1/*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *	$FreeBSD: stable/11/sys/dev/mly/mly.c 335138 2018-06-14 14:46:20Z mav $
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/malloc.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/ctype.h>
37#include <sys/ioccom.h>
38#include <sys/stat.h>
39
40#include <machine/bus.h>
41#include <machine/resource.h>
42#include <sys/rman.h>
43
44#include <cam/cam.h>
45#include <cam/cam_ccb.h>
46#include <cam/cam_periph.h>
47#include <cam/cam_sim.h>
48#include <cam/cam_xpt_sim.h>
49#include <cam/scsi/scsi_all.h>
50#include <cam/scsi/scsi_message.h>
51
52#include <dev/pci/pcireg.h>
53#include <dev/pci/pcivar.h>
54
55#include <dev/mly/mlyreg.h>
56#include <dev/mly/mlyio.h>
57#include <dev/mly/mlyvar.h>
58#include <dev/mly/mly_tables.h>
59
60static int	mly_probe(device_t dev);
61static int	mly_attach(device_t dev);
62static int	mly_pci_attach(struct mly_softc *sc);
63static int	mly_detach(device_t dev);
64static int	mly_shutdown(device_t dev);
65static void	mly_intr(void *arg);
66
67static int	mly_sg_map(struct mly_softc *sc);
68static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69static int	mly_mmbox_map(struct mly_softc *sc);
70static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71static void	mly_free(struct mly_softc *sc);
72
73static int	mly_get_controllerinfo(struct mly_softc *sc);
74static void	mly_scan_devices(struct mly_softc *sc);
75static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
76static void	mly_complete_rescan(struct mly_command *mc);
77static int	mly_get_eventstatus(struct mly_softc *sc);
78static int	mly_enable_mmbox(struct mly_softc *sc);
79static int	mly_flush(struct mly_softc *sc);
80static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
81			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
82static void	mly_check_event(struct mly_softc *sc);
83static void	mly_fetch_event(struct mly_softc *sc);
84static void	mly_complete_event(struct mly_command *mc);
85static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
86static void	mly_periodic(void *data);
87
88static int	mly_immediate_command(struct mly_command *mc);
89static int	mly_start(struct mly_command *mc);
90static void	mly_done(struct mly_softc *sc);
91static void	mly_complete(struct mly_softc *sc);
92static void	mly_complete_handler(void *context, int pending);
93
94static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
95static void	mly_release_command(struct mly_command *mc);
96static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
97static int	mly_alloc_commands(struct mly_softc *sc);
98static void	mly_release_commands(struct mly_softc *sc);
99static void	mly_map_command(struct mly_command *mc);
100static void	mly_unmap_command(struct mly_command *mc);
101
102static int	mly_cam_attach(struct mly_softc *sc);
103static void	mly_cam_detach(struct mly_softc *sc);
104static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
105static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
106static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
107static void	mly_cam_poll(struct cam_sim *sim);
108static void	mly_cam_complete(struct mly_command *mc);
109static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
110static int	mly_name_device(struct mly_softc *sc, int bus, int target);
111
112static int	mly_fwhandshake(struct mly_softc *sc);
113
114static void	mly_describe_controller(struct mly_softc *sc);
115#ifdef MLY_DEBUG
116static void	mly_printstate(struct mly_softc *sc);
117static void	mly_print_command(struct mly_command *mc);
118static void	mly_print_packet(struct mly_command *mc);
119static void	mly_panic(struct mly_softc *sc, char *reason);
120static void	mly_timeout(void *arg);
121#endif
122void		mly_print_controller(int controller);
123
124
125static d_open_t		mly_user_open;
126static d_close_t	mly_user_close;
127static d_ioctl_t	mly_user_ioctl;
128static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
129static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
130
131#define MLY_CMD_TIMEOUT		20
132
133static device_method_t mly_methods[] = {
134    /* Device interface */
135    DEVMETHOD(device_probe,	mly_probe),
136    DEVMETHOD(device_attach,	mly_attach),
137    DEVMETHOD(device_detach,	mly_detach),
138    DEVMETHOD(device_shutdown,	mly_shutdown),
139    { 0, 0 }
140};
141
142static driver_t mly_pci_driver = {
143	"mly",
144	mly_methods,
145	sizeof(struct mly_softc)
146};
147
148static devclass_t	mly_devclass;
149DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
150MODULE_DEPEND(mly, pci, 1, 1, 1);
151MODULE_DEPEND(mly, cam, 1, 1, 1);
152
153static struct cdevsw mly_cdevsw = {
154	.d_version =	D_VERSION,
155	.d_open =	mly_user_open,
156	.d_close =	mly_user_close,
157	.d_ioctl =	mly_user_ioctl,
158	.d_name =	"mly",
159};
160
161/********************************************************************************
162 ********************************************************************************
163                                                                 Device Interface
164 ********************************************************************************
165 ********************************************************************************/
166
167static struct mly_ident
168{
169    u_int16_t		vendor;
170    u_int16_t		device;
171    u_int16_t		subvendor;
172    u_int16_t		subdevice;
173    int			hwif;
174    char		*desc;
175} mly_identifiers[] = {
176    {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
177    {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
178    {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
179    {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
180    {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
181    {0, 0, 0, 0, 0, 0}
182};
183
184/********************************************************************************
185 * Compare the provided PCI device with the list we support.
186 */
187static int
188mly_probe(device_t dev)
189{
190    struct mly_ident	*m;
191
192    debug_called(1);
193
194    for (m = mly_identifiers; m->vendor != 0; m++) {
195	if ((m->vendor == pci_get_vendor(dev)) &&
196	    (m->device == pci_get_device(dev)) &&
197	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
198				     (m->subdevice == pci_get_subdevice(dev))))) {
199
200	    device_set_desc(dev, m->desc);
201	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
202	}
203    }
204    return(ENXIO);
205}
206
207/********************************************************************************
208 * Initialise the controller and softc
209 */
210static int
211mly_attach(device_t dev)
212{
213    struct mly_softc	*sc = device_get_softc(dev);
214    int			error;
215
216    debug_called(1);
217
218    sc->mly_dev = dev;
219    mtx_init(&sc->mly_lock, "mly", NULL, MTX_DEF);
220    callout_init_mtx(&sc->mly_periodic, &sc->mly_lock, 0);
221
222#ifdef MLY_DEBUG
223    callout_init_mtx(&sc->mly_timeout, &sc->mly_lock, 0);
224    if (device_get_unit(sc->mly_dev) == 0)
225	mly_softc0 = sc;
226#endif
227
228    /*
229     * Do PCI-specific initialisation.
230     */
231    if ((error = mly_pci_attach(sc)) != 0)
232	goto out;
233
234    /*
235     * Initialise per-controller queues.
236     */
237    mly_initq_free(sc);
238    mly_initq_busy(sc);
239    mly_initq_complete(sc);
240
241    /*
242     * Initialise command-completion task.
243     */
244    TASK_INIT(&sc->mly_task_complete, 0, mly_complete_handler, sc);
245
246    /* disable interrupts before we start talking to the controller */
247    MLY_MASK_INTERRUPTS(sc);
248
249    /*
250     * Wait for the controller to come ready, handshake with the firmware if required.
251     * This is typically only necessary on platforms where the controller BIOS does not
252     * run.
253     */
254    if ((error = mly_fwhandshake(sc)))
255	goto out;
256
257    /*
258     * Allocate initial command buffers.
259     */
260    if ((error = mly_alloc_commands(sc)))
261	goto out;
262
263    /*
264     * Obtain controller feature information
265     */
266    MLY_LOCK(sc);
267    error = mly_get_controllerinfo(sc);
268    MLY_UNLOCK(sc);
269    if (error)
270	goto out;
271
272    /*
273     * Reallocate command buffers now we know how many we want.
274     */
275    mly_release_commands(sc);
276    if ((error = mly_alloc_commands(sc)))
277	goto out;
278
279    /*
280     * Get the current event counter for health purposes, populate the initial
281     * health status buffer.
282     */
283    MLY_LOCK(sc);
284    error = mly_get_eventstatus(sc);
285
286    /*
287     * Enable memory-mailbox mode.
288     */
289    if (error == 0)
290	error = mly_enable_mmbox(sc);
291    MLY_UNLOCK(sc);
292    if (error)
293	goto out;
294
295    /*
296     * Attach to CAM.
297     */
298    if ((error = mly_cam_attach(sc)))
299	goto out;
300
301    /*
302     * Print a little information about the controller
303     */
304    mly_describe_controller(sc);
305
306    /*
307     * Mark all attached devices for rescan.
308     */
309    MLY_LOCK(sc);
310    mly_scan_devices(sc);
311
312    /*
313     * Instigate the first status poll immediately.  Rescan completions won't
314     * happen until interrupts are enabled, which should still be before
315     * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
316     */
317    mly_periodic((void *)sc);
318    MLY_UNLOCK(sc);
319
320    /*
321     * Create the control device.
322     */
323    sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
324			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
325    sc->mly_dev_t->si_drv1 = sc;
326
327    /* enable interrupts now */
328    MLY_UNMASK_INTERRUPTS(sc);
329
330#ifdef MLY_DEBUG
331    callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
332#endif
333
334 out:
335    if (error != 0)
336	mly_free(sc);
337    return(error);
338}
339
340/********************************************************************************
341 * Perform PCI-specific initialisation.
342 */
343static int
344mly_pci_attach(struct mly_softc *sc)
345{
346    int			i, error;
347
348    debug_called(1);
349
350    /* assume failure is 'not configured' */
351    error = ENXIO;
352
353    /*
354     * Verify that the adapter is correctly set up in PCI space.
355     */
356    pci_enable_busmaster(sc->mly_dev);
357
358    /*
359     * Allocate the PCI register window.
360     */
361    sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
362    if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
363	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
364	mly_printf(sc, "can't allocate register window\n");
365	goto fail;
366    }
367
368    /*
369     * Allocate and connect our interrupt.
370     */
371    sc->mly_irq_rid = 0;
372    if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
373		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
374	mly_printf(sc, "can't allocate interrupt\n");
375	goto fail;
376    }
377    if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY | INTR_MPSAFE, NULL, mly_intr, sc, &sc->mly_intr)) {
378	mly_printf(sc, "can't set up interrupt\n");
379	goto fail;
380    }
381
382    /* assume failure is 'out of memory' */
383    error = ENOMEM;
384
385    /*
386     * Allocate the parent bus DMA tag appropriate for our PCI interface.
387     *
388     * Note that all of these controllers are 64-bit capable.
