1//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass looks for safe point where the prologue and epilogue can be
10// inserted.
11// The safe point for the prologue (resp. epilogue) is called Save
12// (resp. Restore).
13// A point is safe for prologue (resp. epilogue) if and only if
14// it 1) dominates (resp. post-dominates) all the frame related operations and
15// between 2) two executions of the Save (resp. Restore) point there is an
16// execution of the Restore (resp. Save) point.
17//
18// For instance, the following points are safe:
19// for (int i = 0; i < 10; ++i) {
20//   Save
21//   ...
22//   Restore
23// }
24// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25// And the following points are not:
26// for (int i = 0; i < 10; ++i) {
27//   Save
28//   ...
29// }
30// for (int i = 0; i < 10; ++i) {
31//   ...
32//   Restore
33// }
34// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
35//
36// This pass also ensures that the safe points are 3) cheaper than the regular
37// entry and exits blocks.
38//
39// Property #1 is ensured via the use of MachineDominatorTree and
40// MachinePostDominatorTree.
41// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42// points must be in the same loop.
43// Property #3 is ensured via the MachineBlockFrequencyInfo.
44//
45// If this pass found points matching all these properties, then
46// MachineFrameInfo is updated with this information.
47//
48//===----------------------------------------------------------------------===//
49
50#include "llvm/ADT/BitVector.h"
51#include "llvm/ADT/PostOrderIterator.h"
52#include "llvm/ADT/SetVector.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/Statistic.h"
55#include "llvm/Analysis/CFG.h"
56#include "llvm/CodeGen/MachineBasicBlock.h"
57#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58#include "llvm/CodeGen/MachineDominators.h"
59#include "llvm/CodeGen/MachineFrameInfo.h"
60#include "llvm/CodeGen/MachineFunction.h"
61#include "llvm/CodeGen/MachineFunctionPass.h"
62#include "llvm/CodeGen/MachineInstr.h"
63#include "llvm/CodeGen/MachineLoopInfo.h"
64#include "llvm/CodeGen/MachineOperand.h"
65#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
66#include "llvm/CodeGen/MachinePostDominators.h"
67#include "llvm/CodeGen/RegisterClassInfo.h"
68#include "llvm/CodeGen/RegisterScavenging.h"
69#include "llvm/CodeGen/TargetFrameLowering.h"
70#include "llvm/CodeGen/TargetInstrInfo.h"
71#include "llvm/CodeGen/TargetLowering.h"
72#include "llvm/CodeGen/TargetRegisterInfo.h"
73#include "llvm/CodeGen/TargetSubtargetInfo.h"
74#include "llvm/IR/Attributes.h"
75#include "llvm/IR/Function.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/MC/MCAsmInfo.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/Target/TargetMachine.h"
84#include <cassert>
85#include <cstdint>
86#include <memory>
87
88using namespace llvm;
89
90#define DEBUG_TYPE "shrink-wrap"
91
92STATISTIC(NumFunc, "Number of functions");
93STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
94STATISTIC(NumCandidatesDropped,
95          "Number of shrink-wrapping candidates dropped because of frequency");
96
97static cl::opt<cl::boolOrDefault>
98EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
99                    cl::desc("enable the shrink-wrapping pass"));
100
101namespace {
102
103/// Class to determine where the safe point to insert the
104/// prologue and epilogue are.
105/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
106/// shrink-wrapping term for prologue/epilogue placement, this pass
107/// does not rely on expensive data-flow analysis. Instead we use the
108/// dominance properties and loop information to decide which point
109/// are safe for such insertion.
110class ShrinkWrap : public MachineFunctionPass {
111  /// Hold callee-saved information.
112  RegisterClassInfo RCI;
113  MachineDominatorTree *MDT;
114  MachinePostDominatorTree *MPDT;
115
116  /// Current safe point found for the prologue.
117  /// The prologue will be inserted before the first instruction
118  /// in this basic block.
119  MachineBasicBlock *Save;
120
121  /// Current safe point found for the epilogue.
