1//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "GDBRemoteRegisterContext.h"
10
11#include "lldb/Target/ExecutionContext.h"
12#include "lldb/Target/Target.h"
13#include "lldb/Utility/DataBufferHeap.h"
14#include "lldb/Utility/DataExtractor.h"
15#include "lldb/Utility/RegisterValue.h"
16#include "lldb/Utility/Scalar.h"
17#include "lldb/Utility/StreamString.h"
18#include "ProcessGDBRemote.h"
19#include "ProcessGDBRemoteLog.h"
20#include "ThreadGDBRemote.h"
21#include "Utility/ARM_DWARF_Registers.h"
22#include "Utility/ARM_ehframe_Registers.h"
23#include "lldb/Utility/StringExtractorGDBRemote.h"
24
25#include <memory>
26
27using namespace lldb;
28using namespace lldb_private;
29using namespace lldb_private::process_gdb_remote;
30
31// GDBRemoteRegisterContext constructor
32GDBRemoteRegisterContext::GDBRemoteRegisterContext(
33    ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
34    GDBRemoteDynamicRegisterInfo &reg_info, bool read_all_at_once,
35    bool write_all_at_once)
36    : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info),
37      m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once),
38      m_write_all_at_once(write_all_at_once) {
39  // Resize our vector of bools to contain one bool for every register. We will
40  // use these boolean values to know when a register value is valid in
41  // m_reg_data.
42  m_reg_valid.resize(reg_info.GetNumRegisters());
43
44  // Make a heap based buffer that is big enough to store all registers
45  DataBufferSP reg_data_sp(
46      new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0));
47  m_reg_data.SetData(reg_data_sp);
48  m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
49}
50
51// Destructor
52GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {}
53
54void GDBRemoteRegisterContext::InvalidateAllRegisters() {
55  SetAllRegisterValid(false);
56}
57
58void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
59  std::vector<bool>::iterator pos, end = m_reg_valid.end();
60  for (pos = m_reg_valid.begin(); pos != end; ++pos)
61    *pos = b;
62}
63
64size_t GDBRemoteRegisterContext::GetRegisterCount() {
65  return m_reg_info.GetNumRegisters();
66}
67
68const RegisterInfo *
69GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
70  RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg);
71
72  if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) {
73    const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture();
74    uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info);
75    reg_info->byte_size = reg_size;
76  }
77  return reg_info;
78}
79
80size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
81  return m_reg_info.GetNumRegisterSets();
82}
83
84const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
85  return m_reg_info.GetRegisterSet(reg_set);
86}
87
88bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
89                                            RegisterValue &value) {
90  // Read the register
91  if (ReadRegisterBytes(reg_info, m_reg_data)) {
92    const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
93    if (m_reg_valid[reg] == false)
94      return false;
95    const bool partial_data_ok = false;
96    Status error(value.SetValueFromData(
97        reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
98    return error.Success();
99  }
100  return false;
101}
102
103bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
104    uint32_t reg, llvm::ArrayRef<uint8_t> data) {
105  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
106  if (reg_info == nullptr)
107    return false;
108
109  // Invalidate if needed
110  InvalidateIfNeeded(false);
111
112  const size_t reg_byte_size = reg_info->byte_size;
113  memcpy(const_cast<uint8_t *>(
114             m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
115         data.data(), std::min(data.size(), reg_byte_size));
116  bool success = data.size() >= reg_byte_size;
117  if (success) {
118    SetRegisterIsValid(reg, true);
119  } else if (data.size() > 0) {
120    // Only set register is valid to false if we copied some bytes, else leave
121    // it as it was.
122    SetRegisterIsValid(reg, false);
123  }
124  return success;
125}
126
127bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
128                                                       uint64_t new_reg_val) {
129  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
130  if (reg_info == nullptr)
131    return false;
132
133  // Early in process startup, we can get a thread that has an invalid byte
134  // order because the process hasn't been completely set up yet (see the ctor
135  // where the byte order is setfrom the process).  If that's the case, we
136  // can't set the value here.
