ADDR(sc, i + 1);
1314		rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1315		txd = &sc->nge_cdata.nge_txdesc[i];
1316		txd->tx_m = NULL;
1317	}
1318
1319	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1320	    sc->nge_cdata.nge_tx_ring_map,
1321	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1322
1323	return (0);
1324}
1325
1326/*
1327 * Initialize the RX descriptors and allocate mbufs for them. Note that
1328 * we arrange the descriptors in a closed ring, so that the last descriptor
1329 * points back to the first.
1330 */
1331static int
1332nge_list_rx_init(struct nge_softc *sc)
1333{
1334	struct nge_ring_data *rd;
1335	bus_addr_t addr;
1336	int i;
1337
1338	sc->nge_cdata.nge_rx_cons = 0;
1339	sc->nge_head = sc->nge_tail = NULL;
1340
1341	rd = &sc->nge_rdata;
1342	bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1343	for (i = 0; i < NGE_RX_RING_CNT; i++) {
1344		if (nge_newbuf(sc, i) != 0)
1345			return (ENOBUFS);
1346		if (i == NGE_RX_RING_CNT - 1)
1347			addr = NGE_RX_RING_ADDR(sc, 0);
1348		else
1349			addr = NGE_RX_RING_ADDR(sc, i + 1);
1350		rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1351	}
1352
1353	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1354	    sc->nge_cdata.nge_rx_ring_map,
1355	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356
1357	return (0);
1358}
1359
1360static __inline void
1361nge_discard_rxbuf(struct nge_softc *sc, int idx)
1362{
1363	struct nge_desc *desc;
1364
1365	desc = &sc->nge_rdata.nge_rx_ring[idx];
1366	desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1367	desc->nge_extsts = 0;
1368}
1369
1370/*
1371 * Initialize an RX descriptor and attach an MBUF cluster.
1372 */
1373static int
1374nge_newbuf(struct nge_softc *sc, int idx)
1375{
1376	struct nge_desc *desc;
1377	struct nge_rxdesc *rxd;
1378	struct mbuf *m;
1379	bus_dma_segment_t segs[1];
1380	bus_dmamap_t map;
1381	int nsegs;
1382
1383	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1384	if (m == NULL)
1385		return (ENOBUFS);
1386	m->m_len = m->m_pkthdr.len = MCLBYTES;
1387	m_adj(m, sizeof(uint64_t));
1388
1389	if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1390	    sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1391		m_freem(m);
1392		return (ENOBUFS);
1393	}
1394	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1395
1396	rxd = &sc->nge_cdata.nge_rxdesc[idx];
1397	if (rxd->rx_m != NULL) {
1398		bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1399		    BUS_DMASYNC_POSTREAD);
1400		bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1401	}
1402	map = rxd->rx_dmamap;
1403	rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1404	sc->nge_cdata.nge_rx_sparemap = map;
1405	bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1406	    BUS_DMASYNC_PREREAD);
1407	rxd->rx_m = m;
1408	desc = &sc->nge_rdata.nge_rx_ring[idx];
1409	desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1410	desc->nge_cmdsts = htole32(segs[0].ds_len);
1411	desc->nge_extsts = 0;
1412
1413	return (0);
1414}
1415
1416#ifndef __NO_STRICT_ALIGNMENT
1417static __inline void
1418nge_fixup_rx(struct mbuf *m)
1419{
1420	int			i;
1421	uint16_t		*src, *dst;
1422
1423	src = mtod(m, uint16_t *);
1424	dst = src - 1;
1425
1426	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1427		*dst++ = *src++;
1428
1429	m->m_data -= ETHER_ALIGN;
1430}
1431#endif
1432
1433/*
1434 * A frame has been uploaded: pass the resulting mbuf chain up to
1435 * the higher level protocols.
1436 */
1437static int
1438nge_rxeof(struct nge_softc *sc)
1439{
1440	struct mbuf *m;
1441	struct ifnet *ifp;
1442	struct nge_desc *cur_rx;
1443	struct nge_rxdesc *rxd;
1444	int cons, prog, rx_npkts, total_len;
1445	uint32_t cmdsts, extsts;
1446
1447	NGE_LOCK_ASSERT(sc);
1448
1449	ifp = sc->nge_ifp;
1450	cons = sc->nge_cdata.nge_rx_cons;
1451	rx_npkts = 0;
1452
1453	bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1454	    sc->nge_cdata.nge_rx_ring_map,
1455	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1456
1457	for (prog = 0; prog < NGE_RX_RING_CNT &&
1458	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1459	    NGE_INC(cons, NGE_RX_RING_CNT)) {
1460#ifdef DEVICE_POLLING
1461		if (ifp->if_capenable & IFCAP_POLLING) {
1462			if (sc->rxcycles <= 0)
1463				break;
1464			sc->rxcycles--;
1465		}
1466#endif
1467		cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1468		cmdsts = le32toh(cur_rx->nge_cmdsts);
1469		extsts = le32toh(cur_rx->nge_extsts);
1470		if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1471			break;
1472		prog++;
1473		rxd = &sc->nge_cdata.nge_rxdesc[cons];
1474		m = rxd->rx_m;
1475		total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1476
1477		if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1478			if (nge_newbuf(sc, cons) != 0) {
1479				if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1480				if (sc->nge_head != NULL) {
1481					m_freem(sc->nge_head);
1482					sc->nge_head = sc->nge_tail = NULL;
1483				}
1484				nge_discard_rxbuf(sc, cons);
1485				continue;
1486			}
1487			m->m_len = total_len;
1488			if (sc->nge_head == NULL) {
1489				m->m_pkthdr.len = total_len;
1490				sc->nge_head = sc->nge_tail = m;
1491			} else {
1492				m->m_flags &= ~M_PKTHDR;
1493				sc->nge_head->m_pkthdr.len += total_len;
1494				sc->nge_tail->m_next = m;
1495				sc->nge_tail = m;
1496			}
1497			continue;
1498		}
1499
1500		/*
1501		 * If an error occurs, update stats, clear the
1502		 * status word and leave the mbuf cluster in place:
1503		 * it should simply get re-used next time this descriptor
1504	 	 * comes up in the ring.
