mly.c revision 80365
1/*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *	$FreeBSD: head/sys/dev/mly/mly.c 80365 2001-07-26 02:20:47Z msmith $
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/malloc.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/ctype.h>
37#include <sys/devicestat.h>
38#include <sys/ioccom.h>
39#include <sys/stat.h>
40
41#include <machine/bus_memio.h>
42#include <machine/bus.h>
43#include <machine/resource.h>
44#include <sys/rman.h>
45
46#include <cam/cam.h>
47#include <cam/cam_ccb.h>
48#include <cam/cam_periph.h>
49#include <cam/cam_sim.h>
50#include <cam/cam_xpt_sim.h>
51#include <cam/scsi/scsi_all.h>
52#include <cam/scsi/scsi_message.h>
53
54#include <pci/pcireg.h>
55#include <pci/pcivar.h>
56
57#include <dev/mly/mlyreg.h>
58#include <dev/mly/mlyio.h>
59#include <dev/mly/mlyvar.h>
60#include <dev/mly/mly_tables.h>
61
62static int	mly_probe(device_t dev);
63static int	mly_attach(device_t dev);
64static int	mly_pci_attach(struct mly_softc *sc);
65static int	mly_detach(device_t dev);
66static int	mly_shutdown(device_t dev);
67static void	mly_intr(void *arg);
68
69static int	mly_sg_map(struct mly_softc *sc);
70static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71static int	mly_mmbox_map(struct mly_softc *sc);
72static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
73static void	mly_free(struct mly_softc *sc);
74
75static int	mly_get_controllerinfo(struct mly_softc *sc);
76static void	mly_scan_devices(struct mly_softc *sc);
77static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
78static void	mly_complete_rescan(struct mly_command *mc);
79static int	mly_get_eventstatus(struct mly_softc *sc);
80static int	mly_enable_mmbox(struct mly_softc *sc);
81static int	mly_flush(struct mly_softc *sc);
82static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
83			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
84static void	mly_check_event(struct mly_softc *sc);
85static void	mly_fetch_event(struct mly_softc *sc);
86static void	mly_complete_event(struct mly_command *mc);
87static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
88static void	mly_periodic(void *data);
89
90static int	mly_immediate_command(struct mly_command *mc);
91static int	mly_start(struct mly_command *mc);
92static void	mly_done(struct mly_softc *sc);
93static void	mly_complete(void *context, int pending);
94
95static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
96static void	mly_release_command(struct mly_command *mc);
97static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
98static int	mly_alloc_commands(struct mly_softc *sc);
99static void	mly_release_commands(struct mly_softc *sc);
100static void	mly_map_command(struct mly_command *mc);
101static void	mly_unmap_command(struct mly_command *mc);
102
103static int	mly_cam_attach(struct mly_softc *sc);
104static void	mly_cam_detach(struct mly_softc *sc);
105static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
106static void	mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
107static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
108static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
109static void	mly_cam_poll(struct cam_sim *sim);
110static void	mly_cam_complete(struct mly_command *mc);
111static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
112static int	mly_name_device(struct mly_softc *sc, int bus, int target);
113
114static int	mly_fwhandshake(struct mly_softc *sc);
115
116static void	mly_describe_controller(struct mly_softc *sc);
117#ifdef MLY_DEBUG
118static void	mly_printstate(struct mly_softc *sc);
119static void	mly_print_command(struct mly_command *mc);
120static void	mly_print_packet(struct mly_command *mc);
121static void	mly_panic(struct mly_softc *sc, char *reason);
122#endif
123void		mly_print_controller(int controller);
124
125
126static d_open_t		mly_user_open;
127static d_close_t	mly_user_close;
128static d_ioctl_t	mly_user_ioctl;
129static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
130static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
131
132
133static device_method_t mly_methods[] = {
134    /* Device interface */
135    DEVMETHOD(device_probe,	mly_probe),
136    DEVMETHOD(device_attach,	mly_attach),
137    DEVMETHOD(device_detach,	mly_detach),
138    DEVMETHOD(device_shutdown,	mly_shutdown),
139    { 0, 0 }
140};
141
142static driver_t mly_pci_driver = {
143	"mly",
144	mly_methods,
145	sizeof(struct mly_softc)
146};
147
148static devclass_t	mly_devclass;
149DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
150
151#define MLY_CDEV_MAJOR  158
152
153static struct cdevsw mly_cdevsw = {
154    mly_user_open,
155    mly_user_close,
156    noread,
157    nowrite,
158    mly_user_ioctl,
159    nopoll,
160    nommap,
161    nostrategy,
162    "mly",
163    MLY_CDEV_MAJOR,
164    nodump,
165    nopsize,
166    0
167};
168
169/********************************************************************************
170 ********************************************************************************
171                                                                 Device Interface
172 ********************************************************************************
173 ********************************************************************************/
174
175static struct mly_ident
176{
177    u_int16_t		vendor;
178    u_int16_t		device;
179    u_int16_t		subvendor;
180    u_int16_t		subdevice;
181    int			hwif;
182    char		*desc;
183} mly_identifiers[] = {
184    {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
185    {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
186    {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
187    {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
188    {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
189    {0, 0, 0, 0, 0, 0}
190};
191
192/********************************************************************************
193 * Compare the provided PCI device with the list we support.
194 */
195static int
196mly_probe(device_t dev)
197{
198    struct mly_ident	*m;
199
200    debug_called(1);
201
202    for (m = mly_identifiers; m->vendor != 0; m++) {
203	if ((m->vendor == pci_get_vendor(dev)) &&
204	    (m->device == pci_get_device(dev)) &&
205	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
206				     (m->subdevice == pci_get_subdevice(dev))))) {
207
208	    device_set_desc(dev, m->desc);
209#ifdef MLY_MODULE
210	    return(-5);
211#else
212	    return(-10);	/* allow room to be overridden */
213#endif
214	}
215    }
216    return(ENXIO);
217}
218
219/********************************************************************************
220 * Initialise the controller and softc
221 */
222int
223mly_attach(device_t dev)
224{
225    struct mly_softc	*sc = device_get_softc(dev);
226    int			error;
227
228    debug_called(1);
229
230    sc->mly_dev = dev;
231
232#ifdef MLY_DEBUG
233    if (device_get_unit(sc->mly_dev) == 0)
234	mly_softc0 = sc;
235#endif
236
237    /*
238     * Do PCI-specific initialisation.
239     */
240    if ((error = mly_pci_attach(sc)) != 0)
241	goto out;
242
243    /*
244     * Initialise per-controller queues.
245     */
246    mly_initq_free(sc);
247    mly_initq_busy(sc);
248    mly_initq_complete(sc);
249
250#if __FreeBSD_version >= 500005
251    /*
252     * Initialise command-completion task.
253     */
254    TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
255#endif
256
257    /* disable interrupts before we start talking to the controller */
258    MLY_MASK_INTERRUPTS(sc);
259
260    /*
261     * Wait for the controller to come ready, handshake with the firmware if required.
262     * This is typically only necessary on platforms where the controller BIOS does not
263     * run.
264     */
265    if ((error = mly_fwhandshake(sc)))
266	goto out;
267
268    /*
269     * Allocate initial command buffers.
270     */
271    if ((error = mly_alloc_commands(sc)))
272	goto out;
273
274    /*
275     * Obtain controller feature information
276     */
277    if ((error = mly_get_controllerinfo(sc)))
278	goto out;
279
280    /*
281     * Reallocate command buffers now we know how many we want.
282     */
283    mly_release_commands(sc);
284    if ((error = mly_alloc_commands(sc)))
285	goto out;
286
287    /*
288     * Get the current event counter for health purposes, populate the initial
289     * health status buffer.
290     */
291    if ((error = mly_get_eventstatus(sc)))
292	goto out;
293
294    /*
295     * Enable memory-mailbox mode.
296     */
297    if ((error = mly_enable_mmbox(sc)))
298	goto out;
299
300    /*
301     * Attach to CAM.
302     */
303    if ((error = mly_cam_attach(sc)))
304	goto out;
305
306    /*
307     * Print a little information about the controller
308     */
309    mly_describe_controller(sc);
310
311    /*
312     * Mark all attached devices for rescan.
313     */
314    mly_scan_devices(sc);
315
316    /*
317     * Instigate the first status poll immediately.  Rescan completions won't
318     * happen until interrupts are enabled, which should still be before
319     * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
320     */
321    mly_periodic((void *)sc);
322
323    /*
324     * Create the control device.
325     */
326    sc->mly_dev_t = make_dev(&mly_cdevsw, device_get_unit(sc->mly_dev), UID_ROOT, GID_OPERATOR,
327			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
328    sc->mly_dev_t->si_drv1 = sc;
329
330    /* enable interrupts now */
331    MLY_UNMASK_INTERRUPTS(sc);
332
333 out:
334    if (error != 0)
335	mly_free(sc);
336    return(error);
337}
338
339/********************************************************************************
340 * Perform PCI-specific initialisation.
341 */
342static int
343mly_pci_attach(struct mly_softc *sc)
344{
345    int			i, error;
346    u_int32_t		command;
347
348    debug_called(1);
349
350    /* assume failure is 'not configured' */
351    error = ENXIO;
352
353    /*
354     * Verify that the adapter is correctly set up in PCI space.
355     *
356     * XXX we shouldn't do this; the PCI code should.
357     */
358    command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
359    command |= PCIM_CMD_BUSMASTEREN;
360    pci_write_config(sc->mly_dev, PCIR_COMMAND, command, 2);
361    command = pci_read_config(sc->mly_dev, PCIR_COMMAND, 2);
362    if (!(command & PCIM_CMD_BUSMASTEREN)) {
363	mly_printf(sc, "can't enable busmaster feature\n");
364	goto fail;
365    }
366    if ((command & PCIM_CMD_MEMEN) == 0) {
367	mly_printf(sc, "memory window not available\n");
368	goto fail;
369    }
370
371    /*
372     * Allocate the PCI register window.
373     */
374    sc->mly_regs_rid = PCIR_MAPS;	/* first base address register */
375    if ((sc->mly_regs_resource = bus_alloc_resource(sc->mly_dev, SYS_RES_MEMORY, &sc->mly_regs_rid,
376						    0, ~0, 1, RF_ACTIVE)) == NULL) {
377	mly_printf(sc, "can't allocate register window\n");
378	goto fail;
379    }
380    sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
381    sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
382
383    /*
384     * Allocate and connect our interrupt.