122  /// The epilogue will be inserted before the first terminator instruction
123  /// in this basic block.
124  MachineBasicBlock *Restore;
125
126  /// Hold the information of the basic block frequency.
127  /// Use to check the profitability of the new points.
128  MachineBlockFrequencyInfo *MBFI;
129
130  /// Hold the loop information. Used to determine if Save and Restore
131  /// are in the same loop.
132  MachineLoopInfo *MLI;
133
134  // Emit remarks.
135  MachineOptimizationRemarkEmitter *ORE = nullptr;
136
137  /// Frequency of the Entry block.
138  uint64_t EntryFreq;
139
140  /// Current opcode for frame setup.
141  unsigned FrameSetupOpcode;
142
143  /// Current opcode for frame destroy.
144  unsigned FrameDestroyOpcode;
145
146  /// Stack pointer register, used by llvm.{savestack,restorestack}
147  unsigned SP;
148
149  /// Entry block.
150  const MachineBasicBlock *Entry;
151
152  using SetOfRegs = SmallSetVector<unsigned, 16>;
153
154  /// Registers that need to be saved for the current function.
155  mutable SetOfRegs CurrentCSRs;
156
157  /// Current MachineFunction.
158  MachineFunction *MachineFunc;
159
160  /// Check if \p MI uses or defines a callee-saved register or
161  /// a frame index. If this is the case, this means \p MI must happen
162  /// after Save and before Restore.
163  bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
164
165  const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
166    if (CurrentCSRs.empty()) {
167      BitVector SavedRegs;
168      const TargetFrameLowering *TFI =
169          MachineFunc->getSubtarget().getFrameLowering();
170
171      TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
172
173      for (int Reg = SavedRegs.find_first(); Reg != -1;
174           Reg = SavedRegs.find_next(Reg))
175        CurrentCSRs.insert((unsigned)Reg);
176    }
177    return CurrentCSRs;
178  }
179
180  /// Update the Save and Restore points such that \p MBB is in
181  /// the region that is dominated by Save and post-dominated by Restore
182  /// and Save and Restore still match the safe point definition.
183  /// Such point may not exist and Save and/or Restore may be null after
184  /// this call.
185  void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
186
187  /// Initialize the pass for \p MF.
188  void init(MachineFunction &MF) {
189    RCI.runOnMachineFunction(MF);
190    MDT = &getAnalysis<MachineDominatorTree>();
191    MPDT = &getAnalysis<MachinePostDominatorTree>();
192    Save = nullptr;
193    Restore = nullptr;
194    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
195    MLI = &getAnalysis<MachineLoopInfo>();
196    ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
197    EntryFreq = MBFI->getEntryFreq();
198    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
199    const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
200    FrameSetupOpcode = TII.getCallFrameSetupOpcode();
201    FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
202    SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
203    Entry = &MF.front();
204    CurrentCSRs.clear();
205    MachineFunc = &MF;
206
207    ++NumFunc;
208  }
209
210  /// Check whether or not Save and Restore points are still interesting for
211  /// shrink-wrapping.
212  bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
213
214  /// Check if shrink wrapping is enabled for this target and function.
215  static bool isShrinkWrapEnabled(const MachineFunction &MF);
216
217public:
218  static char ID;
219
220  ShrinkWrap() : MachineFunctionPass(ID) {
221    initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
222  }
223
224  void getAnalysisUsage(AnalysisUsage &AU) const override {
225    AU.setPreservesAll();
226    AU.addRequired<MachineBlockFrequencyInfo>();
227    AU.addRequired<MachineDominatorTree>();
228    AU.addRequired<MachinePostDominatorTree>();
229    AU.addRequired<MachineLoopInfo>();
230    AU.addRequired<MachineOptimizationRemarkEmitterPass>();
231    MachineFunctionPass::getAnalysisUsage(AU);
232  }
233
234  MachineFunctionProperties getRequiredProperties() const override {
235    return MachineFunctionProperties().set(
236      MachineFunctionProperties::Property::NoVRegs);
237  }
238
239  StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
240
241  /// Perform the shrink-wrapping analysis and update
242  /// the MachineFrameInfo attached to \p MF with the results.
