//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass looks for safe point where the prologue and epilogue can be // inserted. // The safe point for the prologue (resp. epilogue) is called Save // (resp. Restore). // A point is safe for prologue (resp. epilogue) if and only if // it 1) dominates (resp. post-dominates) all the frame related operations and // between 2) two executions of the Save (resp. Restore) point there is an // execution of the Restore (resp. Save) point. // // For instance, the following points are safe: // for (int i = 0; i < 10; ++i) { // Save // ... // Restore // } // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... // And the following points are not: // for (int i = 0; i < 10; ++i) { // Save // ... // } // for (int i = 0; i < 10; ++i) { // ... // Restore // } // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. // // This pass also ensures that the safe points are 3) cheaper than the regular // entry and exits blocks. // // Property #1 is ensured via the use of MachineDominatorTree and // MachinePostDominatorTree. // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both // points must be in the same loop. // Property #3 is ensured via the MachineBlockFrequencyInfo. // // If this pass found points matching all these properties, then // MachineFrameInfo is updated with this information. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CFG.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "shrink-wrap" STATISTIC(NumFunc, "Number of functions"); STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); STATISTIC(NumCandidatesDropped, "Number of shrink-wrapping candidates dropped because of frequency"); static cl::opt EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, cl::desc("enable the shrink-wrapping pass")); namespace { /// Class to determine where the safe point to insert the /// prologue and epilogue are. /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the /// shrink-wrapping term for prologue/epilogue placement, this pass /// does not rely on expensive data-flow analysis. Instead we use the /// dominance properties and loop information to decide which point /// are safe for such insertion. class ShrinkWrap : public MachineFunctionPass { /// Hold callee-saved information. RegisterClassInfo RCI; MachineDominatorTree *MDT; MachinePostDominatorTree *MPDT; /// Current safe point found for the prologue. /// The prologue will be inserted before the first instruction /// in this basic block. MachineBasicBlock *Save; /// Current safe point found for the epilogue. /// The epilogue will be inserted before the first terminator instruction /// in this basic block. MachineBasicBlock *Restore; /// Hold the information of the basic block frequency. /// Use to check the profitability of the new points. MachineBlockFrequencyInfo *MBFI; /// Hold the loop information. Used to determine if Save and Restore /// are in the same loop. MachineLoopInfo *MLI; // Emit remarks. MachineOptimizationRemarkEmitter *ORE = nullptr; /// Frequency of the Entry block. uint64_t EntryFreq; /// Current opcode for frame setup. unsigned FrameSetupOpcode; /// Current opcode for frame destroy. unsigned FrameDestroyOpcode; /// Stack pointer register, used by llvm.{savestack,restorestack} unsigned SP; /// Entry block. const MachineBasicBlock *Entry; using SetOfRegs = SmallSetVector; /// Registers that need to be saved for the current function. mutable SetOfRegs CurrentCSRs; /// Current MachineFunction. MachineFunction *MachineFunc; /// Check if \p MI uses or defines a callee-saved register or /// a frame index. If this is the case, this means \p MI must happen /// after Save and before Restore. bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { if (CurrentCSRs.empty()) { BitVector SavedRegs; const TargetFrameLowering *TFI = MachineFunc->getSubtarget().getFrameLowering(); TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); for (int Reg = SavedRegs.find_first(); Reg != -1; Reg = SavedRegs.find_next(Reg)) CurrentCSRs.insert((unsigned)Reg); } return CurrentCSRs; } /// Update the Save and Restore points such that \p MBB is in /// the region that is dominated by Save and post-dominated by Restore /// and Save and Restore still match the safe point definition. /// Such point may not exist and Save and/or Restore may be null after /// this call. void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); /// Initialize the pass for \p MF. void init(MachineFunction &MF) { RCI.runOnMachineFunction(MF); MDT = &getAnalysis(); MPDT = &getAnalysis(); Save = nullptr; Restore = nullptr; MBFI = &getAnalysis(); MLI = &getAnalysis(); ORE = &getAnalysis().getORE(); EntryFreq = MBFI->getEntryFreq(); const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); FrameSetupOpcode = TII.getCallFrameSetupOpcode(); FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); Entry = &MF.front(); CurrentCSRs.clear(); MachineFunc = &MF; ++NumFunc; } /// Check whether or not Save and Restore points are still interesting for /// shrink-wrapping. bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } /// Check if shrink wrapping is enabled for this target and function. static bool isShrinkWrapEnabled(const MachineFunction &MF); public: static char ID; ShrinkWrap() : MachineFunctionPass(ID) { initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "Shrink Wrapping analysis"; } /// Perform the shrink-wrapping analysis and update /// the MachineFrameInfo attached to \p MF with the results. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char ShrinkWrap::ID = 0; char &llvm::ShrinkWrapID = ShrinkWrap::ID; INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const { // This prevents premature stack popping when occurs a indirect stack // access. It is overly aggressive for the moment. // TODO: - Obvious non-stack loads and store, such as global values, // are known to not access the stack. // - Further, data dependency and alias analysis can validate // that load and stores never derive from the stack pointer. if (MI.mayLoadOrStore()) return true; if (MI.getOpcode() == FrameSetupOpcode || MI.getOpcode() == FrameDestroyOpcode) { LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); return true; } for (const MachineOperand &MO : MI.operands()) { bool UseOrDefCSR = false; if (MO.isReg()) { // Ignore instructions like DBG_VALUE which don't read/def the register. if (!MO.isDef() && !MO.readsReg()) continue; Register PhysReg = MO.getReg(); if (!PhysReg) continue; assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!"); // The stack pointer is not normally described as a callee-saved register // in calling convention definitions, so we need to watch for it // separately. An SP mentioned by a call instruction, we can ignore, // though, as it's harmless and we do not want to effectively disable tail // calls by forcing the restore point to post-dominate them. UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || RCI.getLastCalleeSavedAlias(PhysReg); } else if (MO.isRegMask()) { // Check if this regmask clobbers any of the CSRs. for (unsigned Reg : getCurrentCSRs(RS)) { if (MO.clobbersPhysReg(Reg)) { UseOrDefCSR = true; break; } } } // Skip FrameIndex operands in DBG_VALUE instructions. if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" << MO.isFI() << "): " << MI << '\n'); return true; } } return false; } /// Helper function to find the immediate (post) dominator. template static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, DominanceAnalysis &Dom) { MachineBasicBlock *IDom = &Block; for (MachineBasicBlock *BB : BBs) { IDom = Dom.findNearestCommonDominator(IDom, BB); if (!IDom) break; } if (IDom == &Block) return nullptr; return IDom; } void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS) { // Get rid of the easy cases first. if (!Save) Save = &MBB; else Save = MDT->findNearestCommonDominator(Save, &MBB); if (!Save) { LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); return; } if (!Restore) Restore = &MBB; else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it // means the block never returns. If that's the // case, we don't want to call // `findNearestCommonDominator`, which will // return `Restore`. Restore = MPDT->findNearestCommonDominator(Restore, &MBB); else Restore = nullptr; // Abort, we can't find a restore point in this case. // Make sure we would be able to insert the restore code before the // terminator. if (Restore == &MBB) { for (const MachineInstr &Terminator : MBB.terminators()) { if (!useOrDefCSROrFI(Terminator, RS)) continue; // One of the terminator needs to happen before the restore point. if (MBB.succ_empty()) { Restore = nullptr; // Abort, we can't find a restore point in this case. break; } // Look for a restore point that post-dominates all the successors. // The immediate post-dominator is what we are looking for. Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); break; } } if (!Restore) { LLVM_DEBUG( dbgs() << "Restore point needs to be spanned on several blocks\n"); return; } // Make sure Save and Restore are suitable for shrink-wrapping: // 1. all path from Save needs to lead to Restore before exiting. // 2. all path to Restore needs to go through Save from Entry. // We achieve that by making sure that: // A. Save dominates Restore. // B. Restore post-dominates Save. // C. Save and Restore are in the same loop. bool SaveDominatesRestore = false; bool RestorePostDominatesSave = false; while (Save && Restore && (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || // Post-dominance is not enough in loops to ensure that all uses/defs // are after the prologue and before the epilogue at runtime. // E.g., // while(1) { // Save // Restore // if (...) // break; // use/def CSRs // } // All the uses/defs of CSRs are dominated by Save and post-dominated // by Restore. However, the CSRs uses are still reachable after // Restore and before Save are executed. // // For now, just push the restore/save points outside of loops. // FIXME: Refine the criteria to still find interesting cases // for loops. MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { // Fix (A). if (!SaveDominatesRestore) { Save = MDT->findNearestCommonDominator(Save, Restore); continue; } // Fix (B). if (!RestorePostDominatesSave) Restore = MPDT->findNearestCommonDominator(Restore, Save); // Fix (C). if (Save && Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { // Push Save outside of this loop if immediate dominator is different // from save block. If immediate dominator is not different, bail out. Save = FindIDom<>(*Save, Save->predecessors(), *MDT); if (!Save) break; } else { // If the loop does not exit, there is no point in looking // for a post-dominator outside the loop. SmallVector ExitBlocks; MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); // Push Restore outside of this loop. // Look for the immediate post-dominator of the loop exits. MachineBasicBlock *IPdom = Restore; for (MachineBasicBlock *LoopExitBB: ExitBlocks) { IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); if (!IPdom) break; } // If the immediate post-dominator is not in a less nested loop, // then we are stuck in a program with an infinite loop. // In that case, we will not find a safe point, hence, bail out. if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) Restore = IPdom; else { Restore = nullptr; break; } } } } } static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, StringRef RemarkName, StringRef RemarkMessage, const DiagnosticLocation &Loc, const MachineBasicBlock *MBB) { ORE->emit([&]() { return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) << RemarkMessage; }); LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); return false; } bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) return false; LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); init(MF); ReversePostOrderTraversal RPOT(&*MF.begin()); if (containsIrreducibleCFG(RPOT, *MLI)) { // If MF is irreducible, a block may be in a loop without // MachineLoopInfo reporting it. I.e., we may use the // post-dominance property in loops, which lead to incorrect // results. Moreover, we may miss that the prologue and // epilogue are not in the same loop, leading to unbalanced // construction/deconstruction of the stack frame. return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", "Irreducible CFGs are not supported yet.", MF.getFunction().getSubprogram(), &MF.front()); } const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); std::unique_ptr RS( TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); for (MachineBasicBlock &MBB : MF) { LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName() << '\n'); if (MBB.isEHFuncletEntry()) return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", "EH Funclets are not supported yet.", MBB.front().getDebugLoc(), &MBB); if (MBB.isEHPad()) { // Push the prologue and epilogue outside of // the region that may throw by making sure // that all the landing pads are at least at the // boundary of the save and restore points. // The problem with exceptions is that the throw // is not properly modeled and in particular, a // basic block can jump out from the middle. updateSaveRestorePoints(MBB, RS.get()); if (!ArePointsInteresting()) { LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n"); return false; } continue; } for (const MachineInstr &MI : MBB) { if (!useOrDefCSROrFI(MI, RS.get())) continue; // Save (resp. restore) point must dominate (resp. post dominate) // MI. Look for the proper basic block for those. updateSaveRestorePoints(MBB, RS.get()); // If we are at a point where we cannot improve the placement of // save/restore instructions, just give up. if (!ArePointsInteresting()) { LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); return false; } // No need to look for other instructions, this basic block // will already be part of the handled region. break; } } if (!ArePointsInteresting()) { // If the points are not interesting at this point, then they must be null // because it means we did not encounter any frame/CSR related code. // Otherwise, we would have returned from the previous loop. assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); return false; } LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq << '\n'); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); do { LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " << Save->getNumber() << ' ' << Save->getName() << ' ' << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: " << Restore->getNumber() << ' ' << Restore->getName() << ' ' << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && TFI->canUseAsEpilogue(*Restore))) break; LLVM_DEBUG( dbgs() << "New points are too expensive or invalid for the target\n"); MachineBasicBlock *NewBB; if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { Save = FindIDom<>(*Save, Save->predecessors(), *MDT); if (!Save) break; NewBB = Save; } else { // Restore is expensive. Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); if (!Restore) break; NewBB = Restore; } updateSaveRestorePoints(*NewBB, RS.get()); } while (Save && Restore); if (!ArePointsInteresting()) { ++NumCandidatesDropped; return false; } LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber() << ' ' << Save->getName() << "\nRestore: " << Restore->getNumber() << ' ' << Restore->getName() << '\n'); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setSavePoint(Save); MFI.setRestorePoint(Restore); ++NumCandidates; return false; } bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); switch (EnableShrinkWrapOpt) { case cl::BOU_UNSET: return TFI->enableShrinkWrapping(MF) && // Windows with CFI has some limitations that make it impossible // to use shrink-wrapping. !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && // Sanitizers look at the value of the stack at the location // of the crash. Since a crash can happen anywhere, the // frame must be lowered before anything else happen for the // sanitizers to be able to get a correct stack frame. !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); // If EnableShrinkWrap is set, it takes precedence on whatever the // target sets. The rational is that we assume we want to test // something related to shrink-wrapping. case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } llvm_unreachable("Invalid shrink-wrapping state"); }