385     */
386    sc->mly_irq_rid = 0;
387    if ((sc->mly_irq = bus_alloc_resource(sc->mly_dev, SYS_RES_IRQ, &sc->mly_irq_rid,
388					  0, ~0, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
389	mly_printf(sc, "can't allocate interrupt\n");
390	goto fail;
391    }
392    if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY,  mly_intr, sc, &sc->mly_intr)) {
393	mly_printf(sc, "can't set up interrupt\n");
394	goto fail;
395    }
396
397    /* assume failure is 'out of memory' */
398    error = ENOMEM;
399
400    /*
401     * Allocate the parent bus DMA tag appropriate for our PCI interface.
402     *
403     * Note that all of these controllers are 64-bit capable.
404     */
405    if (bus_dma_tag_create(NULL, 			/* parent */
406			   1, 0, 			/* alignment, boundary */
407			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
408			   BUS_SPACE_MAXADDR, 		/* highaddr */
409			   NULL, NULL, 			/* filter, filterarg */
410			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
411			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
412			   BUS_DMA_ALLOCNOW,		/* flags */
413			   &sc->mly_parent_dmat)) {
414	mly_printf(sc, "can't allocate parent DMA tag\n");
415	goto fail;
416    }
417
418    /*
419     * Create DMA tag for mapping buffers into controller-addressable space.
420     */
421    if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
422			   1, 0, 			/* alignment, boundary */
423			   BUS_SPACE_MAXADDR,		/* lowaddr */
424			   BUS_SPACE_MAXADDR, 		/* highaddr */
425			   NULL, NULL, 			/* filter, filterarg */
426			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
427			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
428			   0,				/* flags */
429			   &sc->mly_buffer_dmat)) {
430	mly_printf(sc, "can't allocate buffer DMA tag\n");
431	goto fail;
432    }
433
434    /*
435     * Initialise the DMA tag for command packets.
436     */
437    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
438			   1, 0, 			/* alignment, boundary */
439			   BUS_SPACE_MAXADDR,		/* lowaddr */
440			   BUS_SPACE_MAXADDR, 		/* highaddr */
441			   NULL, NULL, 			/* filter, filterarg */
442			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
443			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
444			   0,				/* flags */
445			   &sc->mly_packet_dmat)) {
446	mly_printf(sc, "can't allocate command packet DMA tag\n");
447	goto fail;
448    }
449
450    /*
451     * Detect the hardware interface version
452     */
453    for (i = 0; mly_identifiers[i].vendor != 0; i++) {
454	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
455	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
456	    sc->mly_hwif = mly_identifiers[i].hwif;
457	    switch(sc->mly_hwif) {
458	    case MLY_HWIF_I960RX:
459		debug(1, "set hardware up for i960RX");
460		sc->mly_doorbell_true = 0x00;
461		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
462		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
463		sc->mly_idbr =             MLY_I960RX_IDBR;
464		sc->mly_odbr =             MLY_I960RX_ODBR;
465		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
466		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
467		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
468		break;
469	    case MLY_HWIF_STRONGARM:
470		debug(1, "set hardware up for StrongARM");
471		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
472		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
473		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
474		sc->mly_idbr =             MLY_STRONGARM_IDBR;
475		sc->mly_odbr =             MLY_STRONGARM_ODBR;
476		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
477		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
478		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
479		break;
480	    }
481	    break;
482	}
483    }
484
485    /*
486     * Create the scatter/gather mappings.
487     */
488    if ((error = mly_sg_map(sc)))
489	goto fail;
490
491    /*
492     * Allocate and map the memory mailbox
493     */
494    if ((error = mly_mmbox_map(sc)))
495	goto fail;
496
497    error = 0;
498
499fail:
500    return(error);
501}
502
503/********************************************************************************
504 * Shut the controller down and detach all our resources.
505 */
506static int
507mly_detach(device_t dev)
508{
509    int			error;
510
511    if ((error = mly_shutdown(dev)) != 0)
512	return(error);
513
514    mly_free(device_get_softc(dev));
515    return(0);
516}
517
518/********************************************************************************
519 * Bring the controller to a state where it can be safely left alone.
520 *
521 * Note that it should not be necessary to wait for any outstanding commands,
522 * as they should be completed prior to calling here.
523 *
524 * XXX this applies for I/O, but not status polls; we should beware of
525 *     the case where a status command is running while we detach.
526 */
527static int
528mly_shutdown(device_t dev)
529{
530    struct mly_softc	*sc = device_get_softc(dev);
531
532    debug_called(1);
533
534    if (sc->mly_state & MLY_STATE_OPEN)
535	return(EBUSY);
536
537    /* kill the periodic event */
538    untimeout(mly_periodic, sc, sc->mly_periodic);
539
540    /* flush controller */
541    mly_printf(sc, "flushing cache...");
542    printf("%s\n", mly_flush(sc) ? "failed" : "done");
543
544    MLY_MASK_INTERRUPTS(sc);
545
546    return(0);
547}
548
549/*******************************************************************************
550 * Take an interrupt, or be poked by other code to look for interrupt-worthy
551 * status.
552 */
553static void
554mly_intr(void *arg)
555{
556    struct mly_softc	*sc = (struct mly_softc *)arg;
557
558    debug_called(2);
559
560    mly_done(sc);
561};
562
563/********************************************************************************
564 ********************************************************************************
565                                                Bus-dependant Resource Management
566 ********************************************************************************
567 ********************************************************************************/
568
569/********************************************************************************
570 * Allocate memory for the scatter/gather tables
571 */
572static int
573mly_sg_map(struct mly_softc *sc)
574{
575    size_t	segsize;
576
577    debug_called(1);
578
579    /*
580     * Create a single tag describing a region large enough to hold all of
581     * the s/g lists we will need.
582     */
583    segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS * MLY_MAX_SGENTRIES;
584    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
585			   1, 0, 			/* alignment, boundary */
586			   BUS_SPACE_MAXADDR,		/* lowaddr */
587			   BUS_SPACE_MAXADDR, 		/* highaddr */
588			   NULL, NULL, 			/* filter, filterarg */
589			   segsize, 1,			/* maxsize, nsegments */
590			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
591			   0,				/* flags */
592			   &sc->mly_sg_dmat)) {
593	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
594	return(ENOMEM);
595    }
596
597    /*
598     * Allocate enough s/g maps for all commands and permanently map them into
599     * controller-visible space.
600     *
601     * XXX this assumes we can get enough space for all the s/g maps in one
602     * contiguous slab.
603     */
604    if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table, BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
605	mly_printf(sc, "can't allocate s/g table\n");
606	return(ENOMEM);
607    }
608    bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table, segsize, mly_sg_map_helper, sc, 0);
609    return(0);
610}
611
612/********************************************************************************
613 * Save the physical address of the base of the s/g table.
614 */
615static void
616mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
617{
618    struct mly_softc	*sc = (struct mly_softc *)arg;
619
620    debug_called(1);
621
622    /* save base of s/g table's address in bus space */
623    sc->mly_sg_busaddr = segs->ds_addr;
624}
625
626/********************************************************************************
627 * Allocate memory for the memory-mailbox interface
628 */
629static int
630mly_mmbox_map(struct mly_softc *sc)
631{
632
633    /*
634     * Create a DMA tag for a single contiguous region large enough for the
635     * memory mailbox structure.
636     */
637    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
638			   1, 0, 			/* alignment, boundary */
639			   BUS_SPACE_MAXADDR,		/* lowaddr */
640			   BUS_SPACE_MAXADDR, 		/* highaddr */
641			   NULL, NULL, 			/* filter, filterarg */
642			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
643			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
644			   0,				/* flags */
645			   &sc->mly_mmbox_dmat)) {
646	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
647	return(ENOMEM);
648    }
649
650    /*
651     * Allocate the buffer
652     */
653    if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
654	mly_printf(sc, "can't allocate memory mailbox\n");
655	return(ENOMEM);
656    }
657    bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox, sizeof(struct mly_mmbox),
658		    mly_mmbox_map_helper, sc, 0);
659    bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
660    return(0);
661
662}
663
664/********************************************************************************
665 * Save the physical address of the memory mailbox
666 */
667static void
668mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
669{
670    struct mly_softc	*sc = (struct mly_softc *)arg;
671
672    debug_called(1);
673
674    sc->mly_mmbox_busaddr = segs->ds_addr;
675}
676
677/********************************************************************************
678 * Free all of the resources associated with (sc)
679 *
680 * Should not be called if the controller is active.
681 */
682void
683mly_free(struct mly_softc *sc)
684{
685
686    debug_called(1);
687
688    /* detach from CAM */
689    mly_cam_detach(sc);
690
691    /* release command memory */
692    mly_release_commands(sc);
693
694    /* throw away the controllerinfo structure */
695    if (sc->mly_controllerinfo != NULL)
696	free(sc->mly_controllerinfo, M_DEVBUF);
697
698    /* throw away the controllerparam structure */
699    if (sc->mly_controllerparam != NULL)
700	free(sc->mly_controllerparam, M_DEVBUF);
701
702    /* destroy data-transfer DMA tag */
703    if (sc->mly_buffer_dmat)
704	bus_dma_tag_destroy(sc->mly_buffer_dmat);
705
706    /* free and destroy DMA memory and tag for s/g lists */
707    if (sc->mly_sg_table) {
708	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
709	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
710    }
711    if (sc->mly_sg_dmat)
712	bus_dma_tag_destroy(sc->mly_sg_dmat);
713
714    /* free and destroy DMA memory and tag for memory mailbox */
715    if (sc->mly_mmbox) {
716	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
717	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
718    }
719    if (sc->mly_mmbox_dmat)
720	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
721
722    /* disconnect the interrupt handler */
723    if (sc->mly_intr)
724	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
725    if (sc->mly_irq != NULL)
726	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
727
728    /* destroy the parent DMA tag */
729    if (sc->mly_parent_dmat)
730	bus_dma_tag_destroy(sc->mly_parent_dmat);
731
732    /* release the register window mapping */
733    if (sc->mly_regs_resource != NULL)
734	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
735}
736
737/********************************************************************************
738 ********************************************************************************
739                                                                 Command Wrappers
740 ********************************************************************************
741 ********************************************************************************/
742
743/********************************************************************************
744 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
745 */
746static int
747mly_get_controllerinfo(struct mly_softc *sc)
748{
749    struct mly_command_ioctl	mci;
750    u_int8_t			status;
751    int				error;
752
753    debug_called(1);
754
755    if (sc->mly_controllerinfo != NULL)
756	free(sc->mly_controllerinfo, M_DEVBUF);
757
758    /* build the getcontrollerinfo ioctl and send it */
759    bzero(&mci, sizeof(mci));
760    sc->mly_controllerinfo = NULL;
761    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
762    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
763			   &status, NULL, NULL)))
764	return(error);
765    if (status != 0)
766	return(EIO);
767
768    if (sc->mly_controllerparam != NULL)
769	free(sc->mly_controllerparam, M_DEVBUF);
770
771    /* build the getcontrollerparameter ioctl and send it */
772    bzero(&mci, sizeof(mci));
773    sc->mly_controllerparam = NULL;
774    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
775    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
776			   &status, NULL, NULL)))
777	return(error);
778    if (status != 0)
779	return(EIO);
780
781    return(0);
782}
783
784/********************************************************************************
785 * Schedule all possible devices for a rescan.