389     */
390    if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
391			   1, 0, 			/* alignment, boundary */
392			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
393			   BUS_SPACE_MAXADDR, 		/* highaddr */
394			   NULL, NULL, 			/* filter, filterarg */
395			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
396			   BUS_SPACE_UNRESTRICTED,	/* nsegments */
397			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
398			   BUS_DMA_ALLOCNOW,		/* flags */
399			   NULL,			/* lockfunc */
400			   NULL,			/* lockarg */
401			   &sc->mly_parent_dmat)) {
402	mly_printf(sc, "can't allocate parent DMA tag\n");
403	goto fail;
404    }
405
406    /*
407     * Create DMA tag for mapping buffers into controller-addressable space.
408     */
409    if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
410			   1, 0, 			/* alignment, boundary */
411			   BUS_SPACE_MAXADDR,		/* lowaddr */
412			   BUS_SPACE_MAXADDR, 		/* highaddr */
413			   NULL, NULL, 			/* filter, filterarg */
414			   DFLTPHYS,			/* maxsize */
415			   MLY_MAX_SGENTRIES,		/* nsegments */
416			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
417			   0,				/* flags */
418			   busdma_lock_mutex,		/* lockfunc */
419			   &sc->mly_lock,		/* lockarg */
420			   &sc->mly_buffer_dmat)) {
421	mly_printf(sc, "can't allocate buffer DMA tag\n");
422	goto fail;
423    }
424
425    /*
426     * Initialise the DMA tag for command packets.
427     */
428    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
429			   1, 0, 			/* alignment, boundary */
430			   BUS_SPACE_MAXADDR,		/* lowaddr */
431			   BUS_SPACE_MAXADDR, 		/* highaddr */
432			   NULL, NULL, 			/* filter, filterarg */
433			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
434			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
435			   BUS_DMA_ALLOCNOW,		/* flags */
436			   NULL, NULL,			/* lockfunc, lockarg */
437			   &sc->mly_packet_dmat)) {
438	mly_printf(sc, "can't allocate command packet DMA tag\n");
439	goto fail;
440    }
441
442    /*
443     * Detect the hardware interface version
444     */
445    for (i = 0; mly_identifiers[i].vendor != 0; i++) {
446	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
447	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
448	    sc->mly_hwif = mly_identifiers[i].hwif;
449	    switch(sc->mly_hwif) {
450	    case MLY_HWIF_I960RX:
451		debug(1, "set hardware up for i960RX");
452		sc->mly_doorbell_true = 0x00;
453		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
454		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
455		sc->mly_idbr =             MLY_I960RX_IDBR;
456		sc->mly_odbr =             MLY_I960RX_ODBR;
457		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
458		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
459		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
460		break;
461	    case MLY_HWIF_STRONGARM:
462		debug(1, "set hardware up for StrongARM");
463		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
464		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
465		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
466		sc->mly_idbr =             MLY_STRONGARM_IDBR;
467		sc->mly_odbr =             MLY_STRONGARM_ODBR;
468		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
469		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
470		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
471		break;
472	    }
473	    break;
474	}
475    }
476
477    /*
478     * Create the scatter/gather mappings.
479     */
480    if ((error = mly_sg_map(sc)))
481	goto fail;
482
483    /*
484     * Allocate and map the memory mailbox
485     */
486    if ((error = mly_mmbox_map(sc)))
487	goto fail;
488
489    error = 0;
490
491fail:
492    return(error);
493}
494
495/********************************************************************************
496 * Shut the controller down and detach all our resources.
497 */
498static int
499mly_detach(device_t dev)
500{
501    int			error;
502
503    if ((error = mly_shutdown(dev)) != 0)
504	return(error);
505
506    mly_free(device_get_softc(dev));
507    return(0);
508}
509
510/********************************************************************************
511 * Bring the controller to a state where it can be safely left alone.
512 *
513 * Note that it should not be necessary to wait for any outstanding commands,
514 * as they should be completed prior to calling here.
515 *
516 * XXX this applies for I/O, but not status polls; we should beware of
517 *     the case where a status command is running while we detach.
518 */
519static int
520mly_shutdown(device_t dev)
521{
522    struct mly_softc	*sc = device_get_softc(dev);
523
524    debug_called(1);
525
526    MLY_LOCK(sc);
527    if (sc->mly_state & MLY_STATE_OPEN) {
528	MLY_UNLOCK(sc);
529	return(EBUSY);
530    }
531
532    /* kill the periodic event */
533    callout_stop(&sc->mly_periodic);
534#ifdef MLY_DEBUG
535    callout_stop(&sc->mly_timeout);
536#endif
537
538    /* flush controller */
539    mly_printf(sc, "flushing cache...");
540    printf("%s\n", mly_flush(sc) ? "failed" : "done");
541
542    MLY_MASK_INTERRUPTS(sc);
543    MLY_UNLOCK(sc);
544
545    return(0);
546}
547
548/*******************************************************************************
549 * Take an interrupt, or be poked by other code to look for interrupt-worthy
550 * status.
551 */
552static void
553mly_intr(void *arg)
554{
555    struct mly_softc	*sc = (struct mly_softc *)arg;
556
557    debug_called(2);
558
559    MLY_LOCK(sc);
560    mly_done(sc);
561    MLY_UNLOCK(sc);
562};
563
564/********************************************************************************
565 ********************************************************************************
566                                                Bus-dependant Resource Management
567 ********************************************************************************
568 ********************************************************************************/
569
570/********************************************************************************
571 * Allocate memory for the scatter/gather tables
572 */
573static int
574mly_sg_map(struct mly_softc *sc)
575{
576    size_t	segsize;
577
578    debug_called(1);
579
580    /*
581     * Create a single tag describing a region large enough to hold all of
582     * the s/g lists we will need.
583     */
584    segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
585    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
586			   1, 0, 			/* alignment,boundary */
587			   BUS_SPACE_MAXADDR,		/* lowaddr */
588			   BUS_SPACE_MAXADDR, 		/* highaddr */
589			   NULL, NULL, 			/* filter, filterarg */
590			   segsize, 1,			/* maxsize, nsegments */
591			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
592			   BUS_DMA_ALLOCNOW,		/* flags */
593			   NULL, NULL,			/* lockfunc, lockarg */
594			   &sc->mly_sg_dmat)) {
595	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
596	return(ENOMEM);
597    }
598
599    /*
600     * Allocate enough s/g maps for all commands and permanently map them into
601     * controller-visible space.
602     *
603     * XXX this assumes we can get enough space for all the s/g maps in one
604     * contiguous slab.
605     */
606    if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
607			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
608	mly_printf(sc, "can't allocate s/g table\n");
609	return(ENOMEM);
610    }
611    if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
612			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
613	return (ENOMEM);
614    return(0);
615}
616
617/********************************************************************************
618 * Save the physical address of the base of the s/g table.
619 */
620static void
621mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
622{
623    struct mly_softc	*sc = (struct mly_softc *)arg;
624
625    debug_called(1);
626
627    /* save base of s/g table's address in bus space */
628    sc->mly_sg_busaddr = segs->ds_addr;
629}
630
631/********************************************************************************
632 * Allocate memory for the memory-mailbox interface
633 */
634static int
635mly_mmbox_map(struct mly_softc *sc)
636{
637
638    /*
639     * Create a DMA tag for a single contiguous region large enough for the
640     * memory mailbox structure.
641     */
642    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
643			   1, 0, 			/* alignment,boundary */
644			   BUS_SPACE_MAXADDR,		/* lowaddr */
645			   BUS_SPACE_MAXADDR, 		/* highaddr */
646			   NULL, NULL, 			/* filter, filterarg */
647			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
648			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
649			   BUS_DMA_ALLOCNOW,		/* flags */
650			   NULL, NULL,			/* lockfunc, lockarg */
651			   &sc->mly_mmbox_dmat)) {
652	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
653	return(ENOMEM);
654    }
655
656    /*
657     * Allocate the buffer
658     */
659    if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
660	mly_printf(sc, "can't allocate memory mailbox\n");
661	return(ENOMEM);
662    }
663    if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
664			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
665			BUS_DMA_NOWAIT) != 0)
666	return (ENOMEM);
667    bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
668    return(0);
669
670}
671
672/********************************************************************************
673 * Save the physical address of the memory mailbox
674 */
675static void
676mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
677{
678    struct mly_softc	*sc = (struct mly_softc *)arg;
679
680    debug_called(1);
681
682    sc->mly_mmbox_busaddr = segs->ds_addr;
683}
684
685/********************************************************************************
686 * Free all of the resources associated with (sc)
687 *
688 * Should not be called if the controller is active.
689 */
690static void
691mly_free(struct mly_softc *sc)
692{
693
694    debug_called(1);
695
696    /* Remove the management device */
697    destroy_dev(sc->mly_dev_t);
698
699    if (sc->mly_intr)
700	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
701    callout_drain(&sc->mly_periodic);
702#ifdef MLY_DEBUG
703    callout_drain(&sc->mly_timeout);
704#endif
705
706    /* detach from CAM */
707    mly_cam_detach(sc);
708
709    /* release command memory */
710    mly_release_commands(sc);
711
712    /* throw away the controllerinfo structure */
713    if (sc->mly_controllerinfo != NULL)
714	free(sc->mly_controllerinfo, M_DEVBUF);
715
716    /* throw away the controllerparam structure */
717    if (sc->mly_controllerparam != NULL)
718	free(sc->mly_controllerparam, M_DEVBUF);
719
720    /* destroy data-transfer DMA tag */
721    if (sc->mly_buffer_dmat)
722	bus_dma_tag_destroy(sc->mly_buffer_dmat);
723
724    /* free and destroy DMA memory and tag for s/g lists */
725    if (sc->mly_sg_table) {
726	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
727	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
728    }
729    if (sc->mly_sg_dmat)
730	bus_dma_tag_destroy(sc->mly_sg_dmat);
731
732    /* free and destroy DMA memory and tag for memory mailbox */
733    if (sc->mly_mmbox) {
734	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
735	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
736    }
737    if (sc->mly_mmbox_dmat)
738	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
739
740    /* disconnect the interrupt handler */
741    if (sc->mly_irq != NULL)
742	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
743
744    /* destroy the parent DMA tag */
745    if (sc->mly_parent_dmat)
746	bus_dma_tag_destroy(sc->mly_parent_dmat);
747
748    /* release the register window mapping */
749    if (sc->mly_regs_resource != NULL)
750	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
751
752    mtx_destroy(&sc->mly_lock);
753}
754
755/********************************************************************************
756 ********************************************************************************
757                                                                 Command Wrappers
758 ********************************************************************************
759 ********************************************************************************/
760
761/********************************************************************************
762 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
763 */
764static int
765mly_get_controllerinfo(struct mly_softc *sc)
766{
767    struct mly_command_ioctl	mci;
768    u_int8_t			status;
769    int				error;
770
771    debug_called(1);
772
773    if (sc->mly_controllerinfo != NULL)
774	free(sc->mly_controllerinfo, M_DEVBUF);
775
776    /* build the getcontrollerinfo ioctl and send it */
777    bzero(&mci, sizeof(mci));
778    sc->mly_controllerinfo = NULL;
779    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
780    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
781			   &status, NULL, NULL)))
782	return(error);
783    if (status != 0)
784	return(EIO);
785
786    if (sc->mly_controllerparam != NULL)
787	free(sc->mly_controllerparam, M_DEVBUF);
788
789    /* build the getcontrollerparameter ioctl and send it */
790    bzero(&mci, sizeof(mci));
791    sc->mly_controllerparam = NULL;
792    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
793    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
794			   &status, NULL, NULL)))
795	return(error);
796    if (status != 0)
797	return(EIO);
798
799    return(0);
800}
801
802/********************************************************************************
803 * Schedule all possible devices for a rescan.