137  if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
138    return false;
139  }
140
141  // Invalidate if needed
142  InvalidateIfNeeded(false);
143
144  DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
145  DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
146
147  // If our register context and our register info disagree, which should never
148  // happen, don't overwrite past the end of the buffer.
149  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
150    return false;
151
152  // Grab a pointer to where we are going to put this register
153  uint8_t *dst = const_cast<uint8_t *>(
154      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
155
156  if (dst == nullptr)
157    return false;
158
159  if (data.CopyByteOrderedData(0,                          // src offset
160                               reg_info->byte_size,        // src length
161                               dst,                        // dst
162                               reg_info->byte_size,        // dst length
163                               m_reg_data.GetByteOrder())) // dst byte order
164  {
165    SetRegisterIsValid(reg, true);
166    return true;
167  }
168  return false;
169}
170
171// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
172bool GDBRemoteRegisterContext::GetPrimordialRegister(
173    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
174  const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
175  const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
176
177  if (DataBufferSP buffer_sp =
178          gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
179    return PrivateSetRegisterValue(
180        lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
181                                          buffer_sp->GetByteSize()));
182  return false;
183}
184
185bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info,
186                                                 DataExtractor &data) {
187  ExecutionContext exe_ctx(CalculateThread());
188
189  Process *process = exe_ctx.GetProcessPtr();
190  Thread *thread = exe_ctx.GetThreadPtr();
191  if (process == nullptr || thread == nullptr)
192    return false;
193
194  GDBRemoteCommunicationClient &gdb_comm(
195      ((ProcessGDBRemote *)process)->GetGDBRemote());
196
197  InvalidateIfNeeded(false);
198
199  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
200
201  if (!GetRegisterIsValid(reg)) {
202    if (m_read_all_at_once) {
203      if (DataBufferSP buffer_sp =
204              gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
205        memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
206               buffer_sp->GetBytes(),
207               std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
208        if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
209          SetAllRegisterValid(true);
210          return true;
211        } else if (buffer_sp->GetByteSize() > 0) {
212          const int regcount = m_reg_info.GetNumRegisters();
213          for (int i = 0; i < regcount; i++) {
214            struct RegisterInfo *reginfo = m_reg_info.GetRegisterInfoAtIndex(i);
215            if (reginfo->byte_offset + reginfo->byte_size
216                   <= buffer_sp->GetByteSize()) {
217              m_reg_valid[i] = true;
218            } else {
219              m_reg_valid[i] = false;
220            }
221          }
222          return true;
223        } else {
224          Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
225                                                                GDBR_LOG_PACKETS));
226          LLDB_LOGF(
227              log,
228              "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
229              "to read the "
230              "entire register context at once, expected at least %" PRId64
231              " bytes "
232              "but only got %" PRId64 " bytes.",
233              m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
234        }
235      }
236      return false;
237    }
238    if (reg_info->value_regs) {
239      // Process this composite register request by delegating to the
240      // constituent primordial registers.
241
242      // Index of the primordial register.
243      bool success = true;
244      for (uint32_t idx = 0; success; ++idx) {
245        const uint32_t prim_reg = reg_info->value_regs[idx];
246        if (prim_reg == LLDB_INVALID_REGNUM)
247          break;
248        // We have a valid primordial register as our constituent. Grab the
249        // corresponding register info.
250        const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg);
251        if (prim_reg_info == nullptr)
252          success = false;
253        else {
254          // Read the containing register if it hasn't already been read
255          if (!GetRegisterIsValid(prim_reg))
256            success = GetPrimordialRegister(prim_reg_info, gdb_comm);
257        }
258      }
259
260      if (success) {
261        // If we reach this point, all primordial register requests have
262        // succeeded. Validate this composite register.
263        SetRegisterIsValid(reg_info, true);
264      }
265    } else {
266      // Get each register individually
267      GetPrimordialRegister(reg_info, gdb_comm);
268    }
269
270    // Make sure we got a valid register value after reading it
271    if (!GetRegisterIsValid(reg))
272      return false;
273  }
274
275  if (&data != &m_reg_data) {
276    assert(m_reg_data.GetByteSize() >=
277           reg_info->byte_offset + reg_info->byte_size);
278    // If our register context and our register info disagree, which should
279    // never happen, don't read past the end of the buffer.
