/* * lcs.c : routines for creating an lcs * * ==================================================================== * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * ==================================================================== */ #include #include #include #include "diff.h" /* * Calculate the Longest Common Subsequence (LCS) between two datasources. * This function is what makes the diff code tick. * * The LCS algorithm implemented here is based on the approach described * by Sun Wu, Udi Manber and Gene Meyers in "An O(NP) Sequence Comparison * Algorithm", but has been modified for better performance. * * Let M and N be the lengths (number of tokens) of the two sources * ('files'). The goal is to reach the end of both sources (files) with the * minimum number of insertions + deletions. Since there is a known length * difference N-M between the files, that is equivalent to just the minimum * number of deletions, or equivalently the minimum number of insertions. * For symmetry, we use the lesser number - deletions if MN. * * Let 'k' be the difference in remaining length between the files, i.e. * if we're at the beginning of both files, k=N-M, whereas k=0 for the * 'end state', at the end of both files. An insertion will increase k by * one, while a deletion decreases k by one. If k<0, then insertions are * 'free' - we need those to reach the end state k=0 anyway - but deletions * are costly: Adding a deletion means that we will have to add an additional * insertion later to reach the end state, so it doesn't matter if we count * deletions or insertions. Similarly, deletions are free for k>0. * * Let a 'state' be a given position in each file {pos1, pos2}. An array * 'fp' keeps track of the best possible state (largest values of * {pos1, pos2}) that can be achieved for a given cost 'p' (# moves away * from k=0), as well as a linked list of what matches were used to reach * that state. For each new value of p, we find for each value of k the * best achievable state for that k - either by doing a costly operation * (deletion if k<0) from a state achieved at a lower p, or doing a free * operation (insertion if k<0) from a state achieved at the same p - * and in both cases advancing past any matching regions found. This is * handled by running loops over k in order of descending absolute value. * * A recent improvement of the algorithm is to ignore tokens that are unique * to one file or the other, as those are known from the start to be * impossible to match. */ typedef struct svn_diff__snake_t svn_diff__snake_t; struct svn_diff__snake_t { apr_off_t y; svn_diff__lcs_t *lcs; svn_diff__position_t *position[2]; }; static APR_INLINE void svn_diff__snake(svn_diff__snake_t *fp_k, svn_diff__token_index_t *token_counts[2], svn_diff__lcs_t **freelist, apr_pool_t *pool) { svn_diff__position_t *start_position[2]; svn_diff__position_t *position[2]; svn_diff__lcs_t *lcs; svn_diff__lcs_t *previous_lcs; /* The previous entry at fp[k] is going to be replaced. See if we * can mark that lcs node for reuse, because the sequence up to this * point was a dead end. */ lcs = fp_k[0].lcs; while (lcs) { lcs->refcount--; if (lcs->refcount) break; previous_lcs = lcs->next; lcs->next = *freelist; *freelist = lcs; lcs = previous_lcs; } if (fp_k[-1].y >= fp_k[1].y) { start_position[0] = fp_k[-1].position[0]; start_position[1] = fp_k[-1].position[1]->next; previous_lcs = fp_k[-1].lcs; } else { start_position[0] = fp_k[1].position[0]->next; start_position[1] = fp_k[1].position[1]; previous_lcs = fp_k[1].lcs; } if (previous_lcs) { previous_lcs->refcount++; } /* ### Optimization, skip all positions that don't have matchpoints * ### anyway. Beware of the sentinel, don't skip it! */ position[0] = start_position[0]; position[1] = start_position[1]; while (1) { while (position[0]->token_index == position[1]->token_index) { position[0] = position[0]->next; position[1] = position[1]->next; } if (position[1] != start_position[1]) { lcs = *freelist; if (lcs) { *freelist = lcs->next; } else { lcs = apr_palloc(pool, sizeof(*lcs)); } lcs->position[0] = start_position[0]; lcs->position[1] = start_position[1]; lcs->length = position[1]->offset - start_position[1]->offset; lcs->next = previous_lcs; lcs->refcount = 1; previous_lcs = lcs; start_position[0] = position[0]; start_position[1] = position[1]; } /* Skip any and all tokens that only occur in one of the files */ if (position[0]->token_index >= 0 && token_counts[1][position[0]->token_index] == 0) start_position[0] = position[0] = position[0]->next; else if (position[1]->token_index >= 0 && token_counts[0][position[1]->token_index] == 0) start_position[1] = position[1] = position[1]->next; else break; } fp_k[0].lcs = previous_lcs; fp_k[0].position[0] = position[0]; fp_k[0].position[1] = position[1]; fp_k[0].y = position[1]->offset; } static svn_diff__lcs_t * svn_diff__lcs_reverse(svn_diff__lcs_t *lcs) { svn_diff__lcs_t *next; svn_diff__lcs_t *prev; next = NULL; while (lcs != NULL) { prev = lcs->next; lcs->next = next; next = lcs; lcs = prev; } return next; } /* Prepends a new lcs chunk for the amount of LINES at the given positions * POS0_OFFSET and POS1_OFFSET to the given LCS chain, and returns it. * This function assumes LINES > 0. */ static svn_diff__lcs_t * prepend_lcs(svn_diff__lcs_t *lcs, apr_off_t lines, apr_off_t pos0_offset, apr_off_t pos1_offset, apr_pool_t *pool) { svn_diff__lcs_t *new_lcs; SVN_ERR_ASSERT_NO_RETURN(lines > 0); new_lcs = apr_palloc(pool, sizeof(*new_lcs)); new_lcs->position[0] = apr_pcalloc(pool, sizeof(*new_lcs->position[0])); new_lcs->position[0]->offset = pos0_offset; new_lcs->position[1] = apr_pcalloc(pool, sizeof(*new_lcs->position[1])); new_lcs->position[1]->offset = pos1_offset; new_lcs->length = lines; new_lcs->refcount = 1; new_lcs->next = lcs; return new_lcs; } svn_diff__lcs_t * svn_diff__lcs(svn_diff__position_t *position_list1, /* pointer to tail (ring) */ svn_diff__position_t *position_list2, /* pointer to tail (ring) */ svn_diff__token_index_t *token_counts_list1, /* array of counts */ svn_diff__token_index_t *token_counts_list2, /* array of counts */ svn_diff__token_index_t num_tokens, apr_off_t prefix_lines, apr_off_t suffix_lines, apr_pool_t *pool) { apr_off_t length[2]; svn_diff__token_index_t *token_counts[2]; svn_diff__token_index_t unique_count[2]; svn_diff__token_index_t token_index; svn_diff__snake_t *fp; apr_off_t d; apr_off_t k; apr_off_t p = 0; svn_diff__lcs_t *lcs, *lcs_freelist = NULL; svn_diff__position_t sentinel_position[2]; /* Since EOF is always a sync point we tack on an EOF link * with sentinel positions */ lcs = apr_palloc(pool, sizeof(*lcs)); lcs->position[0] = apr_pcalloc(pool, sizeof(*lcs->position[0])); lcs->position[0]->offset = position_list1 ? position_list1->offset + suffix_lines + 1 : prefix_lines + suffix_lines + 1; lcs->position[1] = apr_pcalloc(pool, sizeof(*lcs->position[1])); lcs->position[1]->offset = position_list2 ? position_list2->offset + suffix_lines + 1 : prefix_lines + suffix_lines + 1; lcs->length = 0; lcs->refcount = 1; lcs->next = NULL; if (position_list1 == NULL || position_list2 == NULL) { if (suffix_lines) lcs = prepend_lcs(lcs, suffix_lines, lcs->position[0]->offset - suffix_lines, lcs->position[1]->offset - suffix_lines, pool); if (prefix_lines) lcs = prepend_lcs(lcs, prefix_lines, 1, 1, pool); return lcs; } unique_count[1] = unique_count[0] = 0; for (token_index = 0; token_index < num_tokens; token_index++) { if (token_counts_list1[token_index] == 0) unique_count[1] += token_counts_list2[token_index]; if (token_counts_list2[token_index] == 0) unique_count[0] += token_counts_list1[token_index]; } /* Calculate lengths M and N of the sequences to be compared. Do not * count tokens unique to one file, as those are ignored in __snake. */ length[0] = position_list1->offset - position_list1->next->offset + 1 - unique_count[0]; length[1] = position_list2->offset - position_list2->next->offset + 1 - unique_count[1]; /* strikerXXX: here we allocate the furthest point array, which is * strikerXXX: sized M + N + 3 (!) */ fp = apr_pcalloc(pool, sizeof(*fp) * (apr_size_t)(length[0] + length[1] + 3)); /* The origo of fp corresponds to the end state, where we are * at the end of both files. The valid states thus span from * -N (at end of first file and at the beginning of the second * file) to +M (the opposite :). Finally, svn_diff__snake needs * 1 extra slot on each side to work. */ fp += length[1] + 1; sentinel_position[0].next = position_list1->next; position_list1->next = &sentinel_position[0]; sentinel_position[0].offset = position_list1->offset + 1; token_counts[0] = token_counts_list1; sentinel_position[1].next = position_list2->next; position_list2->next = &sentinel_position[1]; sentinel_position[1].offset = position_list2->offset + 1; token_counts[1] = token_counts_list2; /* Negative indices will not be used elsewhere */ sentinel_position[0].token_index = -1; sentinel_position[1].token_index = -2; /* position d = M - N corresponds to the initial state, where * we are at the beginning of both files. */ d = length[0] - length[1]; /* k = d - 1 will be the first to be used to get previous * position information from, make sure it holds sane * data */ fp[d - 1].position[0] = sentinel_position[0].next; fp[d - 1].position[1] = &sentinel_position[1]; p = 0; do { /* For k < 0, insertions are free */ for (k = (d < 0 ? d : 0) - p; k < 0; k++) { svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool); } /* for k > 0, deletions are free */ for (k = (d > 0 ? d : 0) + p; k >= 0; k--) { svn_diff__snake(fp + k, token_counts, &lcs_freelist, pool); } p++; } while (fp[0].position[1] != &sentinel_position[1]); if (suffix_lines) lcs->next = prepend_lcs(fp[0].lcs, suffix_lines, lcs->position[0]->offset - suffix_lines, lcs->position[1]->offset - suffix_lines, pool); else lcs->next = fp[0].lcs; lcs = svn_diff__lcs_reverse(lcs); position_list1->next = sentinel_position[0].next; position_list2->next = sentinel_position[1].next; if (prefix_lines) return prepend_lcs(lcs, prefix_lines, 1, 1, pool); else return lcs; }