804 *
805 */
806static void
807mly_scan_devices(struct mly_softc *sc)
808{
809    int		bus, target;
810
811    debug_called(1);
812
813    /*
814     * Clear any previous BTL information.
815     */
816    bzero(&sc->mly_btl, sizeof(sc->mly_btl));
817
818    /*
819     * Mark all devices as requiring a rescan, and let the next
820     * periodic scan collect them.
821     */
822    for (bus = 0; bus < sc->mly_cam_channels; bus++)
823	if (MLY_BUS_IS_VALID(sc, bus))
824	    for (target = 0; target < MLY_MAX_TARGETS; target++)
825		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
826
827}
828
829/********************************************************************************
830 * Rescan a device, possibly as a consequence of getting an event which suggests
831 * that it may have changed.
832 *
833 * If we suffer resource starvation, we can abandon the rescan as we'll be
834 * retried.
835 */
836static void
837mly_rescan_btl(struct mly_softc *sc, int bus, int target)
838{
839    struct mly_command		*mc;
840    struct mly_command_ioctl	*mci;
841
842    debug_called(1);
843
844    /* check that this bus is valid */
845    if (!MLY_BUS_IS_VALID(sc, bus))
846	return;
847
848    /* get a command */
849    if (mly_alloc_command(sc, &mc))
850	return;
851
852    /* set up the data buffer */
853    if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
854	mly_release_command(mc);
855	return;
856    }
857    mc->mc_flags |= MLY_CMD_DATAIN;
858    mc->mc_complete = mly_complete_rescan;
859
860    /*
861     * Build the ioctl.
862     */
863    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
864    mci->opcode = MDACMD_IOCTL;
865    mci->addr.phys.controller = 0;
866    mci->timeout.value = 30;
867    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
868    if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
869	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
870	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
871	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
872	debug(1, "logical device %d", mci->addr.log.logdev);
873    } else {
874	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
875	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
876	mci->addr.phys.lun = 0;
877	mci->addr.phys.target = target;
878	mci->addr.phys.channel = bus;
879	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
880    }
881
882    /*
883     * Dispatch the command.  If we successfully send the command, clear the rescan
884     * bit.
885     */
886    if (mly_start(mc) != 0) {
887	mly_release_command(mc);
888    } else {
889	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
890    }
891}
892
893/********************************************************************************
894 * Handle the completion of a rescan operation
895 */
896static void
897mly_complete_rescan(struct mly_command *mc)
898{
899    struct mly_softc				*sc = mc->mc_sc;
900    struct mly_ioctl_getlogdevinfovalid		*ldi;
901    struct mly_ioctl_getphysdevinfovalid	*pdi;
902    struct mly_command_ioctl			*mci;
903    struct mly_btl				btl, *btlp;
904    int						bus, target, rescan;
905
906    debug_called(1);
907
908    /*
909     * Recover the bus and target from the command.  We need these even in
910     * the case where we don't have a useful response.
911     */
912    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
913    if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
914	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
915	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
916    } else {
917	bus = mci->addr.phys.channel;
918	target = mci->addr.phys.target;
919    }
920    /* XXX validate bus/target? */
921
922    /* the default result is 'no device' */
923    bzero(&btl, sizeof(btl));
924
925    /* if the rescan completed OK, we have possibly-new BTL data */
926    if (mc->mc_status == 0) {
927	if (mc->mc_length == sizeof(*ldi)) {
928	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
929	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
930		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
931		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
932			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
933			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
934		/* XXX what can we do about this? */
935	    }
936	    btl.mb_flags = MLY_BTL_LOGICAL;
937	    btl.mb_type = ldi->raid_level;
938	    btl.mb_state = ldi->state;
939	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
940		  mly_describe_code(mly_table_device_type, ldi->raid_level),
941		  mly_describe_code(mly_table_device_state, ldi->state));
942	} else if (mc->mc_length == sizeof(*pdi)) {
943	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
944	    if ((pdi->channel != bus) || (pdi->target != target)) {
945		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
946			   bus, target, pdi->channel, pdi->target);
947		/* XXX what can we do about this? */
948	    }
949	    btl.mb_flags = MLY_BTL_PHYSICAL;
950	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
951	    btl.mb_state = pdi->state;
952	    btl.mb_speed = pdi->speed;
953	    btl.mb_width = pdi->width;
954	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
955		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
956	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
957		  mly_describe_code(mly_table_device_state, pdi->state));
958	} else {
959	    mly_printf(sc, "BTL rescan result invalid\n");
960	}
961    }
962
963    free(mc->mc_data, M_DEVBUF);
964    mly_release_command(mc);
965
966    /*
967     * Decide whether we need to rescan the device.
968     */
969    rescan = 0;
970
971    /* device type changes (usually between 'nothing' and 'something') */
972    btlp = &sc->mly_btl[bus][target];
973    if (btl.mb_flags != btlp->mb_flags) {
974	debug(1, "flags changed, rescanning");
975	rescan = 1;
976    }
977
978    /* XXX other reasons? */
979
980    /*
981     * Update BTL information.
982     */
983    *btlp = btl;
984
985    /*
986     * Perform CAM rescan if required.
987     */
988    if (rescan)
989	mly_cam_rescan_btl(sc, bus, target);
990}
991
992/********************************************************************************
993 * Get the current health status and set the 'next event' counter to suit.
994 */
995static int
996mly_get_eventstatus(struct mly_softc *sc)
997{
998    struct mly_command_ioctl	mci;
999    struct mly_health_status	*mh;
1000    u_int8_t			status;
1001    int				error;
1002
1003    /* build the gethealthstatus ioctl and send it */
1004    bzero(&mci, sizeof(mci));
1005    mh = NULL;
1006    mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
1007
1008    if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
1009	return(error);
1010    if (status != 0)
1011	return(EIO);
1012
1013    /* get the event counter */
1014    sc->mly_event_change = mh->change_counter;
1015    sc->mly_event_waiting = mh->next_event;
1016    sc->mly_event_counter = mh->next_event;
1017
1018    /* save the health status into the memory mailbox */
1019    bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
1020
1021    debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
1022
1023    free(mh, M_DEVBUF);
1024    return(0);
1025}
1026
1027/********************************************************************************
1028 * Enable the memory mailbox mode.
1029 */
1030static int
1031mly_enable_mmbox(struct mly_softc *sc)
1032{
1033    struct mly_command_ioctl	mci;
1034    u_int8_t			*sp, status;
1035    int				error;
1036
1037    debug_called(1);
1038
1039    /* build the ioctl and send it */
1040    bzero(&mci, sizeof(mci));
1041    mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1042    /* set buffer addresses */
1043    mci.param.setmemorymailbox.command_mailbox_physaddr =
1044	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1045    mci.param.setmemorymailbox.status_mailbox_physaddr =
1046	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1047    mci.param.setmemorymailbox.health_buffer_physaddr =
1048	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1049
1050    /* set buffer sizes - abuse of data_size field is revolting */
1051    sp = (u_int8_t *)&mci.data_size;
1052    sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1053    sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1054    mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1055
1056    debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1057	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1058	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1059	  mci.param.setmemorymailbox.health_buffer_physaddr,
1060	  mci.param.setmemorymailbox.health_buffer_size);
1061
1062    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1063	return(error);
1064    if (status != 0)
1065	return(EIO);
1066    sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1067    debug(1, "memory mailbox active");
1068    return(0);
1069}
1070
1071/********************************************************************************
1072 * Flush all pending I/O from the controller.
1073 */
1074static int
1075mly_flush(struct mly_softc *sc)
1076{
1077    struct mly_command_ioctl	mci;
1078    u_int8_t			status;
1079    int				error;
1080
1081    debug_called(1);
1082
1083    /* build the ioctl */
1084    bzero(&mci, sizeof(mci));
1085    mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1086    mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1087
1088    /* pass it off to the controller */
1089    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1090	return(error);
1091
1092    return((status == 0) ? 0 : EIO);
1093}
1094
1095/********************************************************************************
1096 * Perform an ioctl command.
1097 *
1098 * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1099 * the command requires data transfer from the controller, and we will allocate
1100 * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1101 * to the controller.
1102 *
1103 * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1104 *
1105 * XXX we don't even try to handle the case where datasize > 4k.  We should.
1106 */
1107static int
1108mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1109	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1110{
1111    struct mly_command		*mc;
1112    struct mly_command_ioctl	*mci;
1113    int				error;
1114
1115    debug_called(1);
1116    MLY_ASSERT_LOCKED(sc);
1117
1118    mc = NULL;
1119    if (mly_alloc_command(sc, &mc)) {
1120	error = ENOMEM;
1121	goto out;
1122    }
1123
1124    /* copy the ioctl structure, but save some important fields and then fixup */
1125    mci = &mc->mc_packet->ioctl;
1126    ioctl->sense_buffer_address = mci->sense_buffer_address;
1127    ioctl->maximum_sense_size = mci->maximum_sense_size;
1128    *mci = *ioctl;
1129    mci->opcode = MDACMD_IOCTL;
1130    mci->timeout.value = 30;
1131    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1132
1133    /* handle the data buffer */
1134    if (data != NULL) {
1135	if (*data == NULL) {
1136	    /* allocate data buffer */
1137	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1138		error = ENOMEM;
1139		goto out;
1140	    }
1141	    mc->mc_flags |= MLY_CMD_DATAIN;
1142	} else {
1143	    mc->mc_data = *data;
1144	    mc->mc_flags |= MLY_CMD_DATAOUT;
1145	}
1146	mc->mc_length = datasize;
1147	mc->mc_packet->generic.data_size = datasize;
1148    }
1149
1150    /* run the command */
1151    if ((error = mly_immediate_command(mc)))
1152	goto out;
1153
1154    /* clean up and return any data */
1155    *status = mc->mc_status;
1156    if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1157	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1158	*sense_length = mc->mc_sense;
1159	goto out;
1160    }
1161
1162    /* should we return a data pointer? */
1163    if ((data != NULL) && (*data == NULL))
1164	*data = mc->mc_data;
1165
1166    /* command completed OK */
1167    error = 0;
1168
1169out:
1170    if (mc != NULL) {
1171	/* do we need to free a data buffer we allocated? */
1172	if (error && (mc->mc_data != NULL) && (*data == NULL))
1173	    free(mc->mc_data, M_DEVBUF);
1174	mly_release_command(mc);
1175    }
1176    return(error);
1177}
1178
1179/********************************************************************************
1180 * Check for event(s) outstanding in the controller.
