1/*
2 * lcs.c :  routines for creating an lcs
3 *
4 * ====================================================================
5 *    Licensed to the Apache Software Foundation (ASF) under one
6 *    or more contributor license agreements.  See the NOTICE file
7 *    distributed with this work for additional information
8 *    regarding copyright ownership.  The ASF licenses this file
9 *    to you under the Apache License, Version 2.0 (the
10 *    "License"); you may not use this file except in compliance
11 *    with the License.  You may obtain a copy of the License at
12 *
13 *      http://www.apache.org/licenses/LICENSE-2.0
14 *
15 *    Unless required by applicable law or agreed to in writing,
16 *    software distributed under the License is distributed on an
17 *    "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
18 *    KIND, either express or implied.  See the License for the
19 *    specific language governing permissions and limitations
20 *    under the License.
21 * ====================================================================
22 */
23
24
25#include <apr.h>
26#include <apr_pools.h>
27#include <apr_general.h>
28
29#include "diff.h"
30
31
32/*
33 * Calculate the Longest Common Subsequence (LCS) between two datasources.
34 * This function is what makes the diff code tick.
35 *
36 * The LCS algorithm implemented here is based on the approach described
37 * by Sun Wu, Udi Manber and Gene Meyers in "An O(NP) Sequence Comparison
38 * Algorithm", but has been modified for better performance.
39 *
40 * Let M and N be the lengths (number of tokens) of the two sources
41 * ('files'). The goal is to reach the end of both sources (files) with the
42 * minimum number of insertions + deletions. Since there is a known length
43 * difference N-M between the files, that is equivalent to just the minimum
44 * number of deletions, or equivalently the minimum number of insertions.
45 * For symmetry, we use the lesser number - deletions if M<N, insertions if
46 * M>N.
47 *
48 * Let 'k' be the difference in remaining length between the files, i.e.
49 * if we're at the beginning of both files, k=N-M, whereas k=0 for the
50 * 'end state', at the end of both files. An insertion will increase k by
51 * one, while a deletion decreases k by one. If k<0, then insertions are
52 * 'free' - we need those to reach the end state k=0 anyway - but deletions
53 * are costly: Adding a deletion means that we will have to add an additional
54 * insertion later to reach the end state, so it doesn't matter if we count
55 * deletions or insertions. Similarly, deletions are free for k>0.
56 *
57 * Let a 'state' be a given position in each file {pos1, pos2}. An array
58 * 'fp' keeps track of the best possible state (largest values of
59 * {pos1, pos2}) that can be achieved for a given cost 'p' (# moves away
60 * from k=0), as well as a linked list of what matches were used to reach
61 * that state. For each new value of p, we find for each value of k the
62 * best achievable state for that k - either by doing a costly operation
63 * (deletion if k<0) from a state achieved at a lower p, or doing a free
64 * operation (insertion if k<0) from a state achieved at the same p -
65 * and in both cases advancing past any matching regions found. This is
66 * handled by running loops over k in order of descending absolute value.
67 *
68 * A recent improvement of the algorithm is to ignore tokens that are unique
69 * to one file or the other, as those are known from the start to be
70 * impossible to match.
71 */
72
73typedef struct svn_diff__snake_t svn_diff__snake_t;
74
75struct svn_diff__snake_t
76{
77    apr_off_t             y;
78    svn_diff__lcs_t      *lcs;
79    svn_diff__position_t *position[2];
80};
81
82static APR_INLINE void
83svn_diff__snake(svn_diff__snake_t *fp_k,
84                svn_diff__token_index_t *token_counts[2],
85                svn_diff__lcs_t **freelist,
86                apr_pool_t *pool)
87{
88  svn_diff__position_t *start_position[2];
89  svn_diff__position_t *position[2];
90  svn_diff__lcs_t *lcs;
91  svn_diff__lcs_t *previous_lcs;
92
93  /* The previous entry at fp[k] is going to be replaced.  See if we
94   * can mark that lcs node for reuse, because the sequence up to this
95   * point was a dead end.
96   */
97  lcs = fp_k[0].lcs;
98  while (lcs)
99    {
100      lcs->refcount--;
101      if (lcs->refcount)
102        break;
103
104      previous_lcs = lcs->next;
105      lcs->next = *freelist;
106      *freelist = lcs;
107      lcs = previous_lcs;
108    }
109
110  if (fp_k[-1].y >= fp_k[1].y)
111    {
112      start_position[0] = fp_k[-1].position[0];
113      start_position[1] = fp_k[-1].position[1]->next;
114
115      previous_lcs = fp_k[-1].lcs;
116    }
117  else
118    {
119      start_position[0] = fp_k[1].position[0]->next;
120      start_position[1] = fp_k[1].position[1];
121
122      previous_lcs = fp_k[1].lcs;
123    }
124
125
126  if (previous_lcs)
127    {
128      previous_lcs->refcount++;
129    }
130
131  /* ### Optimization, skip all positions that don't have matchpoints
132   * ### anyway. Beware of the sentinel, don't skip it!