1505		 */
1506		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1507			if ((cmdsts & NGE_RXSTAT_RUNT) &&
1508			    total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1509				/*
1510				 * Work-around hardware bug, accept runt frames
1511				 * if its length is larger than or equal to 56.
1512				 */
1513			} else {
1514				/*
1515				 * Input error counters are updated by hardware.
1516				 */
1517				if (sc->nge_head != NULL) {
1518					m_freem(sc->nge_head);
1519					sc->nge_head = sc->nge_tail = NULL;
1520				}
1521				nge_discard_rxbuf(sc, cons);
1522				continue;
1523			}
1524		}
1525
1526		/* Try conjure up a replacement mbuf. */
1527
1528		if (nge_newbuf(sc, cons) != 0) {
1529			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1530			if (sc->nge_head != NULL) {
1531				m_freem(sc->nge_head);
1532				sc->nge_head = sc->nge_tail = NULL;
1533			}
1534			nge_discard_rxbuf(sc, cons);
1535			continue;
1536		}
1537
1538		/* Chain received mbufs. */
1539		if (sc->nge_head != NULL) {
1540			m->m_len = total_len;
1541			m->m_flags &= ~M_PKTHDR;
1542			sc->nge_tail->m_next = m;
1543			m = sc->nge_head;
1544			m->m_pkthdr.len += total_len;
1545			sc->nge_head = sc->nge_tail = NULL;
1546		} else
1547			m->m_pkthdr.len = m->m_len = total_len;
1548
1549		/*
1550		 * Ok. NatSemi really screwed up here. This is the
1551		 * only gigE chip I know of with alignment constraints
1552		 * on receive buffers. RX buffers must be 64-bit aligned.
1553		 */
1554		/*
1555		 * By popular demand, ignore the alignment problems
1556		 * on the non-strict alignment platform. The performance hit
1557		 * incurred due to unaligned accesses is much smaller
1558		 * than the hit produced by forcing buffer copies all
1559		 * the time, especially with jumbo frames. We still
1560		 * need to fix up the alignment everywhere else though.
1561		 */
1562#ifndef __NO_STRICT_ALIGNMENT
1563		nge_fixup_rx(m);
1564#endif
1565		m->m_pkthdr.rcvif = ifp;
1566		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1567
1568		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1569			/* Do IP checksum checking. */
1570			if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1571				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1572			if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1573				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1574			if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1575			    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1576			    (extsts & NGE_RXEXTSTS_UDPPKT &&
1577			    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1578				m->m_pkthdr.csum_flags |=
1579				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1580				m->m_pkthdr.csum_data = 0xffff;
1581			}
1582		}
1583
1584		/*
1585		 * If we received a packet with a vlan tag, pass it
1586		 * to vlan_input() instead of ether_input().
1587		 */
1588		if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1589		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1590			m->m_pkthdr.ether_vtag =
1591			    bswap16(extsts & NGE_RXEXTSTS_VTCI);
1592			m->m_flags |= M_VLANTAG;
1593		}
1594		NGE_UNLOCK(sc);
1595		(*ifp->if_input)(ifp, m);
1596		NGE_LOCK(sc);
1597		rx_npkts++;
1598	}
1599
1600	if (prog > 0) {
1601		sc->nge_cdata.nge_rx_cons = cons;
1602		bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1603		    sc->nge_cdata.nge_rx_ring_map,
1604		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1605	}
1606	return (rx_npkts);
1607}
1608
1609/*
1610 * A frame was downloaded to the chip. It's safe for us to clean up
1611 * the list buffers.
1612 */
1613static void
1614nge_txeof(struct nge_softc *sc)
1615{
1616	struct nge_desc	*cur_tx;
1617	struct nge_txdesc *txd;
1618	struct ifnet *ifp;
1619	uint32_t cmdsts;
1620	int cons, prod;
1621
1622	NGE_LOCK_ASSERT(sc);
1623	ifp = sc->nge_ifp;
1624
1625	cons = sc->nge_cdata.nge_tx_cons;
1626	prod = sc->nge_cdata.nge_tx_prod;
1627	if (cons == prod)
1628		return;
1629
1630	bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1631	    sc->nge_cdata.nge_tx_ring_map,
1632	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1633
1634	/*
1635	 * Go through our tx list and free mbufs for those
1636	 * frames that have been transmitted.