1181 */
1182static void
1183mly_check_event(struct mly_softc *sc)
1184{
1185
1186    /*
1187     * The controller may have updated the health status information,
1188     * so check for it here.  Note that the counters are all in host memory,
1189     * so this check is very cheap.  Also note that we depend on checking on
1190     * completion
1191     */
1192    if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1193	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1194	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1195	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1196	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1197
1198	/* wake up anyone that might be interested in this */
1199	wakeup(&sc->mly_event_change);
1200    }
1201    if (sc->mly_event_counter != sc->mly_event_waiting)
1202    mly_fetch_event(sc);
1203}
1204
1205/********************************************************************************
1206 * Fetch one event from the controller.
1207 *
1208 * If we fail due to resource starvation, we'll be retried the next time a
1209 * command completes.
1210 */
1211static void
1212mly_fetch_event(struct mly_softc *sc)
1213{
1214    struct mly_command		*mc;
1215    struct mly_command_ioctl	*mci;
1216    int				s;
1217    u_int32_t			event;
1218
1219    debug_called(1);
1220
1221    /* get a command */
1222    if (mly_alloc_command(sc, &mc))
1223	return;
1224
1225    /* set up the data buffer */
1226    if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1227	mly_release_command(mc);
1228	return;
1229    }
1230    mc->mc_length = sizeof(struct mly_event);
1231    mc->mc_flags |= MLY_CMD_DATAIN;
1232    mc->mc_complete = mly_complete_event;
1233
1234    /*
1235     * Get an event number to fetch.  It's possible that we've raced with another
1236     * context for the last event, in which case there will be no more events.
1237     */
1238    s = splcam();
1239    if (sc->mly_event_counter == sc->mly_event_waiting) {
1240	mly_release_command(mc);
1241	splx(s);
1242	return;
1243    }
1244    event = sc->mly_event_counter++;
1245    splx(s);
1246
1247    /*
1248     * Build the ioctl.
1249     *
1250     * At this point we are committed to sending this request, as it
1251     * will be the only one constructed for this particular event number.
1252     */
1253    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1254    mci->opcode = MDACMD_IOCTL;
1255    mci->data_size = sizeof(struct mly_event);
1256    mci->addr.phys.lun = (event >> 16) & 0xff;
1257    mci->addr.phys.target = (event >> 24) & 0xff;
1258    mci->addr.phys.channel = 0;
1259    mci->addr.phys.controller = 0;
1260    mci->timeout.value = 30;
1261    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1262    mci->sub_ioctl = MDACIOCTL_GETEVENT;
1263    mci->param.getevent.sequence_number_low = event & 0xffff;
1264
1265    debug(1, "fetch event %u", event);
1266
1267    /*
1268     * Submit the command.
1269     *
1270     * Note that failure of mly_start() will result in this event never being
1271     * fetched.
1272     */
1273    if (mly_start(mc) != 0) {
1274	mly_printf(sc, "couldn't fetch event %u\n", event);
1275	mly_release_command(mc);
1276    }
1277}
1278
1279/********************************************************************************
1280 * Handle the completion of an event poll.
1281 */
1282static void
1283mly_complete_event(struct mly_command *mc)
1284{
1285    struct mly_softc	*sc = mc->mc_sc;
1286    struct mly_event	*me = (struct mly_event *)mc->mc_data;
1287
1288    debug_called(1);
1289
1290    /*
1291     * If the event was successfully fetched, process it.
1292     */
1293    if (mc->mc_status == SCSI_STATUS_OK) {
1294	mly_process_event(sc, me);
1295	free(me, M_DEVBUF);
1296    }
1297    mly_release_command(mc);
1298
1299    /*
1300     * Check for another event.
1301     */
1302    mly_check_event(sc);
1303}
1304
1305/********************************************************************************
1306 * Process a controller event.
1307 */
1308static void
1309mly_process_event(struct mly_softc *sc, struct mly_event *me)
1310{
1311    struct scsi_sense_data_fixed *ssd;
1312    char			 *fp, *tp;
1313    int				 bus, target, event, class, action;
1314
1315    ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1316
1317    /*
1318     * Errors can be reported using vendor-unique sense data.  In this case, the
1319     * event code will be 0x1c (Request sense data present), the sense key will
1320     * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1321     * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1322     * and low seven bits of the ASC (low seven bits of the high byte).
1323     */
1324    if ((me->code == 0x1c) &&
1325	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1326	(ssd->add_sense_code & 0x80)) {
1327	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1328    } else {
1329	event = me->code;
1330    }
1331
1332    /* look up event, get codes */
1333    fp = mly_describe_code(mly_table_event, event);
1334
1335    debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1336
1337    /* quiet event? */
1338    class = fp[0];
1339    if (isupper(class) && bootverbose)
1340	class = tolower(class);
1341
1342    /* get action code, text string */
1343    action = fp[1];
1344    tp = &fp[2];
1345
1346    /*
1347     * Print some information about the event.
1348     *
1349     * This code uses a table derived from the corresponding portion of the Linux
1350     * driver, and thus the parser is very similar.
1351     */
1352    switch(class) {
1353    case 'p':		/* error on physical device */
1354	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1355	if (action == 'r')
1356	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1357	break;
1358    case 'l':		/* error on logical unit */
1359    case 'm':		/* message about logical unit */
1360	bus = MLY_LOGDEV_BUS(sc, me->lun);
1361	target = MLY_LOGDEV_TARGET(sc, me->lun);
1362	mly_name_device(sc, bus, target);
1363	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1364	if (action == 'r')
1365	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1366	break;
1367    case 's':		/* report of sense data */
1368	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1369	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1370	     (ssd->add_sense_code == 0x04) &&
1371	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1372	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1373
1374	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1375	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1376		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1377	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1378	if (action == 'r')
1379	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1380	break;
1381    case 'e':
1382	mly_printf(sc, tp, me->target, me->lun);
1383	printf("\n");
1384	break;
1385    case 'c':
1386	mly_printf(sc, "controller %s\n", tp);
1387	break;
1388    case '?':
1389	mly_printf(sc, "%s - %d\n", tp, me->code);
1390	break;
1391    default:	/* probably a 'noisy' event being ignored */
1392	break;
1393    }
1394}
1395
1396/********************************************************************************
1397 * Perform periodic activities.
1398 */
1399static void
1400mly_periodic(void *data)
1401{
1402    struct mly_softc	*sc = (struct mly_softc *)data;
1403    int			bus, target;
1404
1405    debug_called(2);
1406    MLY_ASSERT_LOCKED(sc);
1407
1408    /*
1409     * Scan devices.
1410     */
1411    for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1412	if (MLY_BUS_IS_VALID(sc, bus)) {
1413	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1414
1415		/* ignore the controller in this scan */
1416		if (target == sc->mly_controllerparam->initiator_id)
1417		    continue;
1418
1419		/* perform device rescan? */
1420		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1421		    mly_rescan_btl(sc, bus, target);
1422	    }
1423	}
1424    }
1425
1426    /* check for controller events */
1427    mly_check_event(sc);
1428
1429    /* reschedule ourselves */
1430    callout_schedule(&sc->mly_periodic, MLY_PERIODIC_INTERVAL * hz);
1431}
1432
1433/********************************************************************************
1434 ********************************************************************************
1435                                                               Command Processing
1436 ********************************************************************************
1437 ********************************************************************************/
1438
1439/********************************************************************************
1440 * Run a command and wait for it to complete.
1441 *
1442 */
1443static int
1444mly_immediate_command(struct mly_command *mc)
1445{
1446    struct mly_softc	*sc = mc->mc_sc;
1447    int			error;
1448
1449    debug_called(1);
1450
1451    MLY_ASSERT_LOCKED(sc);
1452    if ((error = mly_start(mc))) {
1453	return(error);
1454    }
1455
1456    if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1457	/* sleep on the command */
1458	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1459	    mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlywait", 0);
1460	}
1461    } else {
1462	/* spin and collect status while we do */
1463	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1464	    mly_done(mc->mc_sc);
1465	}
1466    }
1467    return(0);
1468}
1469
1470/********************************************************************************
1471 * Deliver a command to the controller.
1472 *
1473 * XXX it would be good to just queue commands that we can't submit immediately
1474 *     and send them later, but we probably want a wrapper for that so that
1475 *     we don't hang on a failed submission for an immediate command.
1476 */
1477static int
1478mly_start(struct mly_command *mc)
1479{
1480    struct mly_softc		*sc = mc->mc_sc;
1481    union mly_command_packet	*pkt;
1482
1483    debug_called(2);
1484    MLY_ASSERT_LOCKED(sc);
1485
1486    /*
1487     * Set the command up for delivery to the controller.
1488     */
1489    mly_map_command(mc);
1490    mc->mc_packet->generic.command_id = mc->mc_slot;
1491
1492#ifdef MLY_DEBUG
1493    mc->mc_timestamp = time_second;
1494#endif
1495
1496    /*
1497     * Do we have to use the hardware mailbox?
1498     */
1499    if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1500	/*
1501	 * Check to see if the controller is ready for us.
1502	 */
1503	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1504	    return(EBUSY);
1505	}
1506	mc->mc_flags |= MLY_CMD_BUSY;
1507
1508	/*
1509	 * It's ready, send the command.