786 *
787 */
788static void
789mly_scan_devices(struct mly_softc *sc)
790{
791    int		bus, target;
792
793    debug_called(1);
794
795    /*
796     * Clear any previous BTL information.
797     */
798    bzero(&sc->mly_btl, sizeof(sc->mly_btl));
799
800    /*
801     * Mark all devices as requiring a rescan, and let the next
802     * periodic scan collect them.
803     */
804    for (bus = 0; bus < sc->mly_cam_channels; bus++)
805	if (MLY_BUS_IS_VALID(sc, bus))
806	    for (target = 0; target < MLY_MAX_TARGETS; target++)
807		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
808
809}
810
811/********************************************************************************
812 * Rescan a device, possibly as a consequence of getting an event which suggests
813 * that it may have changed.
814 *
815 * If we suffer resource starvation, we can abandon the rescan as we'll be
816 * retried.
817 */
818static void
819mly_rescan_btl(struct mly_softc *sc, int bus, int target)
820{
821    struct mly_command		*mc;
822    struct mly_command_ioctl	*mci;
823
824    debug_called(1);
825
826    /* check that this bus is valid */
827    if (!MLY_BUS_IS_VALID(sc, bus))
828	return;
829
830    /* get a command */
831    if (mly_alloc_command(sc, &mc))
832	return;
833
834    /* set up the data buffer */
835    if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
836	mly_release_command(mc);
837	return;
838    }
839    mc->mc_flags |= MLY_CMD_DATAIN;
840    mc->mc_complete = mly_complete_rescan;
841
842    /*
843     * Build the ioctl.
844     */
845    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
846    mci->opcode = MDACMD_IOCTL;
847    mci->addr.phys.controller = 0;
848    mci->timeout.value = 30;
849    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
850    if (bus < sc->mly_controllerinfo->virtual_channels_present) {
851	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
852	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
853	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
854	debug(1, "logical device %d", mci->addr.log.logdev);
855    } else {
856	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
857	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
858	mci->addr.phys.lun = 0;
859	mci->addr.phys.target = target;
860	mci->addr.phys.channel = bus;
861	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
862    }
863
864    /*
865     * Dispatch the command.  If we successfully send the command, clear the rescan
866     * bit.
867     */
868    if (mly_start(mc) != 0) {
869	mly_release_command(mc);
870    } else {
871	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
872    }
873}
874
875/********************************************************************************
876 * Handle the completion of a rescan operation
877 */
878static void
879mly_complete_rescan(struct mly_command *mc)
880{
881    struct mly_softc				*sc = mc->mc_sc;
882    struct mly_ioctl_getlogdevinfovalid		*ldi;
883    struct mly_ioctl_getphysdevinfovalid	*pdi;
884    struct mly_command_ioctl			*mci;
885    struct mly_btl				btl, *btlp;
886    int						bus, target, rescan;
887
888    debug_called(1);
889
890    /*
891     * Recover the bus and target from the command.  We need these even in
892     * the case where we don't have a useful response.
893     */
894    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
895    if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
896	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
897	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
898    } else {
899	bus = mci->addr.phys.channel;
900	target = mci->addr.phys.target;
901    }
902    /* XXX validate bus/target? */
903
904    /* the default result is 'no device' */
905    bzero(&btl, sizeof(btl));
906
907    /* if the rescan completed OK, we have possibly-new BTL data */
908    if (mc->mc_status == 0) {
909	if (mc->mc_length == sizeof(*ldi)) {
910	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
911	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
912		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
913		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
914			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
915			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
916		/* XXX what can we do about this? */
917	    }
918	    btl.mb_flags = MLY_BTL_LOGICAL;
919	    btl.mb_type = ldi->raid_level;
920	    btl.mb_state = ldi->state;
921	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
922		  mly_describe_code(mly_table_device_type, ldi->raid_level),
923		  mly_describe_code(mly_table_device_state, ldi->state));
924	} else if (mc->mc_length == sizeof(*pdi)) {
925	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
926	    if ((pdi->channel != bus) || (pdi->target != target)) {
927		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
928			   bus, target, pdi->channel, pdi->target);
929		/* XXX what can we do about this? */
930	    }
931	    btl.mb_flags = MLY_BTL_PHYSICAL;
932	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
933	    btl.mb_state = pdi->state;
934	    btl.mb_speed = pdi->speed;
935	    btl.mb_width = pdi->width;
936	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
937		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
938	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
939		  mly_describe_code(mly_table_device_state, pdi->state));
940	} else {
941	    mly_printf(sc, "BTL rescan result invalid\n");
942	}
943    }
944
945    free(mc->mc_data, M_DEVBUF);
946    mly_release_command(mc);
947
948    /*
949     * Decide whether we need to rescan the device.
950     */
951    rescan = 0;
952
953    /* device type changes (usually between 'nothing' and 'something') */
954    btlp = &sc->mly_btl[bus][target];
955    if (btl.mb_flags != btlp->mb_flags) {
956	debug(1, "flags changed, rescanning");
957	rescan = 1;
958    }
959
960    /* XXX other reasons? */
961
962    /*
963     * Update BTL information.
964     */
965    *btlp = btl;
966
967    /*
968     * Perform CAM rescan if required.
969     */
970    if (rescan)
971	mly_cam_rescan_btl(sc, bus, target);
972}
973
974/********************************************************************************
975 * Get the current health status and set the 'next event' counter to suit.
976 */
977static int
978mly_get_eventstatus(struct mly_softc *sc)
979{
980    struct mly_command_ioctl	mci;
981    struct mly_health_status	*mh;
982    u_int8_t			status;
983    int				error;
984
985    /* build the gethealthstatus ioctl and send it */
986    bzero(&mci, sizeof(mci));
987    mh = NULL;
988    mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
989
990    if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
991	return(error);
992    if (status != 0)
993	return(EIO);
994
995    /* get the event counter */
996    sc->mly_event_change = mh->change_counter;
997    sc->mly_event_waiting = mh->next_event;
998    sc->mly_event_counter = mh->next_event;
999
1000    /* save the health status into the memory mailbox */
1001    bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1002
1003    debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1004
1005    free(mh, M_DEVBUF);
1006    return(0);
1007}
1008
1009/********************************************************************************
1010 * Enable the memory mailbox mode.
1011 */
1012static int
1013mly_enable_mmbox(struct mly_softc *sc)
1014{
1015    struct mly_command_ioctl	mci;
1016    u_int8_t			*sp, status;
1017    int				error;
1018
1019    debug_called(1);
1020
1021    /* build the ioctl and send it */
1022    bzero(&mci, sizeof(mci));
1023    mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1024    /* set buffer addresses */
1025    mci.param.setmemorymailbox.command_mailbox_physaddr =
1026	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1027    mci.param.setmemorymailbox.status_mailbox_physaddr =
1028	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1029    mci.param.setmemorymailbox.health_buffer_physaddr =
1030	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1031
1032    /* set buffer sizes - abuse of data_size field is revolting */
1033    sp = (u_int8_t *)&mci.data_size;
1034    sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1035    sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1036    mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1037
1038    debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1039	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1040	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1041	  mci.param.setmemorymailbox.health_buffer_physaddr,
1042	  mci.param.setmemorymailbox.health_buffer_size);
1043
1044    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1045	return(error);
1046    if (status != 0)
1047	return(EIO);
1048    sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1049    debug(1, "memory mailbox active");
1050    return(0);
1051}
1052
1053/********************************************************************************
1054 * Flush all pending I/O from the controller.
1055 */
1056static int
1057mly_flush(struct mly_softc *sc)
1058{
1059    struct mly_command_ioctl	mci;
1060    u_int8_t			status;
1061    int				error;
1062
1063    debug_called(1);
1064
1065    /* build the ioctl */
1066    bzero(&mci, sizeof(mci));
1067    mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1068    mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1069
1070    /* pass it off to the controller */
1071    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1072	return(error);
1073
1074    return((status == 0) ? 0 : EIO);
1075}
1076
1077/********************************************************************************
1078 * Perform an ioctl command.
1079 *
1080 * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1081 * the command requires data transfer from the controller, and we will allocate
1082 * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1083 * to the controller.
1084 *
1085 * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1086 *
1087 * XXX we don't even try to handle the case where datasize > 4k.  We should.
1088 */
1089static int
1090mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1091	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1092{
1093    struct mly_command		*mc;
1094    struct mly_command_ioctl	*mci;
1095    int				error;
1096
1097    debug_called(1);
1098
1099    mc = NULL;
1100    if (mly_alloc_command(sc, &mc)) {
1101	error = ENOMEM;
1102	goto out;
1103    }
1104
1105    /* copy the ioctl structure, but save some important fields and then fixup */
1106    mci = &mc->mc_packet->ioctl;
1107    ioctl->sense_buffer_address = mci->sense_buffer_address;
1108    ioctl->maximum_sense_size = mci->maximum_sense_size;
1109    *mci = *ioctl;
1110    mci->opcode = MDACMD_IOCTL;
1111    mci->timeout.value = 30;
1112    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1113
1114    /* handle the data buffer */
1115    if (data != NULL) {
1116	if (*data == NULL) {
1117	    /* allocate data buffer */
1118	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1119		error = ENOMEM;
1120		goto out;
1121	    }
1122	    mc->mc_flags |= MLY_CMD_DATAIN;
1123	} else {
1124	    mc->mc_data = *data;
1125	    mc->mc_flags |= MLY_CMD_DATAOUT;
1126	}
1127	mc->mc_length = datasize;
1128	mc->mc_packet->generic.data_size = datasize;
1129    }
1130
1131    /* run the command */
1132    if ((error = mly_immediate_command(mc)))
1133	goto out;
1134
1135    /* clean up and return any data */
1136    *status = mc->mc_status;
1137    if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1138	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1139	*sense_length = mc->mc_sense;
1140	goto out;
1141    }
1142
1143    /* should we return a data pointer? */
1144    if ((data != NULL) && (*data == NULL))
1145	*data = mc->mc_data;
1146
1147    /* command completed OK */
1148    error = 0;
1149
1150out:
1151    if (mc != NULL) {
1152	/* do we need to free a data buffer we allocated? */
1153	if (error && (mc->mc_data != NULL) && (*data == NULL))
1154	    free(mc->mc_data, M_DEVBUF);
1155	mly_release_command(mc);
1156    }
1157    return(error);
1158}
1159
1160/********************************************************************************
1161 * Check for event(s) outstanding in the controller.