133   */
134
135  position[0] = start_position[0];
136  position[1] = start_position[1];
137
138  while (1)
139    {
140      while (position[0]->token_index == position[1]->token_index)
141        {
142          position[0] = position[0]->next;
143          position[1] = position[1]->next;
144        }
145
146      if (position[1] != start_position[1])
147        {
148          lcs = *freelist;
149          if (lcs)
150            {
151              *freelist = lcs->next;
152            }
153          else
154            {
155              lcs = apr_palloc(pool, sizeof(*lcs));
156            }
157
158          lcs->position[0] = start_position[0];
159          lcs->position[1] = start_position[1];
160          lcs->length = position[1]->offset - start_position[1]->offset;
161          lcs->next = previous_lcs;
162          lcs->refcount = 1;
163          previous_lcs = lcs;
164          start_position[0] = position[0];
165          start_position[1] = position[1];
166        }
167
168      /* Skip any and all tokens that only occur in one of the files */
169      if (position[0]->token_index >= 0
170          && token_counts[1][position[0]->token_index] == 0)
171        start_position[0] = position[0] = position[0]->next;
172      else if (position[1]->token_index >= 0
173               && token_counts[0][position[1]->token_index] == 0)
174        start_position[1] = position[1] = position[1]->next;
175      else
176        break;
177    }
178
179  fp_k[0].lcs = previous_lcs;
180  fp_k[0].position[0] = position[0];
181  fp_k[0].position[1] = position[1];
182
183  fp_k[0].y = position[1]->offset;
184}
185
186
187static svn_diff__lcs_t *
188svn_diff__lcs_reverse(svn_diff__lcs_t *lcs)
189{
190  svn_diff__lcs_t *next;
191  svn_diff__lcs_t *prev;
192
193  next = NULL;
194  while (lcs != NULL)
195    {
196      prev = lcs->next;
197      lcs->next = next;
198      next = lcs;
199      lcs = prev;
200    }
201
202  return next;
203}
204
205
206/* Prepends a new lcs chunk for the amount of LINES at the given positions
207 * POS0_OFFSET and POS1_OFFSET to the given LCS chain, and returns it.
208 * This function assumes LINES > 0. */
209static svn_diff__lcs_t *
210prepend_lcs(svn_diff__lcs_t *lcs, apr_off_t lines,
211            apr_off_t pos0_offset, apr_off_t pos1_offset,
212            apr_pool_t *pool)
213{
214  svn_diff__lcs_t *new_lcs;
215
216  SVN_ERR_ASSERT_NO_RETURN(lines > 0);
217
218  new_lcs = apr_palloc(pool, sizeof(*new_lcs));
219  new_lcs->position[0] = apr_pcalloc(pool, sizeof(*new_lcs->position[0]));
220  new_lcs->position[0]->offset = pos0_offset;
221  new_lcs->position[1] = apr_pcalloc(pool, sizeof(*new_lcs->position[1]));
222  new_lcs->position[1]->offset = pos1_offset;
223  new_lcs->length = lines;
224  new_lcs->refcount = 1;
225  new_lcs->next = lcs;
226
227  return new_lcs;
228}
229
230
231svn_diff__lcs_t *
232svn_diff__lcs(svn_diff__position_t *position_list1, /* pointer to tail (ring) */
233              svn_diff__position_t *position_list2, /* pointer to tail (ring) */
234              svn_diff__token_index_t *token_counts_list1, /* array of counts */
235              svn_diff__token_index_t *token_counts_list2, /* array of counts */
236              svn_diff__token_index_t num_tokens,
237              apr_off_t prefix_lines,
238              apr_off_t suffix_lines,
239              apr_pool_t *pool)
240{
241  apr_off_t length[2];
242  svn_diff__token_index_t *token_counts[2];
243  svn_diff__token_index_t unique_count[2];
244  svn_diff__token_index_t token_index;
245  svn_diff__snake_t *fp;
246  apr_off_t d;
247  apr_off_t k;
248  apr_off_t p = 0;
249  svn_diff__lcs_t *lcs, *lcs_freelist = NULL;
250
251  svn_diff__position_t sentinel_position[2];
252
253  /* Since EOF is always a sync point we tack on an EOF link
254   * with sentinel positions
255   */
256  lcs = apr_palloc(pool, sizeof(*lcs));
257  lcs->position[0] = apr_pcalloc(pool, sizeof(*lcs->position[0]));
258  lcs->position[0]->offset = position_list1
259                             ? position_list1->offset + suffix_lines + 1
260                             : prefix_lines + suffix_lines + 1;