1510	 */
1511	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1512	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1513
1514    } else {	/* use memory-mailbox mode */
1515
1516	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1517
1518	/* check to see if the next index is free yet */
1519	if (pkt->mmbox.flag != 0) {
1520	    return(EBUSY);
1521	}
1522	mc->mc_flags |= MLY_CMD_BUSY;
1523
1524	/* copy in new command */
1525	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1526	/* barrier to ensure completion of previous write before we write the flag */
1527	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1528	/* copy flag last */
1529	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1530	/* barrier to ensure completion of previous write before we notify the controller */
1531	bus_barrier(sc->mly_regs_resource, 0, 0, BUS_SPACE_BARRIER_WRITE);
1532
1533	/* signal controller, update index */
1534	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1535	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1536    }
1537
1538    mly_enqueue_busy(mc);
1539    return(0);
1540}
1541
1542/********************************************************************************
1543 * Pick up command status from the controller, schedule a completion event
1544 */
1545static void
1546mly_done(struct mly_softc *sc)
1547{
1548    struct mly_command		*mc;
1549    union mly_status_packet	*sp;
1550    u_int16_t			slot;
1551    int				worked;
1552
1553    MLY_ASSERT_LOCKED(sc);
1554    worked = 0;
1555
1556    /* pick up hardware-mailbox commands */
1557    if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1558	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1559	if (slot < MLY_SLOT_MAX) {
1560	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1561	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1562	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1563	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1564	    mly_remove_busy(mc);
1565	    mc->mc_flags &= ~MLY_CMD_BUSY;
1566	    mly_enqueue_complete(mc);
1567	    worked = 1;
1568	} else {
1569	    /* slot 0xffff may mean "extremely bogus command" */
1570	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1571	}
1572	/* unconditionally acknowledge status */
1573	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1574	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1575    }
1576
1577    /* pick up memory-mailbox commands */
1578    if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1579	for (;;) {
1580	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1581
1582	    /* check for more status */
1583	    if (sp->mmbox.flag == 0)
1584		break;
1585
1586	    /* get slot number */
1587	    slot = sp->status.command_id;
1588	    if (slot < MLY_SLOT_MAX) {
1589		mc = &sc->mly_command[slot - MLY_SLOT_START];
1590		mc->mc_status = sp->status.status;
1591		mc->mc_sense = sp->status.sense_length;
1592		mc->mc_resid = sp->status.residue;
1593		mly_remove_busy(mc);
1594		mc->mc_flags &= ~MLY_CMD_BUSY;
1595		mly_enqueue_complete(mc);
1596		worked = 1;
1597	    } else {
1598		/* slot 0xffff may mean "extremely bogus command" */
1599		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1600			   slot, sc->mly_mmbox_status_index);
1601	    }
1602
1603	    /* clear and move to next index */
1604	    sp->mmbox.flag = 0;
1605	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1606	}
1607	/* acknowledge that we have collected status value(s) */
1608	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1609    }
1610
1611    if (worked) {
1612	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1613	    taskqueue_enqueue(taskqueue_thread, &sc->mly_task_complete);
1614	else
1615	    mly_complete(sc);
1616    }
1617}
1618
1619/********************************************************************************
1620 * Process completed commands
1621 */
1622static void
1623mly_complete_handler(void *context, int pending)
1624{
1625    struct mly_softc	*sc = (struct mly_softc *)context;
1626
1627    MLY_LOCK(sc);
1628    mly_complete(sc);
1629    MLY_UNLOCK(sc);
1630}
1631
1632static void
1633mly_complete(struct mly_softc *sc)
1634{
1635    struct mly_command	*mc;
1636    void	        (* mc_complete)(struct mly_command *mc);
1637
1638    debug_called(2);
1639
1640    /*
1641     * Spin pulling commands off the completed queue and processing them.
1642     */
1643    while ((mc = mly_dequeue_complete(sc)) != NULL) {
1644
1645	/*
1646	 * Free controller resources, mark command complete.
1647	 *
1648	 * Note that as soon as we mark the command complete, it may be freed
1649	 * out from under us, so we need to save the mc_complete field in
1650	 * order to later avoid dereferencing mc.  (We would not expect to
1651	 * have a polling/sleeping consumer with mc_complete != NULL).
1652	 */
1653	mly_unmap_command(mc);
1654	mc_complete = mc->mc_complete;
1655	mc->mc_flags |= MLY_CMD_COMPLETE;
1656
1657	/*
1658	 * Call completion handler or wake up sleeping consumer.
1659	 */
1660	if (mc_complete != NULL) {
1661	    mc_complete(mc);
1662	} else {
1663	    wakeup(mc);
1664	}
1665    }
1666
1667    /*
1668     * XXX if we are deferring commands due to controller-busy status, we should
1669     *     retry submitting them here.
1670     */
1671}
1672
1673/********************************************************************************
1674 ********************************************************************************
1675                                                        Command Buffer Management
1676 ********************************************************************************
1677 ********************************************************************************/
1678
1679/********************************************************************************
1680 * Allocate a command.
1681 */
1682static int
1683mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1684{
1685    struct mly_command	*mc;
1686
1687    debug_called(3);
1688
1689    if ((mc = mly_dequeue_free(sc)) == NULL)
1690	return(ENOMEM);
1691
1692    *mcp = mc;
1693    return(0);
1694}
1695
1696/********************************************************************************
1697 * Release a command back to the freelist.
1698 */
1699static void
1700mly_release_command(struct mly_command *mc)
1701{
1702    debug_called(3);
1703
1704    /*
1705     * Fill in parts of the command that may cause confusion if
1706     * a consumer doesn't when we are later allocated.
1707     */
1708    mc->mc_data = NULL;
1709    mc->mc_flags = 0;
1710    mc->mc_complete = NULL;
1711    mc->mc_private = NULL;
1712
1713    /*
1714     * By default, we set up to overwrite the command packet with
1715     * sense information.
1716     */
1717    mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1718    mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1719
1720    mly_enqueue_free(mc);
1721}
1722
1723/********************************************************************************
1724 * Map helper for command allocation.
1725 */
1726static void
1727mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1728{
1729    struct mly_softc	*sc = (struct mly_softc *)arg;
1730
1731    debug_called(1);
1732
1733    sc->mly_packetphys = segs[0].ds_addr;
1734}
1735
1736/********************************************************************************
1737 * Allocate and initialise command and packet structures.
1738 *
1739 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1740 * allocation to that number.  If we don't yet know how many commands the
1741 * controller supports, allocate a very small set (suitable for initialisation
1742 * purposes only).
1743 */
1744static int
1745mly_alloc_commands(struct mly_softc *sc)
1746{
1747    struct mly_command		*mc;
1748    int				i, ncmd;
1749
1750    if (sc->mly_controllerinfo == NULL) {
1751	ncmd = 4;
1752    } else {
1753	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1754    }
1755
1756    /*
1757     * Allocate enough space for all the command packets in one chunk and
1758     * map them permanently into controller-visible space.
1759     */
1760    if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1761			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1762	return(ENOMEM);
1763    }
1764    if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1765			ncmd * sizeof(union mly_command_packet),
1766			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1767	return (ENOMEM);
1768
1769    for (i = 0; i < ncmd; i++) {
1770	mc = &sc->mly_command[i];
1771	bzero(mc, sizeof(*mc));
1772	mc->mc_sc = sc;
1773	mc->mc_slot = MLY_SLOT_START + i;
1774	mc->mc_packet = sc->mly_packet + i;
1775	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1776	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1777	    mly_release_command(mc);
1778    }
1779    return(0);
1780}
1781
1782/********************************************************************************
1783 * Free all the storage held by commands.
1784 *
1785 * Must be called with all commands on the free list.
1786 */
1787static void
1788mly_release_commands(struct mly_softc *sc)
1789{
1790    struct mly_command	*mc;
1791
1792    /* throw away command buffer DMA maps */
1793    while (mly_alloc_command(sc, &mc) == 0)
1794	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1795
1796    /* release the packet storage */
1797    if (sc->mly_packet != NULL) {
1798	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1799	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1800	sc->mly_packet = NULL;
1801    }
1802}
1803
1804
1805/********************************************************************************
1806 * Command-mapping helper function - populate this command's s/g table
1807 * with the s/g entries for its data.
1808 */
1809static void
1810mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1811{
1812    struct mly_command		*mc = (struct mly_command *)arg;
1813    struct mly_softc		*sc = mc->mc_sc;
1814    struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1815    struct mly_sg_entry		*sg;
1816    int				i, tabofs;
1817
1818    debug_called(2);
1819
1820    /* can we use the transfer structure directly? */
1821    if (nseg <= 2) {
1822	sg = &gen->transfer.direct.sg[0];
1823	gen->command_control.extended_sg_table = 0;
1824    } else {
1825	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1826	sg = sc->mly_sg_table + tabofs;
1827	gen->transfer.indirect.entries[0] = nseg;
1828	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1829	gen->command_control.extended_sg_table = 1;
1830    }
1831
1832    /* copy the s/g table */
1833    for (i = 0; i < nseg; i++) {
1834	sg[i].physaddr = segs[i].ds_addr;
1835	sg[i].length = segs[i].ds_len;
1836    }
1837
1838}
1839
1840#if 0
1841/********************************************************************************
1842 * Command-mapping helper function - save the cdb's physical address.
1843 *
1844 * We don't support 'large' SCSI commands at this time, so this is unused.
1845 */
1846static void
1847mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1848{
1849    struct mly_command			*mc = (struct mly_command *)arg;
1850
1851    debug_called(2);
1852
1853    /* XXX can we safely assume that a CDB will never cross a page boundary? */
1854    if ((segs[0].ds_addr % PAGE_SIZE) >
1855	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1856	panic("cdb crosses page boundary");
1857
1858    /* fix up fields in the command packet */
1859    mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1860}
1861#endif
1862
1863/********************************************************************************
1864 * Map a command into controller-visible space
1865 */
1866static void
1867mly_map_command(struct mly_command *mc)
1868{
1869    struct mly_softc	*sc = mc->mc_sc;
1870
1871    debug_called(2);
1872
1873    /* don't map more than once */
1874    if (mc->mc_flags & MLY_CMD_MAPPED)
1875	return;
1876
1877    /* does the command have a data buffer? */
1878    if (mc->mc_data != NULL) {
1879	if (mc->mc_flags & MLY_CMD_CCB)
1880		bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1881				mc->mc_data, mly_map_command_sg, mc, 0);
1882	else
1883		bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1884				mc->mc_data, mc->mc_length,
1885				mly_map_command_sg, mc, 0);
1886	if (mc->mc_flags & MLY_CMD_DATAIN)
1887	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1888	if (mc->mc_flags & MLY_CMD_DATAOUT)
1889	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1890    }
1891    mc->mc_flags |= MLY_CMD_MAPPED;
1892}
1893
1894/********************************************************************************
1895 * Unmap a command from controller-visible space
1896 */
1897static void
1898mly_unmap_command(struct mly_command *mc)
1899{
1900    struct mly_softc	*sc = mc->mc_sc;
1901
1902    debug_called(2);
1903
1904    if (!(mc->mc_flags & MLY_CMD_MAPPED))
1905	return;
1906
1907    /* does the command have a data buffer? */
1908    if (mc->mc_data != NULL) {
1909	if (mc->mc_flags & MLY_CMD_DATAIN)
1910	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1911	if (mc->mc_flags & MLY_CMD_DATAOUT)
1912	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1913
1914	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1915    }
1916    mc->mc_flags &= ~MLY_CMD_MAPPED;
1917}
1918
1919
1920/********************************************************************************
1921 ********************************************************************************
1922                                                                    CAM interface
1923 ********************************************************************************
1924 ********************************************************************************/
1925
1926/********************************************************************************
1927 * Attach the physical and virtual SCSI busses to CAM.