1637	 */
1638	for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1639		cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1640		cmdsts = le32toh(cur_tx->nge_cmdsts);
1641		if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1642			break;
1643		sc->nge_cdata.nge_tx_cnt--;
1644		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1645		if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1646			continue;
1647
1648		txd = &sc->nge_cdata.nge_txdesc[cons];
1649		bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1650		    BUS_DMASYNC_POSTWRITE);
1651		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1652		if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1653			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1654			if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1655				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1656			if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1657				if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1658		} else
1659			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1660
1661		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
1662		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1663		    __func__));
1664		m_freem(txd->tx_m);
1665		txd->tx_m = NULL;
1666	}
1667
1668	sc->nge_cdata.nge_tx_cons = cons;
1669	if (sc->nge_cdata.nge_tx_cnt == 0)
1670		sc->nge_watchdog_timer = 0;
1671}
1672
1673static void
1674nge_tick(void *xsc)
1675{
1676	struct nge_softc *sc;
1677	struct mii_data *mii;
1678
1679	sc = xsc;
1680	NGE_LOCK_ASSERT(sc);
1681	mii = device_get_softc(sc->nge_miibus);
1682	mii_tick(mii);
1683	/*
1684	 * For PHYs that does not reset established link, it is
1685	 * necessary to check whether driver still have a valid
1686	 * link(e.g link state change callback is not called).
1687	 * Otherwise, driver think it lost link because driver
1688	 * initialization routine clears link state flag.
1689	 */
1690	if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1691		nge_miibus_statchg(sc->nge_dev);
1692	nge_stats_update(sc);
1693	nge_watchdog(sc);
1694	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1695}
1696
1697static void
1698nge_stats_update(struct nge_softc *sc)
1699{
1700	struct ifnet *ifp;
1701	struct nge_stats now, *stats, *nstats;
1702
1703	NGE_LOCK_ASSERT(sc);
1704
1705	ifp = sc->nge_ifp;
1706	stats = &now;
1707	stats->rx_pkts_errs =
1708	    CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1709	stats->rx_crc_errs =
1710	    CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1711	stats->rx_fifo_oflows =
1712	    CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1713	stats->rx_align_errs =
1714	    CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1715	stats->rx_sym_errs =
1716	    CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1717	stats->rx_pkts_jumbos =
1718	    CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1719	stats->rx_len_errs =
1720	    CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1721	stats->rx_unctl_frames =
1722	    CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1723	stats->rx_pause =
1724	    CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1725	stats->tx_pause =
1726	    CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1727	stats->tx_seq_errs =
1728	    CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1729
1730	/*
1731	 * Since we've accept errored frames exclude Rx length errors.
1732	 */
1733	if_inc_counter(ifp, IFCOUNTER_IERRORS,
1734	    stats->rx_pkts_errs + stats->rx_crc_errs +
1735	    stats->rx_fifo_oflows + stats->rx_sym_errs);
1736
1737	nstats = &sc->nge_stats;
1738	nstats->rx_pkts_errs += stats->rx_pkts_errs;
1739	nstats->rx_crc_errs += stats->rx_crc_errs;
1740	nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1741	nstats->rx_align_errs += stats->rx_align_errs;
1742	nstats->rx_sym_errs += stats->rx_sym_errs;
1743	nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1744	nstats->rx_len_errs += stats->rx_len_errs;
1745	nstats->rx_unctl_frames += stats->rx_unctl_frames;
1746	nstats->rx_pause += stats->rx_pause;
1747	nstats->tx_pause += stats->tx_pause;
1748	nstats->tx_seq_errs += stats->tx_seq_errs;
1749}
1750
1751#ifdef DEVICE_POLLING
1752static poll_handler_t nge_poll;
1753
1754static int
1755nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1756{
1757	struct nge_softc *sc;
1758	int rx_npkts = 0;
1759
1760	sc = ifp->if_softc;
1761
1762	NGE_LOCK(sc);
1763	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1764		NGE_UNLOCK(sc);
1765		return (rx_npkts);
1766	}
1767
1768	/*
1769	 * On the nge, reading the status register also clears it.
1770	 * So before returning to intr mode we must make sure that all
1771	 * possible pending sources of interrupts have been served.
1772	 * In practice this means run to completion the *eof routines,
1773	 * and then call the interrupt routine.