280    if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
281      return false;
282
283    // If we aren't extracting into our own buffer (which only happens when
284    // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then
285    // we transfer bytes from our buffer into the data buffer that was passed
286    // in
287
288    data.SetByteOrder(m_reg_data.GetByteOrder());
289    data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size);
290  }
291  return true;
292}
293
294bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
295                                             const RegisterValue &value) {
296  DataExtractor data;
297  if (value.GetData(data))
298    return WriteRegisterBytes(reg_info, data, 0);
299  return false;
300}
301
302// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
303bool GDBRemoteRegisterContext::SetPrimordialRegister(
304    const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
305  StreamString packet;
306  StringExtractorGDBRemote response;
307  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
308  // Invalidate just this register
309  SetRegisterIsValid(reg, false);
310
311  return gdb_comm.WriteRegister(
312      m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
313      {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
314       reg_info->byte_size});
315}
316
317bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
318                                                  DataExtractor &data,
319                                                  uint32_t data_offset) {
320  ExecutionContext exe_ctx(CalculateThread());
321
322  Process *process = exe_ctx.GetProcessPtr();
323  Thread *thread = exe_ctx.GetThreadPtr();
324  if (process == nullptr || thread == nullptr)
325    return false;
326
327  GDBRemoteCommunicationClient &gdb_comm(
328      ((ProcessGDBRemote *)process)->GetGDBRemote());
329
330  assert(m_reg_data.GetByteSize() >=
331         reg_info->byte_offset + reg_info->byte_size);
332
333  // If our register context and our register info disagree, which should never
334  // happen, don't overwrite past the end of the buffer.
335  if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
336    return false;
337
338  // Grab a pointer to where we are going to put this register
339  uint8_t *dst = const_cast<uint8_t *>(
340      m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
341
342  if (dst == nullptr)
343    return false;
344
345  if (data.CopyByteOrderedData(data_offset,                // src offset
346                               reg_info->byte_size,        // src length
347                               dst,                        // dst
348                               reg_info->byte_size,        // dst length
349                               m_reg_data.GetByteOrder())) // dst byte order
350  {
351    GDBRemoteClientBase::Lock lock(gdb_comm, false);
352    if (lock) {
353      if (m_write_all_at_once) {
354        // Invalidate all register values
355        InvalidateIfNeeded(true);
356
357        // Set all registers in one packet
358        if (gdb_comm.WriteAllRegisters(
359                m_thread.GetProtocolID(),
360                {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
361
362        {
363          SetAllRegisterValid(false);
364          return true;
365        }
366      } else {
367        bool success = true;
368
369        if (reg_info->value_regs) {
370          // This register is part of another register. In this case we read
371          // the actual register data for any "value_regs", and once all that
372          // data is read, we will have enough data in our register context
373          // bytes for the value of this register
374
375          // Invalidate this composite register first.
376
377          for (uint32_t idx = 0; success; ++idx) {
378            const uint32_t reg = reg_info->value_regs[idx];
379            if (reg == LLDB_INVALID_REGNUM)
380              break;
381            // We have a valid primordial register as our constituent. Grab the
382            // corresponding register info.