243  bool runOnMachineFunction(MachineFunction &MF) override;
244};
245
246} // end anonymous namespace
247
248char ShrinkWrap::ID = 0;
249
250char &llvm::ShrinkWrapID = ShrinkWrap::ID;
251
252INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
253INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
254INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
255INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
256INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
257INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
258INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
259
260bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
261                                 RegScavenger *RS) const {
262  // This prevents premature stack popping when occurs a indirect stack
263  // access. It is overly aggressive for the moment.
264  // TODO: - Obvious non-stack loads and store, such as global values,
265  //         are known to not access the stack.
266  //       - Further, data dependency and alias analysis can validate
267  //         that load and stores never derive from the stack pointer.
268  if (MI.mayLoadOrStore())
269    return true;
270
271  if (MI.getOpcode() == FrameSetupOpcode ||
272      MI.getOpcode() == FrameDestroyOpcode) {
273    LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
274    return true;
275  }
276  for (const MachineOperand &MO : MI.operands()) {
277    bool UseOrDefCSR = false;
278    if (MO.isReg()) {
279      // Ignore instructions like DBG_VALUE which don't read/def the register.
280      if (!MO.isDef() && !MO.readsReg())
281        continue;
282      Register PhysReg = MO.getReg();
283      if (!PhysReg)
284        continue;
285      assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
286      // The stack pointer is not normally described as a callee-saved register
287      // in calling convention definitions, so we need to watch for it
288      // separately. An SP mentioned by a call instruction, we can ignore,
289      // though, as it's harmless and we do not want to effectively disable tail
290      // calls by forcing the restore point to post-dominate them.
291      UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
292                    RCI.getLastCalleeSavedAlias(PhysReg);
293    } else if (MO.isRegMask()) {
294      // Check if this regmask clobbers any of the CSRs.
295      for (unsigned Reg : getCurrentCSRs(RS)) {
296        if (MO.clobbersPhysReg(Reg)) {
297          UseOrDefCSR = true;
298          break;
299        }
300      }
301    }
302    // Skip FrameIndex operands in DBG_VALUE instructions.
303    if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
304      LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
305                        << MO.isFI() << "): " << MI << '\n');
306      return true;
307    }
308  }
309  return false;
310}
311
312/// Helper function to find the immediate (post) dominator.
313template <typename ListOfBBs, typename DominanceAnalysis>
314static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
315                                   DominanceAnalysis &Dom) {
316  MachineBasicBlock *IDom = &Block;
317  for (MachineBasicBlock *BB : BBs) {
318    IDom = Dom.findNearestCommonDominator(IDom, BB);
319    if (!IDom)
320      break;
321  }
322  if (IDom == &Block)
323    return nullptr;
324  return IDom;
325}
326
327void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
328                                         RegScavenger *RS) {
329  // Get rid of the easy cases first.
330  if (!Save)
331    Save = &MBB;
332  else
333    Save = MDT->findNearestCommonDominator(Save, &MBB);
334
335  if (!Save) {
336    LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
337    return;
338  }
339
340  if (!Restore)
341    Restore = &MBB;
342  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
343                                // means the block never returns. If that's the
344                                // case, we don't want to call
345                                // `findNearestCommonDominator`, which will
346                                // return `Restore`.
347    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
348  else
349    Restore = nullptr; // Abort, we can't find a restore point in this case.
350
351  // Make sure we would be able to insert the restore code before the
352  // terminator.
353  if (Restore == &MBB) {
354    for (const MachineInstr &Terminator : MBB.terminators()) {
355      if (!useOrDefCSROrFI(Terminator, RS))
356        continue;
357      // One of the terminator needs to happen before the restore point.