1162 */
1163static void
1164mly_check_event(struct mly_softc *sc)
1165{
1166
1167    /*
1168     * The controller may have updated the health status information,
1169     * so check for it here.  Note that the counters are all in host memory,
1170     * so this check is very cheap.  Also note that we depend on checking on
1171     * completion
1172     */
1173    if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1174	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1175	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1176	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1177	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1178
1179	/* wake up anyone that might be interested in this */
1180	wakeup(&sc->mly_event_change);
1181    }
1182    if (sc->mly_event_counter != sc->mly_event_waiting)
1183    mly_fetch_event(sc);
1184}
1185
1186/********************************************************************************
1187 * Fetch one event from the controller.
1188 *
1189 * If we fail due to resource starvation, we'll be retried the next time a
1190 * command completes.
1191 */
1192static void
1193mly_fetch_event(struct mly_softc *sc)
1194{
1195    struct mly_command		*mc;
1196    struct mly_command_ioctl	*mci;
1197    int				s;
1198    u_int32_t			event;
1199
1200    debug_called(1);
1201
1202    /* get a command */
1203    if (mly_alloc_command(sc, &mc))
1204	return;
1205
1206    /* set up the data buffer */
1207    if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1208	mly_release_command(mc);
1209	return;
1210    }
1211    mc->mc_length = sizeof(struct mly_event);
1212    mc->mc_flags |= MLY_CMD_DATAIN;
1213    mc->mc_complete = mly_complete_event;
1214
1215    /*
1216     * Get an event number to fetch.  It's possible that we've raced with another
1217     * context for the last event, in which case there will be no more events.
1218     */
1219    s = splcam();
1220    if (sc->mly_event_counter == sc->mly_event_waiting) {
1221	mly_release_command(mc);
1222	splx(s);
1223	return;
1224    }
1225    event = sc->mly_event_counter++;
1226    splx(s);
1227
1228    /*
1229     * Build the ioctl.
1230     *
1231     * At this point we are committed to sending this request, as it
1232     * will be the only one constructed for this particular event number.
1233     */
1234    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1235    mci->opcode = MDACMD_IOCTL;
1236    mci->data_size = sizeof(struct mly_event);
1237    mci->addr.phys.lun = (event >> 16) & 0xff;
1238    mci->addr.phys.target = (event >> 24) & 0xff;
1239    mci->addr.phys.channel = 0;
1240    mci->addr.phys.controller = 0;
1241    mci->timeout.value = 30;
1242    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1243    mci->sub_ioctl = MDACIOCTL_GETEVENT;
1244    mci->param.getevent.sequence_number_low = event & 0xffff;
1245
1246    debug(1, "fetch event %u", event);
1247
1248    /*
1249     * Submit the command.
1250     *
1251     * Note that failure of mly_start() will result in this event never being
1252     * fetched.
1253     */
1254    if (mly_start(mc) != 0) {
1255	mly_printf(sc, "couldn't fetch event %u\n", event);
1256	mly_release_command(mc);
1257    }
1258}
1259
1260/********************************************************************************
1261 * Handle the completion of an event poll.
1262 */
1263static void
1264mly_complete_event(struct mly_command *mc)
1265{
1266    struct mly_softc	*sc = mc->mc_sc;
1267    struct mly_event	*me = (struct mly_event *)mc->mc_data;
1268
1269    debug_called(1);
1270
1271    /*
1272     * If the event was successfully fetched, process it.
1273     */
1274    if (mc->mc_status == SCSI_STATUS_OK) {
1275	mly_process_event(sc, me);
1276	free(me, M_DEVBUF);
1277    }
1278    mly_release_command(mc);
1279
1280    /*
1281     * Check for another event.
1282     */
1283    mly_check_event(sc);
1284}
1285
1286/********************************************************************************
1287 * Process a controller event.
1288 */
1289static void
1290mly_process_event(struct mly_softc *sc, struct mly_event *me)
1291{
1292    struct scsi_sense_data	*ssd = (struct scsi_sense_data *)&me->sense[0];
1293    char			*fp, *tp;
1294    int				bus, target, event, class, action;
1295
1296    /*
1297     * Errors can be reported using vendor-unique sense data.  In this case, the
1298     * event code will be 0x1c (Request sense data present), the sense key will
1299     * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1300     * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1301     * and low seven bits of the ASC (low seven bits of the high byte).
1302     */
1303    if ((me->code == 0x1c) &&
1304	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1305	(ssd->add_sense_code & 0x80)) {
1306	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1307    } else {
1308	event = me->code;
1309    }
1310
1311    /* look up event, get codes */
1312    fp = mly_describe_code(mly_table_event, event);
1313
1314    debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1315
1316    /* quiet event? */
1317    class = fp[0];
1318    if (isupper(class) && bootverbose)
1319	class = tolower(class);
1320
1321    /* get action code, text string */
1322    action = fp[1];
1323    tp = &fp[2];
1324
1325    /*
1326     * Print some information about the event.
1327     *
1328     * This code uses a table derived from the corresponding portion of the Linux
1329     * driver, and thus the parser is very similar.
1330     */
1331    switch(class) {
1332    case 'p':		/* error on physical device */
1333	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1334	if (action == 'r')
1335	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1336	break;
1337    case 'l':		/* error on logical unit */
1338    case 'm':		/* message about logical unit */
1339	bus = MLY_LOGDEV_BUS(sc, me->lun);
1340	target = MLY_LOGDEV_TARGET(sc, me->lun);
1341	mly_name_device(sc, bus, target);
1342	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1343	if (action == 'r')
1344	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1345	break;
1346      break;
1347    case 's':		/* report of sense data */
1348	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1349	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1350	     (ssd->add_sense_code == 0x04) &&
1351	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1352	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1353
1354	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1355	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1356		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1357	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1358	if (action == 'r')
1359	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1360	break;
1361    case 'e':
1362	mly_printf(sc, tp, me->target, me->lun);
1363	break;
1364    case 'c':
1365	mly_printf(sc, "controller %s\n", tp);
1366	break;
1367    case '?':
1368	mly_printf(sc, "%s - %d\n", tp, me->code);
1369	break;
1370    default:	/* probably a 'noisy' event being ignored */
1371	break;
1372    }
1373}
1374
1375/********************************************************************************
1376 * Perform periodic activities.
1377 */
1378static void
1379mly_periodic(void *data)
1380{
1381    struct mly_softc	*sc = (struct mly_softc *)data;
1382    int			bus, target;
1383
1384    debug_called(2);
1385
1386    /*
1387     * Scan devices.
1388     */
1389    for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1390	if (MLY_BUS_IS_VALID(sc, bus)) {
1391	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1392
1393		/* ignore the controller in this scan */
1394		if (target == sc->mly_controllerparam->initiator_id)
1395		    continue;
1396
1397		/* perform device rescan? */
1398		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1399		    mly_rescan_btl(sc, bus, target);
1400	    }
1401	}
1402    }
1403
1404    /* check for controller events */
1405    mly_check_event(sc);
1406
1407    /* reschedule ourselves */
1408    sc->mly_periodic = timeout(mly_periodic, sc, MLY_PERIODIC_INTERVAL * hz);
1409}
1410
1411/********************************************************************************
1412 ********************************************************************************
1413                                                               Command Processing
1414 ********************************************************************************
1415 ********************************************************************************/
1416
1417/********************************************************************************
1418 * Run a command and wait for it to complete.
1419 *
1420 */
1421static int
1422mly_immediate_command(struct mly_command *mc)
1423{
1424    struct mly_softc	*sc = mc->mc_sc;
1425    int			error, s;
1426
1427    debug_called(1);
1428
1429    /* spinning at splcam is ugly, but we're only used during controller init */
1430    s = splcam();
1431    if ((error = mly_start(mc))) {
1432	splx(s);
1433	return(error);
1434    }
1435
1436    if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1437	/* sleep on the command */
1438	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1439	    tsleep(mc, PRIBIO, "mlywait", 0);
1440	}
1441    } else {
1442	/* spin and collect status while we do */
1443	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1444	    mly_done(mc->mc_sc);
1445	}
1446    }
1447    splx(s);
1448    return(0);
1449}
1450
1451/********************************************************************************
1452 * Deliver a command to the controller.
1453 *
1454 * XXX it would be good to just queue commands that we can't submit immediately
1455 *     and send them later, but we probably want a wrapper for that so that
1456 *     we don't hang on a failed submission for an immediate command.
1457 */
1458static int
1459mly_start(struct mly_command *mc)
1460{
1461    struct mly_softc		*sc = mc->mc_sc;
1462    union mly_command_packet	*pkt;
1463    int				s;
1464
1465    debug_called(2);
1466
1467    /*
1468     * Set the command up for delivery to the controller.
1469     */
1470    mly_map_command(mc);
1471    mc->mc_packet->generic.command_id = mc->mc_slot;
1472
1473    s = splcam();
1474
1475    /*
1476     * Do we have to use the hardware mailbox?
1477     */
1478    if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1479	/*
1480	 * Check to see if the controller is ready for us.
1481	 */
1482	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1483	    splx(s);
1484	    return(EBUSY);
1485	}
1486	mc->mc_flags |= MLY_CMD_BUSY;
1487
1488	/*
1489	 * It's ready, send the command.