383            const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg);
384            if (value_reg_info == nullptr)
385              success = false;
386            else
387              success = SetPrimordialRegister(value_reg_info, gdb_comm);
388          }
389        } else {
390          // This is an actual register, write it
391          success = SetPrimordialRegister(reg_info, gdb_comm);
392        }
393
394        // Check if writing this register will invalidate any other register
395        // values? If so, invalidate them
396        if (reg_info->invalidate_regs) {
397          for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
398               reg != LLDB_INVALID_REGNUM;
399               reg = reg_info->invalidate_regs[++idx]) {
400            SetRegisterIsValid(reg, false);
401          }
402        }
403
404        return success;
405      }
406    } else {
407      Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
408                                                             GDBR_LOG_PACKETS));
409      if (log) {
410        if (log->GetVerbose()) {
411          StreamString strm;
412          gdb_comm.DumpHistory(strm);
413          LLDB_LOGF(log,
414                    "error: failed to get packet sequence mutex, not sending "
415                    "write register for \"%s\":\n%s",
416                    reg_info->name, strm.GetData());
417        } else
418          LLDB_LOGF(log,
419                    "error: failed to get packet sequence mutex, not sending "
420                    "write register for \"%s\"",
421                    reg_info->name);
422      }
423    }
424  }
425  return false;
426}
427
428bool GDBRemoteRegisterContext::ReadAllRegisterValues(
429    RegisterCheckpoint &reg_checkpoint) {
430  ExecutionContext exe_ctx(CalculateThread());
431
432  Process *process = exe_ctx.GetProcessPtr();
433  Thread *thread = exe_ctx.GetThreadPtr();
434  if (process == nullptr || thread == nullptr)
435    return false;
436
437  GDBRemoteCommunicationClient &gdb_comm(
438      ((ProcessGDBRemote *)process)->GetGDBRemote());
439
440  uint32_t save_id = 0;
441  if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
442    reg_checkpoint.SetID(save_id);
443    reg_checkpoint.GetData().reset();
444    return true;
445  } else {
446    reg_checkpoint.SetID(0); // Invalid save ID is zero
447    return ReadAllRegisterValues(reg_checkpoint.GetData());
448  }
449}
450
451bool GDBRemoteRegisterContext::WriteAllRegisterValues(
452    const RegisterCheckpoint &reg_checkpoint) {
453  uint32_t save_id = reg_checkpoint.GetID();
454  if (save_id != 0) {
455    ExecutionContext exe_ctx(CalculateThread());
456
457    Process *process = exe_ctx.GetProcessPtr();
458    Thread *thread = exe_ctx.GetThreadPtr();
459    if (process == nullptr || thread == nullptr)
460      return false;
461
462    GDBRemoteCommunicationClient &gdb_comm(
463        ((ProcessGDBRemote *)process)->GetGDBRemote());
464
465    return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
466  } else {
467    return WriteAllRegisterValues(reg_checkpoint.GetData());
468  }
469}
470
471bool GDBRemoteRegisterContext::ReadAllRegisterValues(
472    lldb::DataBufferSP &data_sp) {
473  ExecutionContext exe_ctx(CalculateThread());
474
475  Process *process = exe_ctx.GetProcessPtr();
476  Thread *thread = exe_ctx.GetThreadPtr();
477  if (process == nullptr || thread == nullptr)
478    return false;
479
480  GDBRemoteCommunicationClient &gdb_comm(
481      ((ProcessGDBRemote *)process)->GetGDBRemote());
482
483  const bool use_g_packet =
484      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
485
486  GDBRemoteClientBase::Lock lock(gdb_comm, false);
487  if (lock) {
488    if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
489      InvalidateAllRegisters();
490
491    if (use_g_packet &&
492        (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
493      return true;
494
495    // We're going to read each register
496    // individually and store them as binary data in a buffer.
497    const RegisterInfo *reg_info;
498
499    for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
500         i++) {
501      if (reg_info
502              ->value_regs) // skip registers that are slices of real registers
503        continue;
504      ReadRegisterBytes(reg_info, m_reg_data);
505      // ReadRegisterBytes saves the contents of the register in to the
506      // m_reg_data buffer
507    }
508    data_sp = std::make_shared<DataBufferHeap>(
509        m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize());
510    return true;
511  } else {
512
513    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
514                                                           GDBR_LOG_PACKETS));
515    if (log) {
516      if (log->GetVerbose()) {
517        StreamString strm;
518        gdb_comm.DumpHistory(strm);
519        LLDB_LOGF(log,
520                  "error: failed to get packet sequence mutex, not sending "
521                  "read all registers:\n%s",
522                  strm.GetData());
523      } else
524        LLDB_LOGF(log,
525                  "error: failed to get packet sequence mutex, not sending "
526                  "read all registers");
527    }
528  }
529
530  data_sp.reset();
531  return false;
532}
533
534bool GDBRemoteRegisterContext::WriteAllRegisterValues(
535    const lldb::DataBufferSP &data_sp) {
536  if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
537    return false;
538
539  ExecutionContext exe_ctx(CalculateThread());
540
541  Process *process = exe_ctx.GetProcessPtr();
542  Thread *thread = exe_ctx.GetThreadPtr();
543  if (process == nullptr || thread == nullptr)
544    return false;
545
546  GDBRemoteCommunicationClient &gdb_comm(
547      ((ProcessGDBRemote *)process)->GetGDBRemote());
548
549  const bool use_g_packet =
550      !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
551
552  GDBRemoteClientBase::Lock lock(gdb_comm, false);
553  if (lock) {
554    // The data_sp contains the G response packet.