358      if (MBB.succ_empty()) {
359        Restore = nullptr; // Abort, we can't find a restore point in this case.
360        break;
361      }
362      // Look for a restore point that post-dominates all the successors.
363      // The immediate post-dominator is what we are looking for.
364      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
365      break;
366    }
367  }
368
369  if (!Restore) {
370    LLVM_DEBUG(
371        dbgs() << "Restore point needs to be spanned on several blocks\n");
372    return;
373  }
374
375  // Make sure Save and Restore are suitable for shrink-wrapping:
376  // 1. all path from Save needs to lead to Restore before exiting.
377  // 2. all path to Restore needs to go through Save from Entry.
378  // We achieve that by making sure that:
379  // A. Save dominates Restore.
380  // B. Restore post-dominates Save.
381  // C. Save and Restore are in the same loop.
382  bool SaveDominatesRestore = false;
383  bool RestorePostDominatesSave = false;
384  while (Save && Restore &&
385         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
386          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
387          // Post-dominance is not enough in loops to ensure that all uses/defs
388          // are after the prologue and before the epilogue at runtime.
389          // E.g.,
390          // while(1) {
391          //  Save
392          //  Restore
393          //   if (...)
394          //     break;
395          //  use/def CSRs
396          // }
397          // All the uses/defs of CSRs are dominated by Save and post-dominated
398          // by Restore. However, the CSRs uses are still reachable after
399          // Restore and before Save are executed.
400          //
401          // For now, just push the restore/save points outside of loops.
402          // FIXME: Refine the criteria to still find interesting cases
403          // for loops.
404          MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
405    // Fix (A).
406    if (!SaveDominatesRestore) {
407      Save = MDT->findNearestCommonDominator(Save, Restore);
408      continue;
409    }
410    // Fix (B).
411    if (!RestorePostDominatesSave)
412      Restore = MPDT->findNearestCommonDominator(Restore, Save);
413
414    // Fix (C).
415    if (Save && Restore &&
416        (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
417      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
418        // Push Save outside of this loop if immediate dominator is different
419        // from save block. If immediate dominator is not different, bail out.
420        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
421        if (!Save)
422          break;
423      } else {
424        // If the loop does not exit, there is no point in looking
425        // for a post-dominator outside the loop.
426        SmallVector<MachineBasicBlock*, 4> ExitBlocks;
427        MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
428        // Push Restore outside of this loop.
429        // Look for the immediate post-dominator of the loop exits.
430        MachineBasicBlock *IPdom = Restore;
431        for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
432          IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
433          if (!IPdom)
434            break;
435        }
436        // If the immediate post-dominator is not in a less nested loop,
437        // then we are stuck in a program with an infinite loop.
438        // In that case, we will not find a safe point, hence, bail out.
439        if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
440          Restore = IPdom;
441        else {
442          Restore = nullptr;
443          break;
444        }
445      }
446    }
447  }
448}
449
450static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
451                              StringRef RemarkName, StringRef RemarkMessage,
452                              const DiagnosticLocation &Loc,
453                              const MachineBasicBlock *MBB) {
454  ORE->emit([&]() {
455    return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
456           << RemarkMessage;
457  });
458
459  LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
460  return false;
461}
462
463bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
464  if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
465    return false;
466
467  LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
468
469  init(MF);
470
471  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
472  if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
473    // If MF is irreducible, a block may be in a loop without
474    // MachineLoopInfo reporting it. I.e., we may use the
475    // post-dominance property in loops, which lead to incorrect
476    // results. Moreover, we may miss that the prologue and
477    // epilogue are not in the same loop, leading to unbalanced
478    // construction/deconstruction of the stack frame.