1490	 */
1491	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1492	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1493
1494    } else {	/* use memory-mailbox mode */
1495
1496	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1497
1498	/* check to see if the next index is free yet */
1499	if (pkt->mmbox.flag != 0) {
1500	    splx(s);
1501	    return(EBUSY);
1502	}
1503	mc->mc_flags |= MLY_CMD_BUSY;
1504
1505	/* copy in new command */
1506	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1507	/* barrier to ensure completion of previous write before we write the flag */
1508	bus_space_barrier(NULL, NULL, 0, 0, BUS_SPACE_BARRIER_WRITE);	/* tag/handle? */
1509	/* copy flag last */
1510	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1511	/* barrier to ensure completion of previous write before we notify the controller */
1512	bus_space_barrier(NULL, NULL, 0, 0, BUS_SPACE_BARRIER_WRITE);	/* tag/handle */
1513
1514	/* signal controller, update index */
1515	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1516	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1517    }
1518
1519    mly_enqueue_busy(mc);
1520    splx(s);
1521    return(0);
1522}
1523
1524/********************************************************************************
1525 * Pick up command status from the controller, schedule a completion event
1526 */
1527void
1528mly_done(struct mly_softc *sc)
1529{
1530    struct mly_command		*mc;
1531    union mly_status_packet	*sp;
1532    u_int16_t			slot;
1533    int				s, worked;
1534
1535    s = splcam();
1536    worked = 0;
1537
1538    /* pick up hardware-mailbox commands */
1539    if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1540	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1541	if (slot < MLY_SLOT_MAX) {
1542	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1543	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1544	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1545	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1546	    mly_remove_busy(mc);
1547	    mc->mc_flags &= ~MLY_CMD_BUSY;
1548	    mly_enqueue_complete(mc);
1549	    worked = 1;
1550	} else {
1551	    /* slot 0xffff may mean "extremely bogus command" */
1552	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1553	}
1554	/* unconditionally acknowledge status */
1555	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1556	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1557    }
1558
1559    /* pick up memory-mailbox commands */
1560    if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1561	for (;;) {
1562	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1563
1564	    /* check for more status */
1565	    if (sp->mmbox.flag == 0)
1566		break;
1567
1568	    /* get slot number */
1569	    slot = sp->status.command_id;
1570	    if (slot < MLY_SLOT_MAX) {
1571		mc = &sc->mly_command[slot - MLY_SLOT_START];
1572		mc->mc_status = sp->status.status;
1573		mc->mc_sense = sp->status.sense_length;
1574		mc->mc_resid = sp->status.residue;
1575		mly_remove_busy(mc);
1576		mc->mc_flags &= ~MLY_CMD_BUSY;
1577		mly_enqueue_complete(mc);
1578		worked = 1;
1579	    } else {
1580		/* slot 0xffff may mean "extremely bogus command" */
1581		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1582			   slot, sc->mly_mmbox_status_index);
1583	    }
1584
1585	    /* clear and move to next index */
1586	    sp->mmbox.flag = 0;
1587	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1588	}
1589	/* acknowledge that we have collected status value(s) */
1590	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1591    }
1592
1593    splx(s);
1594    if (worked) {
1595#if __FreeBSD_version >= 500005
1596	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1597	    taskqueue_enqueue(taskqueue_swi, &sc->mly_task_complete);
1598	else
1599#endif
1600	    mly_complete(sc, 0);
1601    }
1602}
1603
1604/********************************************************************************
1605 * Process completed commands
1606 */
1607static void
1608mly_complete(void *context, int pending)
1609{
1610    struct mly_softc	*sc = (struct mly_softc *)context;
1611    struct mly_command	*mc;
1612    void	        (* mc_complete)(struct mly_command *mc);
1613
1614
1615    debug_called(2);
1616
1617    /*
1618     * Spin pulling commands off the completed queue and processing them.
1619     */
1620    while ((mc = mly_dequeue_complete(sc)) != NULL) {
1621
1622	/*
1623	 * Free controller resources, mark command complete.
1624	 *
1625	 * Note that as soon as we mark the command complete, it may be freed
1626	 * out from under us, so we need to save the mc_complete field in
1627	 * order to later avoid dereferencing mc.  (We would not expect to
1628	 * have a polling/sleeping consumer with mc_complete != NULL).
1629	 */
1630	mly_unmap_command(mc);
1631	mc_complete = mc->mc_complete;
1632	mc->mc_flags |= MLY_CMD_COMPLETE;
1633
1634	/*
1635	 * Call completion handler or wake up sleeping consumer.
1636	 */
1637	if (mc_complete != NULL) {
1638	    mc_complete(mc);
1639	} else {
1640	    wakeup(mc);
1641	}
1642    }
1643
1644    /*
1645     * XXX if we are deferring commands due to controller-busy status, we should
1646     *     retry submitting them here.
1647     */
1648}
1649
1650/********************************************************************************
1651 ********************************************************************************
1652                                                        Command Buffer Management
1653 ********************************************************************************
1654 ********************************************************************************/
1655
1656/********************************************************************************
1657 * Allocate a command.
1658 */
1659int
1660mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1661{
1662    struct mly_command	*mc;
1663
1664    debug_called(3);
1665
1666    if ((mc = mly_dequeue_free(sc)) == NULL)
1667	return(ENOMEM);
1668
1669    *mcp = mc;
1670    return(0);
1671}
1672
1673/********************************************************************************
1674 * Release a command back to the freelist.
1675 */
1676void
1677mly_release_command(struct mly_command *mc)
1678{
1679    debug_called(3);
1680
1681    /*
1682     * Fill in parts of the command that may cause confusion if
1683     * a consumer doesn't when we are later allocated.
1684     */
1685    mc->mc_data = NULL;
1686    mc->mc_flags = 0;
1687    mc->mc_complete = NULL;
1688    mc->mc_private = NULL;
1689
1690    /*
1691     * By default, we set up to overwrite the command packet with
1692     * sense information.
1693     */
1694    mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1695    mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1696
1697    mly_enqueue_free(mc);
1698}
1699
1700/********************************************************************************
1701 * Map helper for command allocation.
1702 */
1703static void
1704mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1705{
1706    struct mly_softc	*sc = (struct mly_softc *)arg;
1707
1708    debug_called(1);
1709
1710    sc->mly_packetphys = segs[0].ds_addr;
1711}
1712
1713/********************************************************************************
1714 * Allocate and initialise command and packet structures.
1715 *
1716 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1717 * allocation to that number.  If we don't yet know how many commands the
1718 * controller supports, allocate a very small set (suitable for initialisation
1719 * purposes only).
1720 */
1721static int
1722mly_alloc_commands(struct mly_softc *sc)
1723{
1724    struct mly_command		*mc;
1725    int				i, ncmd;
1726
1727    if (sc->mly_controllerinfo == NULL) {
1728	ncmd = 4;
1729    } else {
1730	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1731    }
1732
1733    /*
1734     * Allocate enough space for all the command packets in one chunk and
1735     * map them permanently into controller-visible space.
1736     */
1737    if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1738			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1739	return(ENOMEM);
1740    }
1741    bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1742		    ncmd * sizeof(union mly_command_packet),
1743		    mly_alloc_commands_map, sc, 0);
1744
1745    for (i = 0; i < ncmd; i++) {
1746	mc = &sc->mly_command[i];
1747	bzero(mc, sizeof(*mc));
1748	mc->mc_sc = sc;
1749	mc->mc_slot = MLY_SLOT_START + i;
1750	mc->mc_packet = sc->mly_packet + i;
1751	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1752	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1753	    mly_release_command(mc);
1754    }
1755    return(0);
1756}
1757
1758/********************************************************************************
1759 * Free all the storage held by commands.
1760 *
1761 * Must be called with all commands on the free list.
1762 */
1763static void
1764mly_release_commands(struct mly_softc *sc)
1765{
1766    struct mly_command	*mc;
1767
1768    /* throw away command buffer DMA maps */
1769    while (mly_alloc_command(sc, &mc) == 0)
1770	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1771
1772    /* release the packet storage */
1773    if (sc->mly_packet != NULL) {
1774	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1775	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1776	sc->mly_packet = NULL;
1777    }
1778}
1779
1780
1781/********************************************************************************
1782 * Command-mapping helper function - populate this command's s/g table
1783 * with the s/g entries for its data.
1784 */
1785static void
1786mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1787{
1788    struct mly_command		*mc = (struct mly_command *)arg;
1789    struct mly_softc		*sc = mc->mc_sc;
1790    struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1791    struct mly_sg_entry		*sg;
1792    int				i, tabofs;
1793
1794    debug_called(2);
1795
1796    /* can we use the transfer structure directly? */
1797    if (nseg <= 2) {
1798	sg = &gen->transfer.direct.sg[0];
1799	gen->command_control.extended_sg_table = 0;
1800    } else {
1801	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1802	sg = sc->mly_sg_table + tabofs;
1803	gen->transfer.indirect.entries[0] = nseg;
1804	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1805	gen->command_control.extended_sg_table = 1;
1806    }
1807
1808    /* copy the s/g table */
1809    for (i = 0; i < nseg; i++) {
1810	sg[i].physaddr = segs[i].ds_addr;
1811	sg[i].length = segs[i].ds_len;
1812    }
1813
1814}
1815
1816#if 0
1817/********************************************************************************
1818 * Command-mapping helper function - save the cdb's physical address.
1819 *
1820 * We don't support 'large' SCSI commands at this time, so this is unused.
1821 */
1822static void
1823mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1824{
1825    struct mly_command			*mc = (struct mly_command *)arg;
1826
1827    debug_called(2);
1828
1829    /* XXX can we safely assume that a CDB will never cross a page boundary? */
1830    if ((segs[0].ds_addr % PAGE_SIZE) >
1831	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1832	panic("cdb crosses page boundary");
1833
1834    /* fix up fields in the command packet */
1835    mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1836}
1837#endif
1838
1839/********************************************************************************
1840 * Map a command into controller-visible space
1841 */
1842static void
1843mly_map_command(struct mly_command *mc)
1844{
1845    struct mly_softc	*sc = mc->mc_sc;
1846
1847    debug_called(2);
1848
1849    /* don't map more than once */
1850    if (mc->mc_flags & MLY_CMD_MAPPED)
1851	return;
1852
1853    /* does the command have a data buffer? */
1854    if (mc->mc_data != NULL) {
1855	bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length,
1856			mly_map_command_sg, mc, 0);
1857
1858	if (mc->mc_flags & MLY_CMD_DATAIN)
1859	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1860	if (mc->mc_flags & MLY_CMD_DATAOUT)
1861	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1862    }
1863    mc->mc_flags |= MLY_CMD_MAPPED;
1864}
1865
1866/********************************************************************************
1867 * Unmap a command from controller-visible space
1868 */
1869static void
1870mly_unmap_command(struct mly_command *mc)
1871{
1872    struct mly_softc	*sc = mc->mc_sc;
1873
1874    debug_called(2);
1875
1876    if (!(mc->mc_flags & MLY_CMD_MAPPED))
1877	return;
1878
1879    /* does the command have a data buffer? */
1880    if (mc->mc_data != NULL) {
1881	if (mc->mc_flags & MLY_CMD_DATAIN)
1882	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1883	if (mc->mc_flags & MLY_CMD_DATAOUT)
1884	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1885
1886	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1887    }
1888    mc->mc_flags &= ~MLY_CMD_MAPPED;
1889}
1890
1891
1892/********************************************************************************
1893 ********************************************************************************
1894                                                                    CAM interface
1895 ********************************************************************************
1896 ********************************************************************************/
1897
1898/********************************************************************************
1899 * Attach the physical and virtual SCSI busses to CAM.