1774	 */
1775	sc->rxcycles = count;
1776	rx_npkts = nge_rxeof(sc);
1777	nge_txeof(sc);
1778	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1779		nge_start_locked(ifp);
1780
1781	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1782		uint32_t	status;
1783
1784		/* Reading the ISR register clears all interrupts. */
1785		status = CSR_READ_4(sc, NGE_ISR);
1786
1787		if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1788			rx_npkts += nge_rxeof(sc);
1789
1790		if ((status & NGE_ISR_RX_IDLE) != 0)
1791			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1792
1793		if ((status & NGE_ISR_SYSERR) != 0) {
1794			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1795			nge_init_locked(sc);
1796		}
1797	}
1798	NGE_UNLOCK(sc);
1799	return (rx_npkts);
1800}
1801#endif /* DEVICE_POLLING */
1802
1803static void
1804nge_intr(void *arg)
1805{
1806	struct nge_softc *sc;
1807	struct ifnet *ifp;
1808	uint32_t status;
1809
1810	sc = (struct nge_softc *)arg;
1811	ifp = sc->nge_ifp;
1812
1813	NGE_LOCK(sc);
1814
1815	if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1816		goto done_locked;
1817
1818	/* Reading the ISR register clears all interrupts. */
1819	status = CSR_READ_4(sc, NGE_ISR);
1820	if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1821		goto done_locked;
1822#ifdef DEVICE_POLLING
1823	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1824		goto done_locked;
1825#endif
1826	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1827		goto done_locked;
1828
1829	/* Disable interrupts. */
1830	CSR_WRITE_4(sc, NGE_IER, 0);
1831
1832	/* Data LED on for TBI mode */
1833	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1834		CSR_WRITE_4(sc, NGE_GPIO,
1835		    CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1836
1837	for (; (status & NGE_INTRS) != 0;) {
1838		if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1839		    NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1840			nge_txeof(sc);
1841
1842		if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1843		    NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1844		    NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1845			nge_rxeof(sc);
1846
1847		if ((status & NGE_ISR_RX_IDLE) != 0)
1848			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1849
1850		if ((status & NGE_ISR_SYSERR) != 0) {
1851			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1852			nge_init_locked(sc);
1853		}
1854		/* Reading the ISR register clears all interrupts. */
1855		status = CSR_READ_4(sc, NGE_ISR);
1856	}
1857
1858	/* Re-enable interrupts. */
1859	CSR_WRITE_4(sc, NGE_IER, 1);
1860
1861	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1862		nge_start_locked(ifp);
1863
1864	/* Data LED off for TBI mode */
1865	if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1866		CSR_WRITE_4(sc, NGE_GPIO,
1867		    CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
1868
1869done_locked:
1870	NGE_UNLOCK(sc);
1871}
1872
1873/*
1874 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1875 * pointers to the fragment pointers.
1876 */
1877static int
1878nge_encap(struct nge_softc *sc, struct mbuf **m_head)
1879{
1880	struct nge_txdesc *txd, *txd_last;
1881	struct nge_desc *desc;
1882	struct mbuf *m;
1883	bus_dmamap_t map;
1884	bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
1885	int error, i, nsegs, prod, si;
1886
1887	NGE_LOCK_ASSERT(sc);
1888
1889	m = *m_head;
1890	prod = sc->nge_cdata.nge_tx_prod;
1891	txd = &sc->nge_cdata.nge_txdesc[prod];
1892	txd_last = txd;
1893	map = txd->tx_dmamap;
1894	error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
1895	    *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1896	if (error == EFBIG) {
1897		m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
1898		if (m == NULL) {
1899			m_freem(*m_head);
1900			*m_head = NULL;
1901			return (ENOBUFS);
1902		}
1903		*m_head = m;
1904		error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
1905		    map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1906		if (error != 0) {
1907			m_freem(*m_head);
1908			*m_head = NULL;
1909			return (error);
1910		}
1911	} else if (error != 0)
1912		return (error);
1913	if (nsegs == 0) {
1914		m_freem(*m_head);
1915		*m_head = NULL;
1916		return (EIO);
1917	}
1918
1919	/* Check number of available descriptors. */
1920	if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
1921		bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
1922		return (ENOBUFS);
1923	}
1924
1925	bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
1926
1927	si = prod;
1928	for (i = 0; i < nsegs; i++) {
1929		desc = &sc->nge_rdata.nge_tx_ring[prod];
1930		desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
1931		if (i == 0)
1932			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1933			    NGE_CMDSTS_MORE);
1934		else
1935			desc->nge_cmdsts = htole32(txsegs[i].ds_len |
1936			    NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
1937		desc->nge_extsts = 0;
1938		sc->nge_cdata.nge_tx_cnt++;
1939		NGE_INC(prod, NGE_TX_RING_CNT);
1940	}
1941	/* Update producer index. */
1942	sc->nge_cdata.nge_tx_prod = prod;
1943
1944	prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
1945	desc = &sc->nge_rdata.nge_tx_ring[prod];
1946	/* Check if we have a VLAN tag to insert. */
1947	if ((m->m_flags & M_VLANTAG) != 0)
1948		desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
1949		    bswap16(m->m_pkthdr.ether_vtag));
1950	/* Set EOP on the last desciptor. */
1951	desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
1952
1953	/* Set checksum offload in the first descriptor. */
1954	desc = &sc->nge_rdata.nge_tx_ring[si];
1955	if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
1956		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1957			desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
1958		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1959			desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
1960		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1961			desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
1962	}
1963	/* Lastly, turn the first descriptor ownership to hardware. */
1964	desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
1965
1966	txd = &sc->nge_cdata.nge_txdesc[prod];
1967	map = txd_last->tx_dmamap;
1968	txd_last->tx_dmamap = txd->tx_dmamap;
1969	txd->tx_dmamap = map;
1970	txd->tx_m = m;
1971
1972	return (0);
1973}
1974
1975/*
1976 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1977 * to the mbuf data regions directly in the transmit lists. We also save a
1978 * copy of the pointers since the transmit list fragment pointers are
1979 * physical addresses.