1928 *
1929 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1930 * than the highest physical bus.  Physical busses are only registered if
1931 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1932 *
1933 * When we refer to a "bus", we are referring to the bus number registered with
1934 * the SIM, whereas a "channel" is a channel number given to the adapter.  In order
1935 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1936 * interchangeably.
1937 */
1938static int
1939mly_cam_attach(struct mly_softc *sc)
1940{
1941    struct cam_devq	*devq;
1942    int			chn, i;
1943
1944    debug_called(1);
1945
1946    /*
1947     * Allocate a devq for all our channels combined.
1948     */
1949    if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1950	mly_printf(sc, "can't allocate CAM SIM queue\n");
1951	return(ENOMEM);
1952    }
1953
1954    /*
1955     * If physical channel registration has been requested, register these first.
1956     * Note that we enable tagged command queueing for physical channels.
1957     */
1958    if (testenv("hw.mly.register_physical_channels")) {
1959	chn = 0;
1960	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1961
1962	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1963						      device_get_unit(sc->mly_dev),
1964						      &sc->mly_lock,
1965						      sc->mly_controllerinfo->maximum_parallel_commands,
1966						      1, devq)) == NULL) {
1967		return(ENOMEM);
1968	    }
1969	    MLY_LOCK(sc);
1970	    if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1971		MLY_UNLOCK(sc);
1972		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1973		return(ENXIO);
1974	    }
1975	    MLY_UNLOCK(sc);
1976	    debug(1, "registered physical channel %d", chn);
1977	}
1978    }
1979
1980    /*
1981     * Register our virtual channels, with bus numbers matching channel numbers.
1982     */
1983    chn = sc->mly_controllerinfo->physical_channels_present;
1984    for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1985	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1986						  device_get_unit(sc->mly_dev),
1987						  &sc->mly_lock,
1988						  sc->mly_controllerinfo->maximum_parallel_commands,
1989						  0, devq)) == NULL) {
1990	    return(ENOMEM);
1991	}
1992	MLY_LOCK(sc);
1993	if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1994	    MLY_UNLOCK(sc);
1995	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1996	    return(ENXIO);
1997	}
1998	MLY_UNLOCK(sc);
1999	debug(1, "registered virtual channel %d", chn);
2000    }
2001
2002    /*
2003     * This is the total number of channels that (might have been) registered with
2004     * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
2005     */
2006    sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
2007	sc->mly_controllerinfo->virtual_channels_present;
2008
2009    return(0);
2010}
2011
2012/********************************************************************************
2013 * Detach from CAM
2014 */
2015static void
2016mly_cam_detach(struct mly_softc *sc)
2017{
2018    int		i;
2019
2020    debug_called(1);
2021
2022    MLY_LOCK(sc);
2023    for (i = 0; i < sc->mly_cam_channels; i++) {
2024	if (sc->mly_cam_sim[i] != NULL) {
2025	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
2026	    cam_sim_free(sc->mly_cam_sim[i], 0);
2027	}
2028    }
2029    MLY_UNLOCK(sc);
2030    if (sc->mly_cam_devq != NULL)
2031	cam_simq_free(sc->mly_cam_devq);
2032}
2033
2034/************************************************************************
2035 * Rescan a device.
2036 */
2037static void
2038mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2039{
2040    union ccb	*ccb;
2041
2042    debug_called(1);
2043
2044    if ((ccb = xpt_alloc_ccb()) == NULL) {
2045	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2046	return;
2047    }
2048    if (xpt_create_path(&ccb->ccb_h.path, NULL,
2049	    cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2050	mly_printf(sc, "rescan failed (can't create path)\n");
2051	xpt_free_ccb(ccb);
2052	return;
2053    }
2054    debug(1, "rescan target %d:%d", bus, target);
2055    xpt_rescan(ccb);
2056}
2057
2058/********************************************************************************
2059 * Handle an action requested by CAM
2060 */
2061static void
2062mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2063{
2064    struct mly_softc	*sc = cam_sim_softc(sim);
2065
2066    debug_called(2);
2067    MLY_ASSERT_LOCKED(sc);
2068
2069    switch (ccb->ccb_h.func_code) {
2070
2071	/* perform SCSI I/O */
2072    case XPT_SCSI_IO:
2073	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2074	    return;
2075	break;
2076
2077	/* perform geometry calculations */
2078    case XPT_CALC_GEOMETRY:
2079    {
2080	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2081        u_int32_t			secs_per_cylinder;
2082
2083	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2084
2085	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2086	    ccg->heads = 255;
2087            ccg->secs_per_track = 63;
2088	} else {				/* MLY_BIOSGEOM_2G */
2089	    ccg->heads = 128;
2090            ccg->secs_per_track = 32;
2091	}
2092	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2093        ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2094        ccb->ccb_h.status = CAM_REQ_CMP;
2095        break;
2096    }
2097
2098	/* handle path attribute inquiry */
2099    case XPT_PATH_INQ:
2100    {
2101	struct ccb_pathinq	*cpi = &ccb->cpi;
2102
2103	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2104
2105	cpi->version_num = 1;
2106	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2107	cpi->target_sprt = 0;
2108	cpi->hba_misc = 0;
2109	cpi->max_target = MLY_MAX_TARGETS - 1;
2110	cpi->max_lun = MLY_MAX_LUNS - 1;
2111	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2112	strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2113	strlcpy(cpi->hba_vid, "Mylex", HBA_IDLEN);
2114	strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2115	cpi->unit_number = cam_sim_unit(sim);
2116	cpi->bus_id = cam_sim_bus(sim);
2117	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2118	cpi->transport = XPORT_SPI;
2119	cpi->transport_version = 2;
2120	cpi->protocol = PROTO_SCSI;
2121	cpi->protocol_version = SCSI_REV_2;
2122	ccb->ccb_h.status = CAM_REQ_CMP;
2123	break;
2124    }
2125
2126    case XPT_GET_TRAN_SETTINGS:
2127    {
2128	struct ccb_trans_settings	*cts = &ccb->cts;
2129	int				bus, target;
2130	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2131	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2132
2133	cts->protocol = PROTO_SCSI;
2134	cts->protocol_version = SCSI_REV_2;
2135	cts->transport = XPORT_SPI;
2136	cts->transport_version = 2;
2137
2138	scsi->flags = 0;
2139	scsi->valid = 0;
2140	spi->flags = 0;
2141	spi->valid = 0;
2142
2143	bus = cam_sim_bus(sim);
2144	target = cts->ccb_h.target_id;
2145	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2146	/* logical device? */
2147	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2148	    /* nothing special for these */
2149	/* physical device? */
2150	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2151	    /* allow CAM to try tagged transactions */
2152	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2153	    scsi->valid |= CTS_SCSI_VALID_TQ;
2154
2155	    /* convert speed (MHz) to usec */
2156	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2157		spi->sync_period = 1000000 / 5;
2158	    } else {
2159		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2160	    }
2161
2162	    /* convert bus width to CAM internal encoding */
2163	    switch (sc->mly_btl[bus][target].mb_width) {
2164	    case 32:
2165		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2166		break;
2167	    case 16:
2168		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2169		break;
2170	    case 8:
2171	    default:
2172		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2173		break;
2174	    }
2175	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2176
2177	    /* not a device, bail out */
2178	} else {
2179	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2180	    break;
2181	}
2182
2183	/* disconnect always OK */
2184	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2185	spi->valid |= CTS_SPI_VALID_DISC;
2186
2187	cts->ccb_h.status = CAM_REQ_CMP;
2188	break;
2189    }
2190
2191    default:		/* we can't do this */
2192	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2193	ccb->ccb_h.status = CAM_REQ_INVALID;
2194	break;
2195    }
2196
2197    xpt_done(ccb);
2198}
2199
2200/********************************************************************************
2201 * Handle an I/O operation requested by CAM
2202 */
2203static int
2204mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2205{
2206    struct mly_softc			*sc = cam_sim_softc(sim);
2207    struct mly_command			*mc;
2208    struct mly_command_scsi_small	*ss;
2209    int					bus, target;
2210    int					error;
2211
2212    bus = cam_sim_bus(sim);
2213    target = csio->ccb_h.target_id;
2214
2215    debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2216
2217    /* validate bus number */
2218    if (!MLY_BUS_IS_VALID(sc, bus)) {
2219	debug(0, " invalid bus %d", bus);
2220	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2221    }
2222
2223    /*  check for I/O attempt to a protected device */
2224    if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2225	debug(2, "  device protected");
2226	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2227    }
2228
2229    /* check for I/O attempt to nonexistent device */
2230    if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2231	debug(2, "  device %d:%d does not exist", bus, target);
2232	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2233    }
2234
2235    /* XXX increase if/when we support large SCSI commands */
2236    if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2237	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2238	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2239    }
2240
2241    /* check that the CDB pointer is not to a physical address */
2242    if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2243	debug(0, "  CDB pointer is to physical address");
2244	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2245    }
2246
2247    /* abandon aborted ccbs or those that have failed validation */
2248    if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2249	debug(2, "abandoning CCB due to abort/validation failure");
2250	return(EINVAL);
2251    }
2252
2253    /*
2254     * Get a command, or push the ccb back to CAM and freeze the queue.
2255     */
2256    if ((error = mly_alloc_command(sc, &mc))) {
2257	xpt_freeze_simq(sim, 1);
2258	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2259	sc->mly_qfrzn_cnt++;
2260	return(error);
2261    }
2262
2263    /* build the command */
2264    mc->mc_data = csio;
2265    mc->mc_length = csio->dxfer_len;
2266    mc->mc_complete = mly_cam_complete;
2267    mc->mc_private = csio;
2268    mc->mc_flags |= MLY_CMD_CCB;
2269    /* XXX This code doesn't set the data direction in mc_flags. */
2270
2271    /* save the bus number in the ccb for later recovery XXX should be a better way */
2272     csio->ccb_h.sim_priv.entries[0].field = bus;
2273
2274    /* build the packet for the controller */
2275    ss = &mc->mc_packet->scsi_small;
2276    ss->opcode = MDACMD_SCSI;
2277    if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2278	ss->command_control.disable_disconnect = 1;
2279    if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2280	ss->command_control.data_direction = MLY_CCB_WRITE;
2281    ss->data_size = csio->dxfer_len;
2282    ss->addr.phys.lun = csio->ccb_h.target_lun;
2283    ss->addr.phys.target = csio->ccb_h.target_id;
2284    ss->addr.phys.channel = bus;
2285    if (csio->ccb_h.timeout < (60 * 1000)) {
2286	ss->timeout.value = csio->ccb_h.timeout / 1000;
2287	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2288    } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2289	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2290	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2291    } else {
2292	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2293	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2294    }
2295    ss->maximum_sense_size = csio->sense_len;
2296    ss->cdb_length = csio->cdb_len;
2297    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2298	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2299    } else {
2300	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2301    }
2302
2303    /* give the command to the controller */
2304    if ((error = mly_start(mc))) {
2305	xpt_freeze_simq(sim, 1);
2306	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2307	sc->mly_qfrzn_cnt++;
2308	return(error);
2309    }
2310
2311    return(0);
2312}
2313
2314/********************************************************************************
2315 * Check for possibly-completed commands.