1900 *
1901 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1902 * than the highest physical bus.  Physical busses are only registered if
1903 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1904 *
1905 * When we refer to a "bus", we are referring to the bus number registered with
1906 * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1907 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1908 * interchangeably.
1909 */
1910int
1911mly_cam_attach(struct mly_softc *sc)
1912{
1913    struct cam_devq	*devq;
1914    int			chn, i;
1915
1916    debug_called(1);
1917
1918    /*
1919     * Allocate a devq for all our channels combined.
1920     */
1921    if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1922	mly_printf(sc, "can't allocate CAM SIM queue\n");
1923	return(ENOMEM);
1924    }
1925
1926    /*
1927     * If physical channel registration has been requested, register these first.
1928     * Note that we enable tagged command queueing for physical channels.
1929     */
1930    if (getenv("hw.mly.register_physical_channels") != NULL) {
1931	chn = 0;
1932	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1933
1934	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1935						      device_get_unit(sc->mly_dev),
1936						      sc->mly_controllerinfo->maximum_parallel_commands,
1937						      1, devq)) == NULL) {
1938		return(ENOMEM);
1939	    }
1940	    if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1941		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1942		return(ENXIO);
1943	    }
1944	    debug(1, "registered physical channel %d", chn);
1945	}
1946    }
1947
1948    /*
1949     * Register our virtual channels, with bus numbers matching channel numbers.
1950     */
1951    chn = sc->mly_controllerinfo->physical_channels_present;
1952    for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1953	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1954						  device_get_unit(sc->mly_dev),
1955						  sc->mly_controllerinfo->maximum_parallel_commands,
1956						  0, devq)) == NULL) {
1957	    return(ENOMEM);
1958	}
1959	if (xpt_bus_register(sc->mly_cam_sim[chn], chn)) {
1960	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1961	    return(ENXIO);
1962	}
1963	debug(1, "registered virtual channel %d", chn);
1964    }
1965
1966    /*
1967     * This is the total number of channels that (might have been) registered with
1968     * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1969     */
1970    sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1971	sc->mly_controllerinfo->virtual_channels_present;
1972
1973    return(0);
1974}
1975
1976/********************************************************************************
1977 * Detach from CAM
1978 */
1979void
1980mly_cam_detach(struct mly_softc *sc)
1981{
1982    int		i;
1983
1984    debug_called(1);
1985
1986    for (i = 0; i < sc->mly_cam_channels; i++) {
1987	if (sc->mly_cam_sim[i] != NULL) {
1988	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1989	    cam_sim_free(sc->mly_cam_sim[i], 0);
1990	}
1991    }
1992    if (sc->mly_cam_devq != NULL)
1993	cam_simq_free(sc->mly_cam_devq);
1994}
1995
1996/************************************************************************
1997 * Rescan a device.
1998 */
1999static void
2000mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2001{
2002    union ccb	*ccb;
2003
2004    debug_called(1);
2005
2006    if ((ccb = malloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO)) == NULL) {
2007	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2008	return;
2009    }
2010
2011    if (xpt_create_path(&sc->mly_cam_path, xpt_periph,
2012			cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2013	mly_printf(sc, "rescan failed (can't create path)\n");
2014	return;
2015    }
2016    xpt_setup_ccb(&ccb->ccb_h, sc->mly_cam_path, 5/*priority (low)*/);
2017    ccb->ccb_h.func_code = XPT_SCAN_LUN;
2018    ccb->ccb_h.cbfcnp = mly_cam_rescan_callback;
2019    ccb->crcn.flags = CAM_FLAG_NONE;
2020    debug(1, "rescan target %d:%d", bus, target);
2021    xpt_action(ccb);
2022}
2023
2024static void
2025mly_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
2026{
2027    free(ccb, M_TEMP);
2028}
2029
2030/********************************************************************************
2031 * Handle an action requested by CAM
2032 */
2033static void
2034mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2035{
2036    struct mly_softc	*sc = cam_sim_softc(sim);
2037
2038    debug_called(2);
2039
2040    switch (ccb->ccb_h.func_code) {
2041
2042	/* perform SCSI I/O */
2043    case XPT_SCSI_IO:
2044	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2045	    return;
2046	break;
2047
2048	/* perform geometry calculations */
2049    case XPT_CALC_GEOMETRY:
2050    {
2051	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2052        u_int32_t			secs_per_cylinder;
2053
2054	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2055
2056	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2057	    ccg->heads = 255;
2058            ccg->secs_per_track = 63;
2059	} else {				/* MLY_BIOSGEOM_2G */
2060	    ccg->heads = 128;
2061            ccg->secs_per_track = 32;
2062	}
2063	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2064        ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2065        ccb->ccb_h.status = CAM_REQ_CMP;
2066        break;
2067    }
2068
2069	/* handle path attribute inquiry */
2070    case XPT_PATH_INQ:
2071    {
2072	struct ccb_pathinq	*cpi = &ccb->cpi;
2073
2074	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2075
2076	cpi->version_num = 1;
2077	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2078	cpi->target_sprt = 0;
2079	cpi->hba_misc = 0;
2080	cpi->max_target = MLY_MAX_TARGETS - 1;
2081	cpi->max_lun = MLY_MAX_LUNS - 1;
2082	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2083	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2084        strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2085        strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2086        cpi->unit_number = cam_sim_unit(sim);
2087        cpi->bus_id = cam_sim_bus(sim);
2088	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2089	ccb->ccb_h.status = CAM_REQ_CMP;
2090	break;
2091    }
2092
2093    case XPT_GET_TRAN_SETTINGS:
2094    {
2095	struct ccb_trans_settings	*cts = &ccb->cts;
2096	int				bus, target;
2097
2098	bus = cam_sim_bus(sim);
2099	target = cts->ccb_h.target_id;
2100	/* XXX validate bus/target? */
2101
2102	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2103	cts->valid = 0;
2104
2105	/* logical device? */
2106	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2107	    /* nothing special for these */
2108
2109	/* physical device? */
2110	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2111	    /* allow CAM to try tagged transactions */
2112	    cts->flags |= CCB_TRANS_TAG_ENB;
2113	    cts->valid |= CCB_TRANS_TQ_VALID;
2114
2115	    /* convert speed (MHz) to usec */
2116	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2117		cts->sync_period = 1000000 / 5;
2118	    } else {
2119		cts->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2120	    }
2121
2122	    /* convert bus width to CAM internal encoding */
2123	    switch (sc->mly_btl[bus][target].mb_width) {
2124	    case 32:
2125		cts->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2126		break;
2127	    case 16:
2128		cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2129		break;
2130	    case 8:
2131	    default:
2132		cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2133		break;
2134	    }
2135	    cts->valid |= CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_BUS_WIDTH_VALID;
2136
2137	    /* not a device, bail out */
2138	} else {
2139	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2140	    break;
2141	}
2142
2143	/* disconnect always OK */
2144	cts->flags |= CCB_TRANS_DISC_ENB;
2145	cts->valid |= CCB_TRANS_DISC_VALID;
2146
2147	cts->ccb_h.status = CAM_REQ_CMP;
2148	break;
2149    }
2150
2151    default:		/* we can't do this */
2152	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2153	ccb->ccb_h.status = CAM_REQ_INVALID;
2154	break;
2155    }
2156
2157    xpt_done(ccb);
2158}
2159
2160/********************************************************************************
2161 * Handle an I/O operation requested by CAM
2162 */
2163static int
2164mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2165{
2166    struct mly_softc			*sc = cam_sim_softc(sim);
2167    struct mly_command			*mc;
2168    struct mly_command_scsi_small	*ss;
2169    int					bus, target;
2170    int					error;
2171
2172    bus = cam_sim_bus(sim);
2173    target = csio->ccb_h.target_id;
2174
2175    debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2176
2177    /* validate bus number */
2178    if (!MLY_BUS_IS_VALID(sc, bus)) {
2179	debug(0, " invalid bus %d", bus);
2180	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2181    }
2182
2183    /*  check for I/O attempt to a protected device */
2184    if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2185	debug(2, "  device protected");
2186	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2187    }
2188
2189    /* check for I/O attempt to nonexistent device */
2190    if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2191	debug(2, "  device %d:%d does not exist", bus, target);
2192	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2193    }
2194
2195    /* XXX increase if/when we support large SCSI commands */
2196    if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2197	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2198	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2199    }
2200
2201    /* check that the CDB pointer is not to a physical address */
2202    if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2203	debug(0, "  CDB pointer is to physical address");
2204	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2205    }
2206
2207    /* if there is data transfer, it must be to/from a virtual address */
2208    if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
2209	if (csio->ccb_h.flags & CAM_DATA_PHYS) {		/* we can't map it */
2210	    debug(0, "  data pointer is to physical address");
2211	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2212	}
2213	if (csio->ccb_h.flags & CAM_SCATTER_VALID) {	/* we want to do the s/g setup */
2214	    debug(0, "  data has premature s/g setup");
2215	    csio->ccb_h.status = CAM_REQ_CMP_ERR;
2216	}
2217    }
2218
2219    /* abandon aborted ccbs or those that have failed validation */
2220    if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2221	debug(2, "abandoning CCB due to abort/validation failure");
2222	return(EINVAL);
2223    }
2224
2225    /*
2226     * Get a command, or push the ccb back to CAM and freeze the queue.