1980 */
1981
1982static void
1983nge_start(struct ifnet *ifp)
1984{
1985	struct nge_softc *sc;
1986
1987	sc = ifp->if_softc;
1988	NGE_LOCK(sc);
1989	nge_start_locked(ifp);
1990	NGE_UNLOCK(sc);
1991}
1992
1993static void
1994nge_start_locked(struct ifnet *ifp)
1995{
1996	struct nge_softc *sc;
1997	struct mbuf *m_head;
1998	int enq;
1999
2000	sc = ifp->if_softc;
2001
2002	NGE_LOCK_ASSERT(sc);
2003
2004	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2005	    IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2006		return;
2007
2008	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2009	    sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2010		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2011		if (m_head == NULL)
2012			break;
2013		/*
2014		 * Pack the data into the transmit ring. If we
2015		 * don't have room, set the OACTIVE flag and wait
2016		 * for the NIC to drain the ring.
2017		 */
2018		if (nge_encap(sc, &m_head)) {
2019			if (m_head == NULL)
2020				break;
2021			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2022			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2023			break;
2024		}
2025
2026		enq++;
2027		/*
2028		 * If there's a BPF listener, bounce a copy of this frame
2029		 * to him.
2030		 */
2031		ETHER_BPF_MTAP(ifp, m_head);
2032	}
2033
2034	if (enq > 0) {
2035		bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2036		    sc->nge_cdata.nge_tx_ring_map,
2037		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2038		/* Transmit */
2039		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2040
2041		/* Set a timeout in case the chip goes out to lunch. */
2042		sc->nge_watchdog_timer = 5;
2043	}
2044}
2045
2046static void
2047nge_init(void *xsc)
2048{
2049	struct nge_softc *sc = xsc;
2050
2051	NGE_LOCK(sc);
2052	nge_init_locked(sc);
2053	NGE_UNLOCK(sc);
2054}
2055
2056static void
2057nge_init_locked(struct nge_softc *sc)
2058{
2059	struct ifnet *ifp = sc->nge_ifp;
2060	struct mii_data *mii;
2061	uint8_t *eaddr;
2062	uint32_t reg;
2063
2064	NGE_LOCK_ASSERT(sc);
2065
2066	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2067		return;
2068
2069	/*
2070	 * Cancel pending I/O and free all RX/TX buffers.
2071	 */
2072	nge_stop(sc);
2073
2074	/* Reset the adapter. */
2075	nge_reset(sc);
2076
2077	/* Disable Rx filter prior to programming Rx filter. */
2078	CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2079	CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
2080
2081	mii = device_get_softc(sc->nge_miibus);
2082
2083	/* Set MAC address. */
2084	eaddr = IF_LLADDR(sc->nge_ifp);
2085	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2086	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2087	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2088	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2089	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2090	CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2091
2092	/* Init circular RX list. */
2093	if (nge_list_rx_init(sc) == ENOBUFS) {
2094		device_printf(sc->nge_dev, "initialization failed: no "
2095			"memory for rx buffers\n");
2096		nge_stop(sc);
2097		return;
2098	}
2099
2100	/*
2101	 * Init tx descriptors.
2102	 */
2103	nge_list_tx_init(sc);
2104
2105	/* Set Rx filter. */
2106	nge_rxfilter(sc);
2107
2108	/* Disable PRIQ ctl. */
2109	CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2110
2111	/*
2112	 * Set pause frames parameters.
2113	 *  Rx stat FIFO hi-threshold : 2 or more packets
2114	 *  Rx stat FIFO lo-threshold : less than 2 packets
2115	 *  Rx data FIFO hi-threshold : 2K or more bytes
2116	 *  Rx data FIFO lo-threshold : less than 2K bytes
2117	 *  pause time : (512ns * 0xffff) -> 33.55ms
2118	 */
2119	CSR_WRITE_4(sc, NGE_PAUSECSR,
2120	    NGE_PAUSECSR_PAUSE_ON_MCAST |
2121	    NGE_PAUSECSR_PAUSE_ON_DA |
2122	    ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2123	    ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2124	    ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2125	    ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2126	    NGE_PAUSECSR_CNT);
2127
2128	/*
2129	 * Load the address of the RX and TX lists.
2130	 */
2131	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2132	    NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2133	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2134	    NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2135	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2136	    NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2137	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2138	    NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2139
2140	/* Set RX configuration. */
2141	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2142
2143	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2144	/*
2145	 * Enable hardware checksum validation for all IPv4
2146	 * packets, do not reject packets with bad checksums.
2147	 */
2148	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2149		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2150
2151	/*
2152	 * Tell the chip to detect and strip VLAN tag info from
2153	 * received frames. The tag will be provided in the extsts
2154	 * field in the RX descriptors.
2155	 */
2156	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2157	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2158		NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2159
2160	/* Set TX configuration. */
2161	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2162
2163	/*
2164	 * Enable TX IPv4 checksumming on a per-packet basis.
2165	 */
2166	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2167
2168	/*
2169	 * Tell the chip to insert VLAN tags on a per-packet basis as
2170	 * dictated by the code in the frame encapsulation routine.
2171	 */
2172	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2173
2174	/*
2175	 * Enable the delivery of PHY interrupts based on
2176	 * link/speed/duplex status changes. Also enable the
2177	 * extsts field in the DMA descriptors (needed for
2178	 * TCP/IP checksum offload on transmit).
2179	 */
2180	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2181	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2182
2183	/*
2184	 * Configure interrupt holdoff (moderation). We can
2185	 * have the chip delay interrupt delivery for a certain
2186	 * period. Units are in 100us, and the max setting
2187	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2188	 */
2189	CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2190
2191	/*
2192	 * Enable MAC statistics counters and clear.