2316 */
2317static void
2318mly_cam_poll(struct cam_sim *sim)
2319{
2320    struct mly_softc	*sc = cam_sim_softc(sim);
2321
2322    debug_called(2);
2323
2324    mly_done(sc);
2325}
2326
2327/********************************************************************************
2328 * Handle completion of a command - pass results back through the CCB
2329 */
2330static void
2331mly_cam_complete(struct mly_command *mc)
2332{
2333    struct mly_softc		*sc = mc->mc_sc;
2334    struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2335    struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2336    struct mly_btl		*btl;
2337    u_int8_t			cmd;
2338    int				bus, target;
2339
2340    debug_called(2);
2341
2342    csio->scsi_status = mc->mc_status;
2343    switch(mc->mc_status) {
2344    case SCSI_STATUS_OK:
2345	/*
2346	 * In order to report logical device type and status, we overwrite
2347	 * the result of the INQUIRY command to logical devices.
2348	 */
2349	bus = csio->ccb_h.sim_priv.entries[0].field;
2350	target = csio->ccb_h.target_id;
2351	/* XXX validate bus/target? */
2352	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2353	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2354		cmd = *csio->cdb_io.cdb_ptr;
2355	    } else {
2356		cmd = csio->cdb_io.cdb_bytes[0];
2357	    }
2358	    if (cmd == INQUIRY) {
2359		btl = &sc->mly_btl[bus][target];
2360		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2361		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2362		padstr(inq->revision, "", 4);
2363	    }
2364	}
2365
2366	debug(2, "SCSI_STATUS_OK");
2367	csio->ccb_h.status = CAM_REQ_CMP;
2368	break;
2369
2370    case SCSI_STATUS_CHECK_COND:
2371	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2372	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2373	bzero(&csio->sense_data, SSD_FULL_SIZE);
2374	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2375	csio->sense_len = mc->mc_sense;
2376	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2377	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2378	break;
2379
2380    case SCSI_STATUS_BUSY:
2381	debug(1, "SCSI_STATUS_BUSY");
2382	csio->ccb_h.status = CAM_SCSI_BUSY;
2383	break;
2384
2385    default:
2386	debug(1, "unknown status 0x%x", csio->scsi_status);
2387	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2388	break;
2389    }
2390
2391    if (sc->mly_qfrzn_cnt) {
2392	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2393	sc->mly_qfrzn_cnt--;
2394    }
2395
2396    xpt_done((union ccb *)csio);
2397    mly_release_command(mc);
2398}
2399
2400/********************************************************************************
2401 * Find a peripheral attahed at (bus),(target)
2402 */
2403static struct cam_periph *
2404mly_find_periph(struct mly_softc *sc, int bus, int target)
2405{
2406    struct cam_periph	*periph;
2407    struct cam_path	*path;
2408    int			status;
2409
2410    status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2411    if (status == CAM_REQ_CMP) {
2412	periph = cam_periph_find(path, NULL);
2413	xpt_free_path(path);
2414    } else {
2415	periph = NULL;
2416    }
2417    return(periph);
2418}
2419
2420/********************************************************************************
2421 * Name the device at (bus)(target)
2422 */
2423static int
2424mly_name_device(struct mly_softc *sc, int bus, int target)
2425{
2426    struct cam_periph	*periph;
2427
2428    if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2429	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2430	return(0);
2431    }
2432    sc->mly_btl[bus][target].mb_name[0] = 0;
2433    return(ENOENT);
2434}
2435
2436/********************************************************************************
2437 ********************************************************************************
2438                                                                 Hardware Control
2439 ********************************************************************************
2440 ********************************************************************************/
2441
2442/********************************************************************************
2443 * Handshake with the firmware while the card is being initialised.
2444 */
2445static int
2446mly_fwhandshake(struct mly_softc *sc)
2447{
2448    u_int8_t	error, param0, param1;
2449    int		spinup = 0;
2450
2451    debug_called(1);
2452
2453    /* set HM_STSACK and let the firmware initialise */
2454    MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2455    DELAY(1000);	/* too short? */
2456
2457    /* if HM_STSACK is still true, the controller is initialising */
2458    if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2459	return(0);
2460    mly_printf(sc, "controller initialisation started\n");
2461
2462    /* spin waiting for initialisation to finish, or for a message to be delivered */
2463    while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2464	/* check for a message */
2465	if (MLY_ERROR_VALID(sc)) {
2466	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2467	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2468	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2469
2470	    switch(error) {
2471	    case MLY_MSG_SPINUP:
2472		if (!spinup) {
2473		    mly_printf(sc, "drive spinup in progress\n");
2474		    spinup = 1;			/* only print this once (should print drive being spun?) */
2475		}
2476		break;
2477	    case MLY_MSG_RACE_RECOVERY_FAIL:
2478		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2479		break;
2480	    case MLY_MSG_RACE_IN_PROGRESS:
2481		mly_printf(sc, "mirror race recovery in progress\n");
2482		break;
2483	    case MLY_MSG_RACE_ON_CRITICAL:
2484		mly_printf(sc, "mirror race recovery on a critical drive\n");
2485		break;
2486	    case MLY_MSG_PARITY_ERROR:
2487		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2488		return(ENXIO);
2489	    default:
2490		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2491	    }
2492	}
2493    }
2494    return(0);
2495}
2496
2497/********************************************************************************
2498 ********************************************************************************
2499                                                        Debugging and Diagnostics
2500 ********************************************************************************
2501 ********************************************************************************/
2502
2503/********************************************************************************
2504 * Print some information about the controller.
2505 */
2506static void
2507mly_describe_controller(struct mly_softc *sc)
2508{
2509    struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2510
2511    mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2512	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2513	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2514	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2515	       mi->memory_size);
2516
2517    if (bootverbose) {
2518	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2519		   mly_describe_code(mly_table_oemname, mi->oem_information),
2520		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2521		   mi->interface_speed, mi->interface_width, mi->interface_name);
2522	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2523		   mi->memory_size, mi->memory_speed, mi->memory_width,
2524		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2525		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2526		   mi->cache_size);
2527	mly_printf(sc, "CPU: %s @ %dMHz\n",
2528		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2529	if (mi->l2cache_size != 0)
2530	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2531	if (mi->exmemory_size != 0)
2532	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2533		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2534		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2535		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2536	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2537	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2538		   mi->maximum_block_count, mi->maximum_sg_entries);
2539	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2540		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2541	mly_printf(sc, "physical devices present %d\n",
2542		   mi->physical_devices_present);
2543	mly_printf(sc, "physical disks present/offline %d/%d\n",
2544		   mi->physical_disks_present, mi->physical_disks_offline);
2545	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2546		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2547		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2548		   mi->virtual_channels_possible);
2549	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2550	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2551		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2552    }
2553}
2554
2555#ifdef MLY_DEBUG
2556/********************************************************************************
2557 * Print some controller state
2558 */
2559static void
2560mly_printstate(struct mly_softc *sc)
2561{
2562    mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2563		  MLY_GET_REG(sc, sc->mly_idbr),
2564		  MLY_GET_REG(sc, sc->mly_odbr),
2565		  MLY_GET_REG(sc, sc->mly_error_status),
2566		  sc->mly_idbr,
2567		  sc->mly_odbr,
2568		  sc->mly_error_status);
2569    mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2570		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2571		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2572    mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2573		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2574		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2575		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2576		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2577		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2578		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2579		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2580		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2581    mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2582		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2583		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2584		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2585		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2586		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2587		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2588		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2589		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2590    mly_printf(sc, "        %04x        %08x\n",
2591		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2592		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2593}
2594
2595struct mly_softc	*mly_softc0 = NULL;
2596void
2597mly_printstate0(void)
2598{
2599    if (mly_softc0 != NULL)
2600	mly_printstate(mly_softc0);
2601}
2602
2603/********************************************************************************
2604 * Print a command
2605 */
2606static void
2607mly_print_command(struct mly_command *mc)
2608{
2609    struct mly_softc	*sc = mc->mc_sc;
2610
2611    mly_printf(sc, "COMMAND @ %p\n", mc);
2612    mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2613    mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2614    mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2615    mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2616    mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2617    if (mc->mc_packet != NULL)
2618	mly_print_packet(mc);
2619    mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2620    mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2621    mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2622    mly_printf(sc, "  private   %p\n", mc->mc_private);
2623}
2624
2625/********************************************************************************
2626 * Print a command packet
2627 */
2628static void
2629mly_print_packet(struct mly_command *mc)
2630{
2631    struct mly_softc			*sc = mc->mc_sc;
2632    struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2633    struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2634    struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2635    struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2636    int					transfer;
2637
2638    mly_printf(sc, "   command_id           %d\n", ge->command_id);
2639    mly_printf(sc, "   opcode               %d\n", ge->opcode);
2640    mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2641		  ge->command_control.force_unit_access,
2642		  ge->command_control.disable_page_out,
2643		  ge->command_control.extended_sg_table,
2644		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2645		  ge->command_control.no_auto_sense,
2646		  ge->command_control.disable_disconnect);