2227     */
2228    if ((error = mly_alloc_command(sc, &mc))) {
2229	xpt_freeze_simq(sim, 1);
2230	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2231	return(error);
2232    }
2233
2234    /* build the command */
2235    mc->mc_data = csio->data_ptr;
2236    mc->mc_length = csio->dxfer_len;
2237    mc->mc_complete = mly_cam_complete;
2238    mc->mc_private = csio;
2239
2240    /* save the bus number in the ccb for later recovery XXX should be a better way */
2241     csio->ccb_h.sim_priv.entries[0].field = bus;
2242
2243    /* build the packet for the controller */
2244    ss = &mc->mc_packet->scsi_small;
2245    ss->opcode = MDACMD_SCSI;
2246    if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2247	ss->command_control.disable_disconnect = 1;
2248    if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2249	ss->command_control.data_direction = MLY_CCB_WRITE;
2250    ss->data_size = csio->dxfer_len;
2251    ss->addr.phys.lun = csio->ccb_h.target_lun;
2252    ss->addr.phys.target = csio->ccb_h.target_id;
2253    ss->addr.phys.channel = bus;
2254    if (csio->ccb_h.timeout < (60 * 1000)) {
2255	ss->timeout.value = csio->ccb_h.timeout / 1000;
2256	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2257    } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2258	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2259	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2260    } else {
2261	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2262	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2263    }
2264    ss->maximum_sense_size = csio->sense_len;
2265    ss->cdb_length = csio->cdb_len;
2266    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2267	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2268    } else {
2269	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2270    }
2271
2272    /* give the command to the controller */
2273    if ((error = mly_start(mc))) {
2274	xpt_freeze_simq(sim, 1);
2275	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2276	return(error);
2277    }
2278
2279    return(0);
2280}
2281
2282/********************************************************************************
2283 * Check for possibly-completed commands.
2284 */
2285static void
2286mly_cam_poll(struct cam_sim *sim)
2287{
2288    struct mly_softc	*sc = cam_sim_softc(sim);
2289
2290    debug_called(2);
2291
2292    mly_done(sc);
2293}
2294
2295/********************************************************************************
2296 * Handle completion of a command - pass results back through the CCB
2297 */
2298static void
2299mly_cam_complete(struct mly_command *mc)
2300{
2301    struct mly_softc		*sc = mc->mc_sc;
2302    struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2303    struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2304    struct mly_btl		*btl;
2305    u_int8_t			cmd;
2306    int				bus, target;
2307
2308    debug_called(2);
2309
2310    csio->scsi_status = mc->mc_status;
2311    switch(mc->mc_status) {
2312    case SCSI_STATUS_OK:
2313	/*
2314	 * In order to report logical device type and status, we overwrite
2315	 * the result of the INQUIRY command to logical devices.
2316	 */
2317	bus = csio->ccb_h.sim_priv.entries[0].field;
2318	target = csio->ccb_h.target_id;
2319	/* XXX validate bus/target? */
2320	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2321	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2322		cmd = *csio->cdb_io.cdb_ptr;
2323	    } else {
2324		cmd = csio->cdb_io.cdb_bytes[0];
2325	    }
2326	    if (cmd == INQUIRY) {
2327		btl = &sc->mly_btl[bus][target];
2328		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2329		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2330		padstr(inq->revision, "", 4);
2331	    }
2332	}
2333
2334	debug(2, "SCSI_STATUS_OK");
2335	csio->ccb_h.status = CAM_REQ_CMP;
2336	break;
2337
2338    case SCSI_STATUS_CHECK_COND:
2339	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2340	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2341	bzero(&csio->sense_data, SSD_FULL_SIZE);
2342	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2343	csio->sense_len = mc->mc_sense;
2344	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2345	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2346	break;
2347
2348    case SCSI_STATUS_BUSY:
2349	debug(1, "SCSI_STATUS_BUSY");
2350	csio->ccb_h.status = CAM_SCSI_BUSY;
2351	break;
2352
2353    default:
2354	debug(1, "unknown status 0x%x", csio->scsi_status);
2355	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2356	break;
2357    }
2358    xpt_done((union ccb *)csio);
2359    mly_release_command(mc);
2360}
2361
2362/********************************************************************************
2363 * Find a peripheral attahed at (bus),(target)
2364 */
2365static struct cam_periph *
2366mly_find_periph(struct mly_softc *sc, int bus, int target)
2367{
2368    struct cam_periph	*periph;
2369    struct cam_path	*path;
2370    int			status;
2371
2372    status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2373    if (status == CAM_REQ_CMP) {
2374	periph = cam_periph_find(path, NULL);
2375	xpt_free_path(path);
2376    } else {
2377	periph = NULL;
2378    }
2379    return(periph);
2380}
2381
2382/********************************************************************************
2383 * Name the device at (bus)(target)
2384 */
2385int
2386mly_name_device(struct mly_softc *sc, int bus, int target)
2387{
2388    struct cam_periph	*periph;
2389
2390    if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2391	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2392	return(0);
2393    }
2394    sc->mly_btl[bus][target].mb_name[0] = 0;
2395    return(ENOENT);
2396}
2397
2398/********************************************************************************
2399 ********************************************************************************
2400                                                                 Hardware Control
2401 ********************************************************************************
2402 ********************************************************************************/
2403
2404/********************************************************************************
2405 * Handshake with the firmware while the card is being initialised.
2406 */
2407static int
2408mly_fwhandshake(struct mly_softc *sc)
2409{
2410    u_int8_t	error, param0, param1;
2411    int		spinup = 0;
2412
2413    debug_called(1);
2414
2415    /* set HM_STSACK and let the firmware initialise */
2416    MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2417    DELAY(1000);	/* too short? */
2418
2419    /* if HM_STSACK is still true, the controller is initialising */
2420    if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2421	return(0);
2422    mly_printf(sc, "controller initialisation started\n");
2423
2424    /* spin waiting for initialisation to finish, or for a message to be delivered */
2425    while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2426	/* check for a message */
2427	if (MLY_ERROR_VALID(sc)) {
2428	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2429	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2430	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2431
2432	    switch(error) {
2433	    case MLY_MSG_SPINUP:
2434		if (!spinup) {
2435		    mly_printf(sc, "drive spinup in progress\n");
2436		    spinup = 1;			/* only print this once (should print drive being spun?) */
2437		}
2438		break;
2439	    case MLY_MSG_RACE_RECOVERY_FAIL:
2440		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2441		break;
2442	    case MLY_MSG_RACE_IN_PROGRESS:
2443		mly_printf(sc, "mirror race recovery in progress\n");
2444		break;
2445	    case MLY_MSG_RACE_ON_CRITICAL:
2446		mly_printf(sc, "mirror race recovery on a critical drive\n");
2447		break;
2448	    case MLY_MSG_PARITY_ERROR:
2449		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2450		return(ENXIO);
2451	    default:
2452		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2453	    }
2454	}
2455    }
2456    return(0);
2457}
2458
2459/********************************************************************************
2460 ********************************************************************************
2461                                                        Debugging and Diagnostics
2462 ********************************************************************************
2463 ********************************************************************************/
2464
2465/********************************************************************************
2466 * Print some information about the controller.
2467 */
2468static void
2469mly_describe_controller(struct mly_softc *sc)
2470{
2471    struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2472
2473    mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2474	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2475	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2476	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2477	       mi->memory_size);
2478
2479    if (bootverbose) {
2480	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2481		   mly_describe_code(mly_table_oemname, mi->oem_information),
2482		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2483		   mi->interface_speed, mi->interface_width, mi->interface_name);
2484	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2485		   mi->memory_size, mi->memory_speed, mi->memory_width,
2486		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2487		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2488		   mi->cache_size);
2489	mly_printf(sc, "CPU: %s @ %dMHZ\n",
2490		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2491	if (mi->l2cache_size != 0)
2492	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2493	if (mi->exmemory_size != 0)
2494	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2495		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2496		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2497		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2498	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2499	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2500		   mi->maximum_block_count, mi->maximum_sg_entries);
2501	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2502		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2503	mly_printf(sc, "physical devices present %d\n",
2504		   mi->physical_devices_present);
2505	mly_printf(sc, "physical disks present/offline %d/%d\n",
2506		   mi->physical_disks_present, mi->physical_disks_offline);
2507	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2508		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2509		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2510		   mi->virtual_channels_possible);
2511	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2512	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2513		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2514    }
2515}
2516
2517#ifdef MLY_DEBUG
2518/********************************************************************************
2519 * Print some controller state
2520 */
2521static void
2522mly_printstate(struct mly_softc *sc)
2523{
2524    mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2525		  MLY_GET_REG(sc, sc->mly_idbr),
2526		  MLY_GET_REG(sc, sc->mly_odbr),
2527		  MLY_GET_REG(sc, sc->mly_error_status),
2528		  sc->mly_idbr,
2529		  sc->mly_odbr,
2530		  sc->mly_error_status);
2531    mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2532		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2533		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2534    mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2535		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2536		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2537		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2538		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2539		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2540		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2541		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2542		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2543    mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2544		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2545		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2546		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2547		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2548		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2549		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2550		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2551		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2552    mly_printf(sc, "        %04x        %08x\n",
2553		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2554		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2555}
2556
2557struct mly_softc	*mly_softc0 = NULL;
2558void
2559mly_printstate0(void)
2560{
2561    if (mly_softc0 != NULL)
2562	mly_printstate(mly_softc0);
2563}
2564
2565/********************************************************************************
2566 * Print a command
2567 */
2568static void
2569mly_print_command(struct mly_command *mc)
2570{
2571    struct mly_softc	*sc = mc->mc_sc;
2572
2573    mly_printf(sc, "COMMAND @ %p\n", mc);
2574    mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2575    mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2576    mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2577    mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2578    mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2579    if (mc->mc_packet != NULL)