555    if (use_g_packet) {
556      if (gdb_comm.WriteAllRegisters(
557              m_thread.GetProtocolID(),
558              {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
559        return true;
560
561      uint32_t num_restored = 0;
562      // We need to manually go through all of the registers and restore them
563      // manually
564      DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
565                                 m_reg_data.GetAddressByteSize());
566
567      const RegisterInfo *reg_info;
568
569      // The g packet contents may either include the slice registers
570      // (registers defined in terms of other registers, e.g. eax is a subset
571      // of rax) or not.  The slice registers should NOT be in the g packet,
572      // but some implementations may incorrectly include them.
573      //
574      // If the slice registers are included in the packet, we must step over
575      // the slice registers when parsing the packet -- relying on the
576      // RegisterInfo byte_offset field would be incorrect. If the slice
577      // registers are not included, then using the byte_offset values into the
578      // data buffer is the best way to find individual register values.
579
580      uint64_t size_including_slice_registers = 0;
581      uint64_t size_not_including_slice_registers = 0;
582      uint64_t size_by_highest_offset = 0;
583
584      for (uint32_t reg_idx = 0;
585           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
586        size_including_slice_registers += reg_info->byte_size;
587        if (reg_info->value_regs == nullptr)
588          size_not_including_slice_registers += reg_info->byte_size;
589        if (reg_info->byte_offset >= size_by_highest_offset)
590          size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
591      }
592
593      bool use_byte_offset_into_buffer;
594      if (size_by_highest_offset == restore_data.GetByteSize()) {
595        // The size of the packet agrees with the highest offset: + size in the
596        // register file
597        use_byte_offset_into_buffer = true;
598      } else if (size_not_including_slice_registers ==
599                 restore_data.GetByteSize()) {
600        // The size of the packet is the same as concatenating all of the
601        // registers sequentially, skipping the slice registers
602        use_byte_offset_into_buffer = true;
603      } else if (size_including_slice_registers == restore_data.GetByteSize()) {
604        // The slice registers are present in the packet (when they shouldn't
605        // be). Don't try to use the RegisterInfo byte_offset into the
606        // restore_data, it will point to the wrong place.
607        use_byte_offset_into_buffer = false;
608      } else {
609        // None of our expected sizes match the actual g packet data we're
610        // looking at. The most conservative approach here is to use the
611        // running total byte offset.
612        use_byte_offset_into_buffer = false;
613      }
614
615      // In case our register definitions don't include the correct offsets,
616      // keep track of the size of each reg & compute offset based on that.
617      uint32_t running_byte_offset = 0;
618      for (uint32_t reg_idx = 0;
619           (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
620           ++reg_idx, running_byte_offset += reg_info->byte_size) {
621        // Skip composite aka slice registers (e.g. eax is a slice of rax).
622        if (reg_info->value_regs)
623          continue;
624
625        const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
626
627        uint32_t register_offset;
628        if (use_byte_offset_into_buffer) {
629          register_offset = reg_info->byte_offset;
630        } else {
631          register_offset = running_byte_offset;
632        }
633
634        const uint32_t reg_byte_size = reg_info->byte_size;
635
636        const uint8_t *restore_src =
637            restore_data.PeekData(register_offset, reg_byte_size);
638        if (restore_src) {
639          SetRegisterIsValid(reg, false);
640          if (gdb_comm.WriteRegister(
641                  m_thread.GetProtocolID(),
642                  reg_info->kinds[eRegisterKindProcessPlugin],
643                  {restore_src, reg_byte_size}))
644            ++num_restored;
645        }
646      }
647      return num_restored > 0;
648    } else {
649      // For the use_g_packet == false case, we're going to write each register
650      // individually.  The data buffer is binary data in this case, instead of
651      // ascii characters.