2647    mly_printf(sc, "   data_size            %d\n", ge->data_size);
2648    mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2649    mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2650    mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2651    mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2652    mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2653    mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2654    mly_printf(sc, "   timeout              %d %s\n",
2655		  ge->timeout.value,
2656		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2657		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2658    mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2659    switch(ge->opcode) {
2660    case MDACMD_SCSIPT:
2661    case MDACMD_SCSI:
2662	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2663	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2664	transfer = 1;
2665	break;
2666    case MDACMD_SCSILC:
2667    case MDACMD_SCSILCPT:
2668	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2669	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2670	transfer = 1;
2671	break;
2672    case MDACMD_IOCTL:
2673	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2674	switch(io->sub_ioctl) {
2675	case MDACIOCTL_SETMEMORYMAILBOX:
2676	    mly_printf(sc, "   health_buffer_size   %d\n",
2677			  io->param.setmemorymailbox.health_buffer_size);
2678	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2679			  io->param.setmemorymailbox.health_buffer_physaddr);
2680	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2681			  io->param.setmemorymailbox.command_mailbox_physaddr);
2682	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2683			  io->param.setmemorymailbox.status_mailbox_physaddr);
2684	    transfer = 0;
2685	    break;
2686
2687	case MDACIOCTL_SETREALTIMECLOCK:
2688	case MDACIOCTL_GETHEALTHSTATUS:
2689	case MDACIOCTL_GETCONTROLLERINFO:
2690	case MDACIOCTL_GETLOGDEVINFOVALID:
2691	case MDACIOCTL_GETPHYSDEVINFOVALID:
2692	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2693	case MDACIOCTL_GETLOGDEVSTATISTICS:
2694	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2695	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2696	case MDACIOCTL_CREATENEWCONF:
2697	case MDACIOCTL_ADDNEWCONF:
2698	case MDACIOCTL_GETDEVCONFINFO:
2699	case MDACIOCTL_GETFREESPACELIST:
2700	case MDACIOCTL_MORE:
2701	case MDACIOCTL_SETPHYSDEVPARAMETER:
2702	case MDACIOCTL_GETPHYSDEVPARAMETER:
2703	case MDACIOCTL_GETLOGDEVPARAMETER:
2704	case MDACIOCTL_SETLOGDEVPARAMETER:
2705	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2706	    transfer = 1;
2707	    break;
2708
2709	case MDACIOCTL_GETEVENT:
2710	    mly_printf(sc, "   event                %d\n",
2711		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2712	    transfer = 1;
2713	    break;
2714
2715	case MDACIOCTL_SETRAIDDEVSTATE:
2716	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2717	    transfer = 0;
2718	    break;
2719
2720	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2721	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2722	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2723	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2724	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2725	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2726	    transfer = 0;
2727	    break;
2728
2729	case MDACIOCTL_GETGROUPCONFINFO:
2730	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2731	    transfer = 1;
2732	    break;
2733
2734	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2735	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2736	case MDACIOCTL_STARTDISOCVERY:
2737	case MDACIOCTL_INITPHYSDEVSTART:
2738	case MDACIOCTL_INITPHYSDEVSTOP:
2739	case MDACIOCTL_INITRAIDDEVSTART:
2740	case MDACIOCTL_INITRAIDDEVSTOP:
2741	case MDACIOCTL_REBUILDRAIDDEVSTART:
2742	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2743	case MDACIOCTL_MAKECONSISTENTDATASTART:
2744	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2745	case MDACIOCTL_CONSISTENCYCHECKSTART:
2746	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2747	case MDACIOCTL_RESETDEVICE:
2748	case MDACIOCTL_FLUSHDEVICEDATA:
2749	case MDACIOCTL_PAUSEDEVICE:
2750	case MDACIOCTL_UNPAUSEDEVICE:
2751	case MDACIOCTL_LOCATEDEVICE:
2752	case MDACIOCTL_SETMASTERSLAVEMODE:
2753	case MDACIOCTL_DELETERAIDDEV:
2754	case MDACIOCTL_REPLACEINTERNALDEV:
2755	case MDACIOCTL_CLEARCONF:
2756	case MDACIOCTL_GETCONTROLLERPARAMETER:
2757	case MDACIOCTL_SETCONTRLLERPARAMETER:
2758	case MDACIOCTL_CLEARCONFSUSPMODE:
2759	case MDACIOCTL_STOREIMAGE:
2760	case MDACIOCTL_READIMAGE:
2761	case MDACIOCTL_FLASHIMAGES:
2762	case MDACIOCTL_RENAMERAIDDEV:
2763	default:			/* no idea what to print */
2764	    transfer = 0;
2765	    break;
2766	}
2767	break;
2768
2769    case MDACMD_IOCTLCHECK:
2770    case MDACMD_MEMCOPY:
2771    default:
2772	transfer = 0;
2773	break;	/* print nothing */
2774    }
2775    if (transfer) {
2776	if (ge->command_control.extended_sg_table) {
2777	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2778			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2779	} else {
2780	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2781			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2782	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2783			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2784	}
2785    }
2786}
2787
2788/********************************************************************************
2789 * Panic in a slightly informative fashion
2790 */
2791static void
2792mly_panic(struct mly_softc *sc, char *reason)
2793{
2794    mly_printstate(sc);
2795    panic(reason);
2796}
2797
2798/********************************************************************************
2799 * Print queue statistics, callable from DDB.
2800 */
2801void
2802mly_print_controller(int controller)
2803{
2804    struct mly_softc	*sc;
2805
2806    if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2807	printf("mly: controller %d invalid\n", controller);
2808    } else {
2809	device_printf(sc->mly_dev, "queue    curr max\n");
2810	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2811		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2812	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2813		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2814	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2815		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2816    }
2817}
2818#endif
2819
2820
2821/********************************************************************************
2822 ********************************************************************************
2823                                                         Control device interface
2824 ********************************************************************************
2825 ********************************************************************************/
2826
2827/********************************************************************************
2828 * Accept an open operation on the control device.
2829 */
2830static int
2831mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2832{
2833    struct mly_softc	*sc = dev->si_drv1;
2834
2835    MLY_LOCK(sc);
2836    sc->mly_state |= MLY_STATE_OPEN;
2837    MLY_UNLOCK(sc);
2838    return(0);
2839}
2840
2841/********************************************************************************
2842 * Accept the last close on the control device.
2843 */
2844static int
2845mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2846{
2847    struct mly_softc	*sc = dev->si_drv1;
2848
2849    MLY_LOCK(sc);
2850    sc->mly_state &= ~MLY_STATE_OPEN;
2851    MLY_UNLOCK(sc);
2852    return (0);
2853}
2854
2855/********************************************************************************
2856 * Handle controller-specific control operations.
2857 */
2858static int
2859mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2860				int32_t flag, struct thread *td)
2861{
2862    struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2863    struct mly_user_command	*uc = (struct mly_user_command *)addr;
2864    struct mly_user_health	*uh = (struct mly_user_health *)addr;
2865
2866    switch(cmd) {
2867    case MLYIO_COMMAND:
2868	return(mly_user_command(sc, uc));
2869    case MLYIO_HEALTH:
2870	return(mly_user_health(sc, uh));
2871    default:
2872	return(ENOIOCTL);
2873    }
2874}
2875
2876/********************************************************************************
2877 * Execute a command passed in from userspace.
2878 *
2879 * The control structure contains the actual command for the controller, as well
2880 * as the user-space data pointer and data size, and an optional sense buffer
2881 * size/pointer.  On completion, the data size is adjusted to the command
2882 * residual, and the sense buffer size to the size of the returned sense data.
2883 *
2884 */
2885static int
2886mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2887{
2888    struct mly_command	*mc;
2889    int			error;
2890
2891    /* allocate a command */
2892    MLY_LOCK(sc);
2893    if (mly_alloc_command(sc, &mc)) {
2894	MLY_UNLOCK(sc);
2895	return (ENOMEM);	/* XXX Linux version will wait for a command */
2896    }
2897    MLY_UNLOCK(sc);
2898
2899    /* handle data size/direction */
2900    mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2901    if (mc->mc_length > 0) {
2902	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2903	    error = ENOMEM;
2904	    goto out;
2905	}
2906    }
2907    if (uc->DataTransferLength > 0) {
2908	mc->mc_flags |= MLY_CMD_DATAIN;
2909	bzero(mc->mc_data, mc->mc_length);
2910    }
2911    if (uc->DataTransferLength < 0) {
2912	mc->mc_flags |= MLY_CMD_DATAOUT;
2913	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2914	    goto out;
2915    }
2916
2917    /* copy the controller command */
2918    bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2919
2920    /* clear command completion handler so that we get woken up */
2921    mc->mc_complete = NULL;
2922
2923    /* execute the command */
2924    MLY_LOCK(sc);
2925    if ((error = mly_start(mc)) != 0) {
2926	MLY_UNLOCK(sc);
2927	goto out;
2928    }
2929    while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2930	mtx_sleep(mc, &sc->mly_lock, PRIBIO, "mlyioctl", 0);
2931    MLY_UNLOCK(sc);
2932
2933    /* return the data to userspace */
2934    if (uc->DataTransferLength > 0)
2935	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2936	    goto out;
2937
2938    /* return the sense buffer to userspace */
2939    if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2940	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2941			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2942	    goto out;
2943    }
2944
2945    /* return command results to userspace (caller will copy out) */
2946    uc->DataTransferLength = mc->mc_resid;
2947    uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2948    uc->CommandStatus = mc->mc_status;
2949    error = 0;
2950
2951 out:
2952    if (mc->mc_data != NULL)
2953	free(mc->mc_data, M_DEVBUF);
2954    MLY_LOCK(sc);
2955    mly_release_command(mc);
2956    MLY_UNLOCK(sc);
2957    return(error);
2958}
2959
2960/********************************************************************************
2961 * Return health status to userspace.  If the health change index in the user
2962 * structure does not match that currently exported by the controller, we
2963 * return the current status immediately.  Otherwise, we block until either
2964 * interrupted or new status is delivered.
2965 */
2966static int
2967mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2968{
2969    struct mly_health_status		mh;
2970    int					error;
2971
2972    /* fetch the current health status from userspace */
2973    if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2974	return(error);
2975
2976    /* spin waiting for a status update */
2977    MLY_LOCK(sc);
2978    error = EWOULDBLOCK;
2979    while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2980	error = mtx_sleep(&sc->mly_event_change, &sc->mly_lock, PRIBIO | PCATCH,
2981	    "mlyhealth", 0);
2982    mh = sc->mly_mmbox->mmm_health.status;
2983    MLY_UNLOCK(sc);
2984
2985    /* copy the controller's health status buffer out */
2986    error = copyout(&mh, uh->HealthStatusBuffer, sizeof(mh));
2987    return(error);
2988}
2989
2990#ifdef MLY_DEBUG
2991static void
2992mly_timeout(void *arg)
2993{
2994	struct mly_softc *sc;
2995	struct mly_command *mc;
2996	int deadline;
2997
2998	sc = arg;
2999	MLY_ASSERT_LOCKED(sc);
3000	deadline = time_second - MLY_CMD_TIMEOUT;
3001	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
3002		if ((mc->mc_timestamp < deadline)) {
3003			device_printf(sc->mly_dev,
3004			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
3005			    (int)(time_second - mc->mc_timestamp));
3006		}
3007	}
3008
3009	callout_reset(&sc->mly_timeout, MLY_CMD_TIMEOUT * hz, mly_timeout, sc);
3010}
3011#endif
3012