2580	mly_print_packet(mc);
2581    mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2582    mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2583    mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2584    mly_printf(sc, "  private   %p\n", mc->mc_private);
2585}
2586
2587/********************************************************************************
2588 * Print a command packet
2589 */
2590static void
2591mly_print_packet(struct mly_command *mc)
2592{
2593    struct mly_softc			*sc = mc->mc_sc;
2594    struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2595    struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2596    struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2597    struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2598    int					transfer;
2599
2600    mly_printf(sc, "   command_id           %d\n", ge->command_id);
2601    mly_printf(sc, "   opcode               %d\n", ge->opcode);
2602    mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2603		  ge->command_control.force_unit_access,
2604		  ge->command_control.disable_page_out,
2605		  ge->command_control.extended_sg_table,
2606		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2607		  ge->command_control.no_auto_sense,
2608		  ge->command_control.disable_disconnect);
2609    mly_printf(sc, "   data_size            %d\n", ge->data_size);
2610    mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2611    mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2612    mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2613    mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2614    mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2615    mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2616    mly_printf(sc, "   timeout              %d %s\n",
2617		  ge->timeout.value,
2618		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2619		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2620    mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2621    switch(ge->opcode) {
2622    case MDACMD_SCSIPT:
2623    case MDACMD_SCSI:
2624	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2625	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2626	transfer = 1;
2627	break;
2628    case MDACMD_SCSILC:
2629    case MDACMD_SCSILCPT:
2630	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2631	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2632	transfer = 1;
2633	break;
2634    case MDACMD_IOCTL:
2635	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2636	switch(io->sub_ioctl) {
2637	case MDACIOCTL_SETMEMORYMAILBOX:
2638	    mly_printf(sc, "   health_buffer_size   %d\n",
2639			  io->param.setmemorymailbox.health_buffer_size);
2640	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2641			  io->param.setmemorymailbox.health_buffer_physaddr);
2642	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2643			  io->param.setmemorymailbox.command_mailbox_physaddr);
2644	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2645			  io->param.setmemorymailbox.status_mailbox_physaddr);
2646	    transfer = 0;
2647	    break;
2648
2649	case MDACIOCTL_SETREALTIMECLOCK:
2650	case MDACIOCTL_GETHEALTHSTATUS:
2651	case MDACIOCTL_GETCONTROLLERINFO:
2652	case MDACIOCTL_GETLOGDEVINFOVALID:
2653	case MDACIOCTL_GETPHYSDEVINFOVALID:
2654	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2655	case MDACIOCTL_GETLOGDEVSTATISTICS:
2656	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2657	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2658	case MDACIOCTL_CREATENEWCONF:
2659	case MDACIOCTL_ADDNEWCONF:
2660	case MDACIOCTL_GETDEVCONFINFO:
2661	case MDACIOCTL_GETFREESPACELIST:
2662	case MDACIOCTL_MORE:
2663	case MDACIOCTL_SETPHYSDEVPARAMETER:
2664	case MDACIOCTL_GETPHYSDEVPARAMETER:
2665	case MDACIOCTL_GETLOGDEVPARAMETER:
2666	case MDACIOCTL_SETLOGDEVPARAMETER:
2667	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2668	    transfer = 1;
2669	    break;
2670
2671	case MDACIOCTL_GETEVENT:
2672	    mly_printf(sc, "   event                %d\n",
2673		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2674	    transfer = 1;
2675	    break;
2676
2677	case MDACIOCTL_SETRAIDDEVSTATE:
2678	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2679	    transfer = 0;
2680	    break;
2681
2682	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2683	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2684	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2685	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2686	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2687	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2688	    transfer = 0;
2689	    break;
2690
2691	case MDACIOCTL_GETGROUPCONFINFO:
2692	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2693	    transfer = 1;
2694	    break;
2695
2696	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2697	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2698	case MDACIOCTL_STARTDISOCVERY:
2699	case MDACIOCTL_INITPHYSDEVSTART:
2700	case MDACIOCTL_INITPHYSDEVSTOP:
2701	case MDACIOCTL_INITRAIDDEVSTART:
2702	case MDACIOCTL_INITRAIDDEVSTOP:
2703	case MDACIOCTL_REBUILDRAIDDEVSTART:
2704	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2705	case MDACIOCTL_MAKECONSISTENTDATASTART:
2706	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2707	case MDACIOCTL_CONSISTENCYCHECKSTART:
2708	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2709	case MDACIOCTL_RESETDEVICE:
2710	case MDACIOCTL_FLUSHDEVICEDATA:
2711	case MDACIOCTL_PAUSEDEVICE:
2712	case MDACIOCTL_UNPAUSEDEVICE:
2713	case MDACIOCTL_LOCATEDEVICE:
2714	case MDACIOCTL_SETMASTERSLAVEMODE:
2715	case MDACIOCTL_DELETERAIDDEV:
2716	case MDACIOCTL_REPLACEINTERNALDEV:
2717	case MDACIOCTL_CLEARCONF:
2718	case MDACIOCTL_GETCONTROLLERPARAMETER:
2719	case MDACIOCTL_SETCONTRLLERPARAMETER:
2720	case MDACIOCTL_CLEARCONFSUSPMODE:
2721	case MDACIOCTL_STOREIMAGE:
2722	case MDACIOCTL_READIMAGE:
2723	case MDACIOCTL_FLASHIMAGES:
2724	case MDACIOCTL_RENAMERAIDDEV:
2725	default:			/* no idea what to print */
2726	    transfer = 0;
2727	    break;
2728	}
2729	break;
2730
2731    case MDACMD_IOCTLCHECK:
2732    case MDACMD_MEMCOPY:
2733    default:
2734	transfer = 0;
2735	break;	/* print nothing */
2736    }
2737    if (transfer) {
2738	if (ge->command_control.extended_sg_table) {
2739	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2740			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2741	} else {
2742	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2743			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2744	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2745			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2746	}
2747    }
2748}
2749
2750/********************************************************************************
2751 * Panic in a slightly informative fashion
2752 */
2753static void
2754mly_panic(struct mly_softc *sc, char *reason)
2755{
2756    mly_printstate(sc);
2757    panic(reason);
2758}
2759
2760/********************************************************************************
2761 * Print queue statistics, callable from DDB.
2762 */
2763void
2764mly_print_controller(int controller)
2765{
2766    struct mly_softc	*sc;
2767
2768    if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2769	printf("mly: controller %d invalid\n", controller);
2770    } else {
2771	device_printf(sc->mly_dev, "queue    curr max\n");
2772	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2773		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2774	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2775		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2776	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2777		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2778    }
2779}
2780#endif
2781
2782
2783/********************************************************************************
2784 ********************************************************************************
2785                                                         Control device interface
2786 ********************************************************************************
2787 ********************************************************************************/
2788
2789/********************************************************************************
2790 * Accept an open operation on the control device.
2791 */
2792static int
2793mly_user_open(dev_t dev, int flags, int fmt, struct proc *p)
2794{
2795    int			unit = minor(dev);
2796    struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2797
2798    sc->mly_state |= MLY_STATE_OPEN;
2799    return(0);
2800}
2801
2802/********************************************************************************
2803 * Accept the last close on the control device.
2804 */
2805static int
2806mly_user_close(dev_t dev, int flags, int fmt, struct proc *p)
2807{
2808    int			unit = minor(dev);
2809    struct mly_softc	*sc = devclass_get_softc(devclass_find("mly"), unit);
2810
2811    sc->mly_state &= ~MLY_STATE_OPEN;
2812    return (0);
2813}
2814
2815/********************************************************************************
2816 * Handle controller-specific control operations.
2817 */
2818static int
2819mly_user_ioctl(dev_t dev, u_long cmd, caddr_t addr, int32_t flag, struct proc *p)
2820{
2821    struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2822    struct mly_user_command	*uc = (struct mly_user_command *)addr;
2823    struct mly_user_health	*uh = (struct mly_user_health *)addr;
2824
2825    switch(cmd) {
2826    case MLYIO_COMMAND:
2827	return(mly_user_command(sc, uc));
2828    case MLYIO_HEALTH:
2829	return(mly_user_health(sc, uh));
2830    default:
2831	return(ENOIOCTL);
2832    }
2833}
2834
2835/********************************************************************************
2836 * Execute a command passed in from userspace.
2837 *
2838 * The control structure contains the actual command for the controller, as well
2839 * as the user-space data pointer and data size, and an optional sense buffer
2840 * size/pointer.  On completion, the data size is adjusted to the command
2841 * residual, and the sense buffer size to the size of the returned sense data.
2842 *
2843 */
2844static int
2845mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2846{
2847    struct mly_command	*mc;
2848    int			error, s;
2849
2850    /* allocate a command */
2851    if (mly_alloc_command(sc, &mc)) {
2852	error = ENOMEM;
2853	goto out;		/* XXX Linux version will wait for a command */
2854    }
2855
2856    /* handle data size/direction */
2857    mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2858    if (mc->mc_length > 0) {
2859	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2860	    error = ENOMEM;
2861	    goto out;
2862	}
2863    }
2864    if (uc->DataTransferLength > 0) {
2865	mc->mc_flags |= MLY_CMD_DATAIN;
2866	bzero(mc->mc_data, mc->mc_length);
2867    }
2868    if (uc->DataTransferLength < 0) {
2869	mc->mc_flags |= MLY_CMD_DATAOUT;
2870	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2871	    goto out;
2872    }
2873
2874    /* copy the controller command */
2875    bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2876
2877    /* clear command completion handler so that we get woken up */
2878    mc->mc_complete = NULL;
2879
2880    /* execute the command */
2881    if ((error = mly_start(mc)) != 0)
2882	goto out;
2883    s = splcam();
2884    while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2885	tsleep(mc, PRIBIO, "mlyioctl", 0);
2886    splx(s);
2887
2888    /* return the data to userspace */
2889    if (uc->DataTransferLength > 0)
2890	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2891	    goto out;
2892
2893    /* return the sense buffer to userspace */
2894    if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2895	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2896			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2897	    goto out;
2898    }
2899
2900    /* return command results to userspace (caller will copy out) */
2901    uc->DataTransferLength = mc->mc_resid;
2902    uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2903    uc->CommandStatus = mc->mc_status;
2904    error = 0;
2905
2906 out:
2907    if (mc->mc_data != NULL)
2908	free(mc->mc_data, M_DEVBUF);
2909    if (mc != NULL)
2910	mly_release_command(mc);
2911    return(error);
2912}
2913
2914/********************************************************************************
2915 * Return health status to userspace.  If the health change index in the user
2916 * structure does not match that currently exported by the controller, we
2917 * return the current status immediately.  Otherwise, we block until either
2918 * interrupted or new status is delivered.
2919 */
2920static int
2921mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2922{
2923    struct mly_health_status		mh;
2924    int					error, s;
2925
2926    /* fetch the current health status from userspace */
2927    if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2928	return(error);
2929
2930    /* spin waiting for a status update */
2931    s = splcam();
2932    error = EWOULDBLOCK;
2933    while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2934	error = tsleep(&sc->mly_event_change, PRIBIO | PCATCH, "mlyhealth", 0);
2935    splx(s);
2936
2937    /* copy the controller's health status buffer out (there is a race here if it changes again) */
2938    error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2939		    sizeof(uh->HealthStatusBuffer));
2940    return(error);
2941}
2942