652
653      bool arm64_debugserver = false;
654      if (m_thread.GetProcess().get()) {
655        const ArchSpec &arch =
656            m_thread.GetProcess()->GetTarget().GetArchitecture();
657        if (arch.IsValid() &&
658            (arch.GetMachine() == llvm::Triple::aarch64 ||
659             arch.GetMachine() == llvm::Triple::aarch64_32) &&
660            arch.GetTriple().getVendor() == llvm::Triple::Apple &&
661            arch.GetTriple().getOS() == llvm::Triple::IOS) {
662          arm64_debugserver = true;
663        }
664      }
665      uint32_t num_restored = 0;
666      const RegisterInfo *reg_info;
667      for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
668           i++) {
669        if (reg_info->value_regs) // skip registers that are slices of real
670                                  // registers
671          continue;
672        // Skip the fpsr and fpcr floating point status/control register
673        // writing to work around a bug in an older version of debugserver that
674        // would lead to register context corruption when writing fpsr/fpcr.
675        if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
676                                  strcmp(reg_info->name, "fpcr") == 0)) {
677          continue;
678        }
679
680        SetRegisterIsValid(reg_info, false);
681        if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
682                                   reg_info->kinds[eRegisterKindProcessPlugin],
683                                   {data_sp->GetBytes() + reg_info->byte_offset,
684                                    reg_info->byte_size}))
685          ++num_restored;
686      }
687      return num_restored > 0;
688    }
689  } else {
690    Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
691                                                           GDBR_LOG_PACKETS));
692    if (log) {
693      if (log->GetVerbose()) {
694        StreamString strm;
695        gdb_comm.DumpHistory(strm);
696        LLDB_LOGF(log,
697                  "error: failed to get packet sequence mutex, not sending "
698                  "write all registers:\n%s",
699                  strm.GetData());
700      } else
701        LLDB_LOGF(log,
702                  "error: failed to get packet sequence mutex, not sending "
703                  "write all registers");
704    }
705  }
706  return false;
707}
708
709uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
710    lldb::RegisterKind kind, uint32_t num) {
711  return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num);
712}
713
714void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
715  // For Advanced SIMD and VFP register mapping.
716  static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
717  static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
718  static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
719  static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
720  static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
721  static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
722  static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
723  static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
724  static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
725  static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
726  static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
727  static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
728  static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
729  static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
730  static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
731  static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
732  static uint32_t g_q0_regs[] = {
733      26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
734  static uint32_t g_q1_regs[] = {
735      30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
736  static uint32_t g_q2_regs[] = {
737      34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
738  static uint32_t g_q3_regs[] = {
739      38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
740  static uint32_t g_q4_regs[] = {
741      42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
742  static uint32_t g_q5_regs[] = {
743      46, 47, 48, 49,
744      LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
745  static uint32_t g_q6_regs[] = {
746      50, 51, 52, 53,
747      LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
748  static uint32_t g_q7_regs[] = {
749      54, 55, 56, 57,
750      LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
751  static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
752  static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
753  static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
754  static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
755  static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
756  static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
757  static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
758  static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
759
760  // This is our array of composite registers, with each element coming from
761  // the above register mappings.