2193	 */
2194	reg = CSR_READ_4(sc, NGE_MIBCTL);
2195	reg &= ~NGE_MIBCTL_FREEZE_CNT;
2196	reg |= NGE_MIBCTL_CLEAR_CNT;
2197	CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2198
2199	/*
2200	 * Enable interrupts.
2201	 */
2202	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2203#ifdef DEVICE_POLLING
2204	/*
2205	 * ... only enable interrupts if we are not polling, make sure
2206	 * they are off otherwise.
2207	 */
2208	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2209		CSR_WRITE_4(sc, NGE_IER, 0);
2210	else
2211#endif
2212	CSR_WRITE_4(sc, NGE_IER, 1);
2213
2214	sc->nge_flags &= ~NGE_FLAG_LINK;
2215	mii_mediachg(mii);
2216
2217	sc->nge_watchdog_timer = 0;
2218	callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2219
2220	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2221	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2222}
2223
2224/*
2225 * Set media options.
2226 */
2227static int
2228nge_mediachange(struct ifnet *ifp)
2229{
2230	struct nge_softc *sc;
2231	struct mii_data	*mii;
2232	struct mii_softc *miisc;
2233	int error;
2234
2235	sc = ifp->if_softc;
2236	NGE_LOCK(sc);
2237	mii = device_get_softc(sc->nge_miibus);
2238	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2239		PHY_RESET(miisc);
2240	error = mii_mediachg(mii);
2241	NGE_UNLOCK(sc);
2242
2243	return (error);
2244}
2245
2246/*
2247 * Report current media status.
2248 */
2249static void
2250nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2251{
2252	struct nge_softc *sc;
2253	struct mii_data *mii;
2254
2255	sc = ifp->if_softc;
2256	NGE_LOCK(sc);
2257	mii = device_get_softc(sc->nge_miibus);
2258	mii_pollstat(mii);
2259	ifmr->ifm_active = mii->mii_media_active;
2260	ifmr->ifm_status = mii->mii_media_status;
2261	NGE_UNLOCK(sc);
2262}
2263
2264static int
2265nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2266{
2267	struct nge_softc *sc = ifp->if_softc;
2268	struct ifreq *ifr = (struct ifreq *) data;
2269	struct mii_data *mii;
2270	int error = 0, mask;
2271
2272	switch (command) {
2273	case SIOCSIFMTU:
2274		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2275			error = EINVAL;
2276		else {
2277			NGE_LOCK(sc);
2278			ifp->if_mtu = ifr->ifr_mtu;
2279			/*
2280			 * Workaround: if the MTU is larger than
2281			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2282			 * TX checksum offloading.
2283			 */
2284			if (ifr->ifr_mtu >= 8152) {
2285				ifp->if_capenable &= ~IFCAP_TXCSUM;
2286				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2287			} else {
2288				ifp->if_capenable |= IFCAP_TXCSUM;
2289				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2290			}
2291			NGE_UNLOCK(sc);
2292			VLAN_CAPABILITIES(ifp);
2293		}
2294		break;
2295	case SIOCSIFFLAGS:
2296		NGE_LOCK(sc);
2297		if ((ifp->if_flags & IFF_UP) != 0) {
2298			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2299				if ((ifp->if_flags ^ sc->nge_if_flags) &
2300				    (IFF_PROMISC | IFF_ALLMULTI))
2301					nge_rxfilter(sc);
2302			} else {
2303				if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2304					nge_init_locked(sc);
2305			}
2306		} else {
2307			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2308				nge_stop(sc);
2309		}
2310		sc->nge_if_flags = ifp->if_flags;
2311		NGE_UNLOCK(sc);
2312		error = 0;
2313		break;
2314	case SIOCADDMULTI:
2315	case SIOCDELMULTI:
2316		NGE_LOCK(sc);
2317		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2318			nge_rxfilter(sc);
2319		NGE_UNLOCK(sc);
2320		break;
2321	case SIOCGIFMEDIA:
2322	case SIOCSIFMEDIA:
2323		mii = device_get_softc(sc->nge_miibus);
2324		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2325		break;
2326	case SIOCSIFCAP:
2327		NGE_LOCK(sc);
2328		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2329#ifdef DEVICE_POLLING
2330		if ((mask & IFCAP_POLLING) != 0 &&
2331		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2332			ifp->if_capenable ^= IFCAP_POLLING;
2333			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2334				error = ether_poll_register(nge_poll, ifp);
2335				if (error != 0) {
2336					NGE_UNLOCK(sc);
2337					break;
2338				}
2339				/* Disable interrupts. */
2340				CSR_WRITE_4(sc, NGE_IER, 0);
2341			} else {
2342				error = ether_poll_deregister(ifp);
2343				/* Enable interrupts. */
2344				CSR_WRITE_4(sc, NGE_IER, 1);
2345			}
2346		}
2347#endif /* DEVICE_POLLING */
2348		if ((mask & IFCAP_TXCSUM) != 0 &&
2349		    (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2350			ifp->if_capenable ^= IFCAP_TXCSUM;
2351			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2352				ifp->if_hwassist |= NGE_CSUM_FEATURES;
2353			else
2354				ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2355		}
2356		if ((mask & IFCAP_RXCSUM) != 0 &&
2357		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2358			ifp->if_capenable ^= IFCAP_RXCSUM;
2359
2360		if ((mask & IFCAP_WOL) != 0 &&
2361		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2362			if ((mask & IFCAP_WOL_UCAST) != 0)
2363				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2364			if ((mask & IFCAP_WOL_MCAST) != 0)
2365				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2366			if ((mask & IFCAP_WOL_MAGIC) != 0)
2367				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2368		}
2369
2370		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2371		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2372			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2373		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2374		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2375			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2376			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2377				if ((ifp->if_capenable &
2378				    IFCAP_VLAN_HWTAGGING) != 0)
2379					NGE_SETBIT(sc,
2380					    NGE_VLAN_IP_RXCTL,
2381					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2382				else
2383					NGE_CLRBIT(sc,
2384					    NGE_VLAN_IP_RXCTL,
2385					    NGE_VIPRXCTL_TAG_STRIP_ENB);
2386			}
2387		}
2388		/*
2389		 * Both VLAN hardware tagging and checksum offload is
2390		 * required to do checksum offload on VLAN interface.