261  lcs->position[1] = apr_pcalloc(pool, sizeof(*lcs->position[1]));
262  lcs->position[1]->offset = position_list2
263                             ? position_list2->offset + suffix_lines + 1
264                             : prefix_lines + suffix_lines + 1;
265  lcs->length = 0;
266  lcs->refcount = 1;
267  lcs->next = NULL;
268
269  if (position_list1 == NULL || position_list2 == NULL)
270    {
271      if (suffix_lines)
272        lcs = prepend_lcs(lcs, suffix_lines,
273                          lcs->position[0]->offset - suffix_lines,
274                          lcs->position[1]->offset - suffix_lines,
275                          pool);
276      if (prefix_lines)
277        lcs = prepend_lcs(lcs, prefix_lines, 1, 1, pool);
278
279      return lcs;
280    }
281
282  unique_count[1] = unique_count[0] = 0;
283  for (token_index = 0; token_index < num_tokens; token_index++)
284    {
285      if (token_counts_list1[token_index] == 0)
286        unique_count[1] += token_counts_list2[token_index];
287      if (token_counts_list2[token_index] == 0)
288        unique_count[0] += token_counts_list1[token_index];
289    }
290
291  /* Calculate lengths M and N of the sequences to be compared. Do not
292   * count tokens unique to one file, as those are ignored in __snake.
293   */
294  length[0] = position_list1->offset - position_list1->next->offset + 1
295              - unique_count[0];
296  length[1] = position_list2->offset - position_list2->next->offset + 1
297              - unique_count[1];
298
299  /* strikerXXX: here we allocate the furthest point array, which is
300   * strikerXXX: sized M + N + 3 (!)
301   */
302  fp = apr_pcalloc(pool,
303                   sizeof(*fp) * (apr_size_t)(length[0] + length[1] + 3));
304
305  /* The origo of fp corresponds to the end state, where we are
306   * at the end of both files. The valid states thus span from
307   * -N (at end of first file and at the beginning of the second
308   * file) to +M (the opposite :). Finally, svn_diff__snake needs
309   * 1 extra slot on each side to work.
310   */
311  fp += length[1] + 1;
312
313  sentinel_position[0].next = position_list1->next;
314  position_list1->next = &sentinel_position[0];
315  sentinel_position[0].offset = position_list1->offset + 1;
316  token_counts[0] = token_counts_list1;
317
318  sentinel_position[1].next = position_list2->next;
319  position_list2->next = &sentinel_position[1];
320  sentinel_position[1].offset = position_list2->offset + 1;
321  token_counts[1] = token_counts_list2;
322
323  /* Negative indices will not be used elsewhere
324   */
325  sentinel_position[0].token_index = -1;
326  sentinel_position[1].token_index = -2;
327
328  /* position d = M - N corresponds to the initial state, where
329   * we are at the beginning of both files.
330   */
331  d = length[0] - length[1];
332
333  /* k = d - 1 will be the first to be used to get previous
334   * position information from, make sure it holds sane
335   * data
336   */
337  fp[d - 1].position[0] = sentinel_position[0].next;
338  fp[d - 1].position[1] = &sentinel_position[1];
339
340  p = 0;
341  do
342    {
343      /* For k < 0, insertions are free */
344      for (k = (d < 0 ? d : 0) - p; k < 0; k++)
345        {
346          svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool);
347        }
348      /* for k > 0, deletions are free */
349      for (k = (d > 0 ? d : 0) + p; k >= 0; k--)
350        {
351          svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool);
352        }
353
354      p++;
355    }
356  while (fp[0].position[1] != &sentinel_position[1]);
357
358  if (suffix_lines)
359    lcs->next = prepend_lcs(fp[0].lcs, suffix_lines,
360                            lcs->position[0]->offset - suffix_lines,
361                            lcs->position[1]->offset - suffix_lines,
362                            pool);
363  else
364    lcs->next = fp[0].lcs;
365
366  lcs = svn_diff__lcs_reverse(lcs);
367
368  position_list1->next = sentinel_position[0].next;
369  position_list2->next = sentinel_position[1].next;
370
371  if (prefix_lines)
372    return prepend_lcs(lcs, prefix_lines, 1, 1, pool);
373  else
374    return lcs;
375}
376