762  static uint32_t *g_composites[] = {
763      g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
764      g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
765      g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
766      g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
767      g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
768      g_q14_regs, g_q15_regs};
769
770  // clang-format off
771    static RegisterInfo g_register_infos[] = {
772//   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS SIZE EXPR SIZE LEN
773//   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    =============== ========= ========
774    { "r0",   "arg1",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr,  nullptr,       0 },
775    { "r1",   "arg2",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr,  nullptr,       0 },
776    { "r2",   "arg3",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr,  nullptr,       0 },
777    { "r3",   "arg4",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr,  nullptr,       0 },
778    { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr,  nullptr,       0 },
779    { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr,  nullptr,       0 },
780    { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr,  nullptr,       0 },
781    { "r7",     "fp",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr,  nullptr,       0 },
782    { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr,  nullptr,       0 },
783    { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr,  nullptr,       0 },
784    { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr,  nullptr,       0 },
785    { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr,  nullptr,       0 },
786    { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr,  nullptr,       0 },
787    { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr,  nullptr,       0 },
788    { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr,  nullptr,       0 },
789    { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr,  nullptr,       0 },
790    { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr,  nullptr,       0 },
791    { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr,  nullptr,       0 },
792    { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr,  nullptr,       0 },
793    { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr,  nullptr,       0 },
794    { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr,  nullptr,       0 },
795    { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr,  nullptr,       0 },
796    { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr,  nullptr,       0 },
797    { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr,  nullptr,       0 },
798    { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr,  nullptr,       0 },
799    { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr,  nullptr,       0 },
800    { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr,  nullptr,       0 },
801    { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr,  nullptr,       0 },
802    { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr,  nullptr,       0 },
803    { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr,  nullptr,       0 },
804    { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr,  nullptr,       0 },
805    { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr,  nullptr,       0 },
806    { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr,  nullptr,       0 },
807    { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr,  nullptr,       0 },
808    { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr,  nullptr,       0 },
809    { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr,  nullptr,       0 },
810    { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr,  nullptr,       0 },
811    { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr,  nullptr,       0 },
812    { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr,  nullptr,       0 },
813    { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr,  nullptr,       0 },
814    { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr,  nullptr,       0 },
815    { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr,  nullptr,       0 },
816    { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr,  nullptr,       0 },
817    { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr,  nullptr,       0 },
818    { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr,  nullptr,       0 },
819    { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr,  nullptr,       0 },
820    { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr,  nullptr,       0 },
821    { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr,  nullptr,       0 },
822    { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr,  nullptr,       0 },
823    { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr,  nullptr,       0 },
824    { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr,  nullptr,       0 },
825    { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr,  nullptr,       0 },
826    { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr,  nullptr,       0 },
827    { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr,  nullptr,       0 },
828    { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr,  nullptr,       0 },
829    { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr,  nullptr,       0 },
830    { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr,  nullptr,       0 },
831    { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr,  nullptr,       0 },
832    { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr,  nullptr,       0 },
833    { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr,  nullptr,       0 },
834    { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr,  nullptr,       0 },
835    { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr,  nullptr,       0 },
836    { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr,  nullptr,       0 },
837    { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr,  nullptr,       0 },
838    { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr,  nullptr,       0 },
839    { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr,  nullptr,       0 },
840    { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr,  nullptr,       0 },
841    { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr,  nullptr,       0 },
842    { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr,  nullptr,       0 },
843    { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr,  nullptr,       0 },
844    { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr,  nullptr,       0 },
845    { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr,  nullptr,       0 },
846    { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr,  nullptr,       0 },
847    { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr,  nullptr,       0 },
848    { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr,  nullptr,       0 },
849    { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr,  nullptr,       0 },
850    { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr,  nullptr,       0 },
851    { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr,  nullptr,       0 },
852    { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr,  nullptr,       0 },
853    { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr,  nullptr,       0 },
854    { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr,  nullptr,       0 },
855    { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr,  nullptr,       0 },
856    { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr,  nullptr,       0 },
857    { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr,  nullptr,       0 },
858    { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr,  nullptr,       0 },
859    { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr,  nullptr,       0 },
860    { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr,  nullptr,       0 },
861    { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr,  nullptr,       0 },
862    { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr,  nullptr,       0 },
863    { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr,  nullptr,       0 },
864    { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr,  nullptr,       0 },
865    { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr,  nullptr,       0 },
866    { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr,  nullptr,       0 },
867    { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr,  nullptr,       0 },
868    { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr,  nullptr,       0 },
869    { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr,  nullptr,       0 },
870    { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr,  nullptr,       0 },
871    { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr,  nullptr,       0 },
872    { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr,  nullptr,       0 },
873    { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr,  nullptr,       0 },
874    { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr,  nullptr,       0 },
875    { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr,  nullptr,       0 },
876    { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr,  nullptr,       0 },
877    { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr,  nullptr,       0 },
878    { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr,  nullptr,       0 },
879    { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr,  nullptr,       0 },
880    { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr,  nullptr,       0 }
881    };
882  // clang-format on
883
884  static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
885  static ConstString gpr_reg_set("General Purpose Registers");
886  static ConstString sfp_reg_set("Software Floating Point Registers");
887  static ConstString vfp_reg_set("Floating Point Registers");
888  size_t i;
889  if (from_scratch) {
890    // Calculate the offsets of the registers
891    // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
892    // which comes after the "primordial" registers is important.  This enables
893    // us to calculate the offset of the composite register by using the offset
894    // of its first primordial register.  For example, to calculate the offset
895    // of q0, use s0's offset.