479    return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
480                             "Irreducible CFGs are not supported yet.",
481                             MF.getFunction().getSubprogram(), &MF.front());
482  }
483
484  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
485  std::unique_ptr<RegScavenger> RS(
486      TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
487
488  for (MachineBasicBlock &MBB : MF) {
489    LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
490                      << MBB.getName() << '\n');
491
492    if (MBB.isEHFuncletEntry())
493      return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
494                               "EH Funclets are not supported yet.",
495                               MBB.front().getDebugLoc(), &MBB);
496
497    if (MBB.isEHPad()) {
498      // Push the prologue and epilogue outside of
499      // the region that may throw by making sure
500      // that all the landing pads are at least at the
501      // boundary of the save and restore points.
502      // The problem with exceptions is that the throw
503      // is not properly modeled and in particular, a
504      // basic block can jump out from the middle.
505      updateSaveRestorePoints(MBB, RS.get());
506      if (!ArePointsInteresting()) {
507        LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
508        return false;
509      }
510      continue;
511    }
512
513    for (const MachineInstr &MI : MBB) {
514      if (!useOrDefCSROrFI(MI, RS.get()))
515        continue;
516      // Save (resp. restore) point must dominate (resp. post dominate)
517      // MI. Look for the proper basic block for those.
518      updateSaveRestorePoints(MBB, RS.get());
519      // If we are at a point where we cannot improve the placement of
520      // save/restore instructions, just give up.
521      if (!ArePointsInteresting()) {
522        LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
523        return false;
524      }
525      // No need to look for other instructions, this basic block
526      // will already be part of the handled region.
527      break;
528    }
529  }
530  if (!ArePointsInteresting()) {
531    // If the points are not interesting at this point, then they must be null
532    // because it means we did not encounter any frame/CSR related code.
533    // Otherwise, we would have returned from the previous loop.
534    assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
535    LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
536    return false;
537  }
538
539  LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
540                    << '\n');
541
542  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
543  do {
544    LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
545                      << Save->getNumber() << ' ' << Save->getName() << ' '
546                      << MBFI->getBlockFreq(Save).getFrequency()
547                      << "\nRestore: " << Restore->getNumber() << ' '
548                      << Restore->getName() << ' '
549                      << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
550
551    bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
552    if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
553         EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
554        ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
555         TFI->canUseAsEpilogue(*Restore)))
556      break;
557    LLVM_DEBUG(
558        dbgs() << "New points are too expensive or invalid for the target\n");
559    MachineBasicBlock *NewBB;
560    if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
561      Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
562      if (!Save)
563        break;
564      NewBB = Save;
565    } else {
566      // Restore is expensive.
567      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
568      if (!Restore)
569        break;
570      NewBB = Restore;
571    }
572    updateSaveRestorePoints(*NewBB, RS.get());
573  } while (Save && Restore);
574
575  if (!ArePointsInteresting()) {
576    ++NumCandidatesDropped;
577    return false;
578  }
579
580  LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
581                    << Save->getNumber() << ' ' << Save->getName()
582                    << "\nRestore: " << Restore->getNumber() << ' '
583                    << Restore->getName() << '\n');
584
585  MachineFrameInfo &MFI = MF.getFrameInfo();
586  MFI.setSavePoint(Save);
587  MFI.setRestorePoint(Restore);
588  ++NumCandidates;
589  return false;
590}
591
592bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
593  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
594
595  switch (EnableShrinkWrapOpt) {
596  case cl::BOU_UNSET:
597    return TFI->enableShrinkWrapping(MF) &&
598           // Windows with CFI has some limitations that make it impossible
599           // to use shrink-wrapping.
600           !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
601           // Sanitizers look at the value of the stack at the location
602           // of the crash. Since a crash can happen anywhere, the
603           // frame must be lowered before anything else happen for the
604           // sanitizers to be able to get a correct stack frame.
605           !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
606             MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
607             MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
608             MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
609  // If EnableShrinkWrap is set, it takes precedence on whatever the
610  // target sets. The rational is that we assume we want to test
611  // something related to shrink-wrapping.
612  case cl::BOU_TRUE:
613    return true;
614  case cl::BOU_FALSE:
615    return false;
616  }
617  llvm_unreachable("Invalid shrink-wrapping state");
618}
619