2391		 */
2392		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2393			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2394		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2395			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2396		NGE_UNLOCK(sc);
2397		VLAN_CAPABILITIES(ifp);
2398		break;
2399	default:
2400		error = ether_ioctl(ifp, command, data);
2401		break;
2402	}
2403
2404	return (error);
2405}
2406
2407static void
2408nge_watchdog(struct nge_softc *sc)
2409{
2410	struct ifnet *ifp;
2411
2412	NGE_LOCK_ASSERT(sc);
2413
2414	if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2415		return;
2416
2417	ifp = sc->nge_ifp;
2418	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2419	if_printf(ifp, "watchdog timeout\n");
2420
2421	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2422	nge_init_locked(sc);
2423
2424	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2425		nge_start_locked(ifp);
2426}
2427
2428static int
2429nge_stop_mac(struct nge_softc *sc)
2430{
2431	uint32_t reg;
2432	int i;
2433
2434	NGE_LOCK_ASSERT(sc);
2435
2436	reg = CSR_READ_4(sc, NGE_CSR);
2437	if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2438		reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2439		reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2440		CSR_WRITE_4(sc, NGE_CSR, reg);
2441		for (i = 0; i < NGE_TIMEOUT; i++) {
2442			DELAY(1);
2443			if ((CSR_READ_4(sc, NGE_CSR) &
2444			    (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2445				break;
2446		}
2447		if (i == NGE_TIMEOUT)
2448			return (ETIMEDOUT);
2449	}
2450
2451	return (0);
2452}
2453
2454/*
2455 * Stop the adapter and free any mbufs allocated to the
2456 * RX and TX lists.
2457 */
2458static void
2459nge_stop(struct nge_softc *sc)
2460{
2461	struct nge_txdesc *txd;
2462	struct nge_rxdesc *rxd;
2463	int i;
2464	struct ifnet *ifp;
2465
2466	NGE_LOCK_ASSERT(sc);
2467	ifp = sc->nge_ifp;
2468
2469	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2470	sc->nge_flags &= ~NGE_FLAG_LINK;
2471	callout_stop(&sc->nge_stat_ch);
2472	sc->nge_watchdog_timer = 0;
2473
2474	CSR_WRITE_4(sc, NGE_IER, 0);
2475	CSR_WRITE_4(sc, NGE_IMR, 0);
2476	if (nge_stop_mac(sc) == ETIMEDOUT)
2477		device_printf(sc->nge_dev,
2478		   "%s: unable to stop Tx/Rx MAC\n", __func__);
2479	CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2480	CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2481	CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2482	CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2483	nge_stats_update(sc);
2484	if (sc->nge_head != NULL) {
2485		m_freem(sc->nge_head);
2486		sc->nge_head = sc->nge_tail = NULL;
2487	}
2488
2489	/*
2490	 * Free RX and TX mbufs still in the queues.
2491	 */
2492	for (i = 0; i < NGE_RX_RING_CNT; i++) {
2493		rxd = &sc->nge_cdata.nge_rxdesc[i];
2494		if (rxd->rx_m != NULL) {
2495			bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2496			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2497			bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2498			    rxd->rx_dmamap);
2499			m_freem(rxd->rx_m);
2500			rxd->rx_m = NULL;
2501		}
2502	}
2503	for (i = 0; i < NGE_TX_RING_CNT; i++) {
2504		txd = &sc->nge_cdata.nge_txdesc[i];
2505		if (txd->tx_m != NULL) {
2506			bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2507			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2508			bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2509			    txd->tx_dmamap);
2510			m_freem(txd->tx_m);
2511			txd->tx_m = NULL;
2512		}
2513	}
2514}
2515
2516/*
2517 * Before setting WOL bits, caller should have stopped Receiver.
2518 */
2519static void
2520nge_wol(struct nge_softc *sc)
2521{
2522	struct ifnet *ifp;
2523	uint32_t reg;
2524	uint16_t pmstat;
2525	int pmc;
2526
2527	NGE_LOCK_ASSERT(sc);
2528
2529	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2530		return;
2531
2532	ifp = sc->nge_ifp;
2533	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2534		/* Disable WOL & disconnect CLKRUN to save power. */
2535		CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2536		CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2537	} else {
2538		if (nge_stop_mac(sc) == ETIMEDOUT)
2539			device_printf(sc->nge_dev,
2540			    "%s: unable to stop Tx/Rx MAC\n", __func__);
2541		/*
2542		 * Make sure wake frames will be buffered in the Rx FIFO.