896    if (g_register_infos[2].byte_offset == 0) {
897      uint32_t byte_offset = 0;
898      for (i = 0; i < num_registers; ++i) {
899        // For primordial registers, increment the byte_offset by the byte_size
900        // to arrive at the byte_offset for the next register.  Otherwise, we
901        // have a composite register whose offset can be calculated by
902        // consulting the offset of its first primordial register.
903        if (!g_register_infos[i].value_regs) {
904          g_register_infos[i].byte_offset = byte_offset;
905          byte_offset += g_register_infos[i].byte_size;
906        } else {
907          const uint32_t first_primordial_reg =
908              g_register_infos[i].value_regs[0];
909          g_register_infos[i].byte_offset =
910              g_register_infos[first_primordial_reg].byte_offset;
911        }
912      }
913    }
914    for (i = 0; i < num_registers; ++i) {
915      ConstString name;
916      ConstString alt_name;
917      if (g_register_infos[i].name && g_register_infos[i].name[0])
918        name.SetCString(g_register_infos[i].name);
919      if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0])
920        alt_name.SetCString(g_register_infos[i].alt_name);
921
922      if (i <= 15 || i == 25)
923        AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set);
924      else if (i <= 24)
925        AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set);
926      else
927        AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set);
928    }
929  } else {
930    // Add composite registers to our primordial registers, then.
931    const size_t num_composites = llvm::array_lengthof(g_composites);
932    const size_t num_dynamic_regs = GetNumRegisters();
933    const size_t num_common_regs = num_registers - num_composites;
934    RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
935
936    // First we need to validate that all registers that we already have match
937    // the non composite regs. If so, then we can add the registers, else we
938    // need to bail
939    bool match = true;
940    if (num_dynamic_regs == num_common_regs) {
941      for (i = 0; match && i < num_dynamic_regs; ++i) {
942        // Make sure all register names match
943        if (m_regs[i].name && g_register_infos[i].name) {
944          if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
945            match = false;
946            break;
947          }
948        }
949
950        // Make sure all register byte sizes match
951        if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
952          match = false;
953          break;
954        }
955      }
956    } else {
957      // Wrong number of registers.
958      match = false;
959    }
960    // If "match" is true, then we can add extra registers.
961    if (match) {
962      for (i = 0; i < num_composites; ++i) {
963        ConstString name;
964        ConstString alt_name;
965        const uint32_t first_primordial_reg =
966            g_comp_register_infos[i].value_regs[0];
967        const char *reg_name = g_register_infos[first_primordial_reg].name;
968        if (reg_name && reg_name[0]) {
969          for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
970            const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
971            // Find a matching primordial register info entry.
972            if (reg_info && reg_info->name &&
973                ::strcasecmp(reg_info->name, reg_name) == 0) {
974              // The name matches the existing primordial entry. Find and
975              // assign the offset, and then add this composite register entry.
976              g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
977              name.SetCString(g_comp_register_infos[i].name);
978              AddRegister(g_comp_register_infos[i], name, alt_name,
979                          vfp_reg_set);
980            }
981          }
982        }
983      }
984    }
985  }
986}
987