2543		 * (i.e. Silent Rx mode.)
2544		 */
2545		CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2546		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
2547		CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2548		CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
2549		/* Enable Rx again. */
2550		NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2551		CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
2552
2553		/* Configure WOL events. */
2554		reg = 0;
2555		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2556			reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2557		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2558			reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2559		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2560			reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2561		CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2562
2563		/* Activate CLKRUN. */
2564		reg = CSR_READ_4(sc, NGE_CLKRUN);
2565		reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2566		CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2567	}
2568
2569	/* Request PME. */
2570	pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2571	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2572	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2573		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2574	pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2575}
2576
2577/*
2578 * Stop all chip I/O so that the kernel's probe routines don't
2579 * get confused by errant DMAs when rebooting.
2580 */
2581static int
2582nge_shutdown(device_t dev)
2583{
2584
2585	return (nge_suspend(dev));
2586}
2587
2588static int
2589nge_suspend(device_t dev)
2590{
2591	struct nge_softc *sc;
2592
2593	sc = device_get_softc(dev);
2594
2595	NGE_LOCK(sc);
2596	nge_stop(sc);
2597	nge_wol(sc);
2598	sc->nge_flags |= NGE_FLAG_SUSPENDED;
2599	NGE_UNLOCK(sc);
2600
2601	return (0);
2602}
2603
2604static int
2605nge_resume(device_t dev)
2606{
2607	struct nge_softc *sc;
2608	struct ifnet *ifp;
2609	uint16_t pmstat;
2610	int pmc;
2611
2612	sc = device_get_softc(dev);
2613
2614	NGE_LOCK(sc);
2615	ifp = sc->nge_ifp;
2616	if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2617		/* Disable PME and clear PME status. */
2618		pmstat = pci_read_config(sc->nge_dev,
2619		    pmc + PCIR_POWER_STATUS, 2);
2620		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2621			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2622			pci_write_config(sc->nge_dev,
2623			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2624		}
2625	}
2626	if (ifp->if_flags & IFF_UP) {
2627		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2628		nge_init_locked(sc);
2629	}
2630
2631	sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2632	NGE_UNLOCK(sc);
2633
2634	return (0);
2635}
2636
2637#define	NGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2638	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2639
2640static void
2641nge_sysctl_node(struct nge_softc *sc)
2642{
2643	struct sysctl_ctx_list *ctx;
2644	struct sysctl_oid_list *child, *parent;
2645	struct sysctl_oid *tree;
2646	struct nge_stats *stats;
2647	int error;
2648
2649	ctx = device_get_sysctl_ctx(sc->nge_dev);
2650	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2651	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2652	    CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2653	    sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2654	/* Pull in device tunables. */
2655	sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2656	error = resource_int_value(device_get_name(sc->nge_dev),
2657	    device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2658	if (error == 0) {
2659		if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2660		    sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2661			device_printf(sc->nge_dev,
2662			    "int_holdoff value out of range; "
2663			    "using default: %d(%d us)\n",
2664			    NGE_INT_HOLDOFF_DEFAULT,
2665			    NGE_INT_HOLDOFF_DEFAULT * 100);
2666			sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2667		}
2668	}
2669
2670	stats = &sc->nge_stats;
2671	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2672	    NULL, "NGE statistics");
2673	parent = SYSCTL_CHILDREN(tree);
2674
2675	/* Rx statistics. */
2676	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2677	    NULL, "Rx MAC statistics");
2678	child = SYSCTL_CHILDREN(tree);
2679	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2680	    &stats->rx_pkts_errs,
2681	    "Packet errors including both wire errors and FIFO overruns");
2682	NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2683	    &stats->rx_crc_errs, "CRC errors");
2684	NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2685	    &stats->rx_fifo_oflows, "FIFO overflows");
2686	NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2687	    &stats->rx_align_errs, "Frame alignment errors");
2688	NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2689	    &stats->rx_sym_errs, "One or more symbol errors");
2690	NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2691	    &stats->rx_pkts_jumbos,
2692	    "Packets received with length greater than 1518 bytes");
2693	NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2694	    &stats->rx_len_errs, "In Range Length errors");
2695	NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2696	    &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2697	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2698	    &stats->rx_pause, "Pause frames");
2699
2700	/* Tx statistics. */
2701	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2702	    NULL, "Tx MAC statistics");
2703	child = SYSCTL_CHILDREN(tree);
2704	NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2705	    &stats->tx_pause, "Pause frames");
2706	NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2707	    &stats->tx_seq_errs,
2708	    "Loss of collision heartbeat during transmission");
2709}
2710
2711#undef NGE_SYSCTL_STAT_ADD32
2712
2713static int
2714sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2715{
2716	int error, value;
2717
2718	if (arg1 == NULL)
2719		return (EINVAL);
2720	value = *(int *)arg1;
2721	error = sysctl_handle_int(oidp, &value, 0, req);
2722	if (error != 0 || req->newptr == NULL)
2723		return (error);
2724	if (value < low || value > high)
2725		return (EINVAL);
2726	*(int *)arg1 = value;
2727
2728	return (0);
2729}
2730
2731static int
2732sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2733{
2734
2735	return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2736	    NGE_INT_HOLDOFF_MAX));
2737}
2738