//===-- GDBRemoteRegisterContext.cpp ----------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "GDBRemoteRegisterContext.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Target.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/RegisterValue.h" #include "lldb/Utility/Scalar.h" #include "lldb/Utility/StreamString.h" #include "ProcessGDBRemote.h" #include "ProcessGDBRemoteLog.h" #include "ThreadGDBRemote.h" #include "Utility/ARM_DWARF_Registers.h" #include "Utility/ARM_ehframe_Registers.h" #include "lldb/Utility/StringExtractorGDBRemote.h" #include using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_gdb_remote; // GDBRemoteRegisterContext constructor GDBRemoteRegisterContext::GDBRemoteRegisterContext( ThreadGDBRemote &thread, uint32_t concrete_frame_idx, GDBRemoteDynamicRegisterInfo ®_info, bool read_all_at_once, bool write_all_at_once) : RegisterContext(thread, concrete_frame_idx), m_reg_info(reg_info), m_reg_valid(), m_reg_data(), m_read_all_at_once(read_all_at_once), m_write_all_at_once(write_all_at_once) { // Resize our vector of bools to contain one bool for every register. We will // use these boolean values to know when a register value is valid in // m_reg_data. m_reg_valid.resize(reg_info.GetNumRegisters()); // Make a heap based buffer that is big enough to store all registers DataBufferSP reg_data_sp( new DataBufferHeap(reg_info.GetRegisterDataByteSize(), 0)); m_reg_data.SetData(reg_data_sp); m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder()); } // Destructor GDBRemoteRegisterContext::~GDBRemoteRegisterContext() {} void GDBRemoteRegisterContext::InvalidateAllRegisters() { SetAllRegisterValid(false); } void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) { std::vector::iterator pos, end = m_reg_valid.end(); for (pos = m_reg_valid.begin(); pos != end; ++pos) *pos = b; } size_t GDBRemoteRegisterContext::GetRegisterCount() { return m_reg_info.GetNumRegisters(); } const RegisterInfo * GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) { RegisterInfo *reg_info = m_reg_info.GetRegisterInfoAtIndex(reg); if (reg_info && reg_info->dynamic_size_dwarf_expr_bytes) { const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); uint8_t reg_size = UpdateDynamicRegisterSize(arch, reg_info); reg_info->byte_size = reg_size; } return reg_info; } size_t GDBRemoteRegisterContext::GetRegisterSetCount() { return m_reg_info.GetNumRegisterSets(); } const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) { return m_reg_info.GetRegisterSet(reg_set); } bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info, RegisterValue &value) { // Read the register if (ReadRegisterBytes(reg_info, m_reg_data)) { const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (m_reg_valid[reg] == false) return false; const bool partial_data_ok = false; Status error(value.SetValueFromData( reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok)); return error.Success(); } return false; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue( uint32_t reg, llvm::ArrayRef data) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); if (reg_info == nullptr) return false; // Invalidate if needed InvalidateIfNeeded(false); const size_t reg_byte_size = reg_info->byte_size; memcpy(const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)), data.data(), std::min(data.size(), reg_byte_size)); bool success = data.size() >= reg_byte_size; if (success) { SetRegisterIsValid(reg, true); } else if (data.size() > 0) { // Only set register is valid to false if we copied some bytes, else leave // it as it was. SetRegisterIsValid(reg, false); } return success; } bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg, uint64_t new_reg_val) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg); if (reg_info == nullptr) return false; // Early in process startup, we can get a thread that has an invalid byte // order because the process hasn't been completely set up yet (see the ctor // where the byte order is setfrom the process). If that's the case, we // can't set the value here. if (m_reg_data.GetByteOrder() == eByteOrderInvalid) { return false; } // Invalidate if needed InvalidateIfNeeded(false); DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val))); DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *)); // If our register context and our register info disagree, which should never // happen, don't overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == nullptr) return false; if (data.CopyByteOrderedData(0, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { SetRegisterIsValid(reg, true); return true; } return false; } // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes(). bool GDBRemoteRegisterContext::GetPrimordialRegister( const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB]; const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin]; if (DataBufferSP buffer_sp = gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg)) return PrivateSetRegisterValue( lldb_reg, llvm::ArrayRef(buffer_sp->GetBytes(), buffer_sp->GetByteSize())); return false; } bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info, DataExtractor &data) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); InvalidateIfNeeded(false); const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; if (!GetRegisterIsValid(reg)) { if (m_read_all_at_once) { if (DataBufferSP buffer_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) { memcpy(const_cast(m_reg_data.GetDataStart()), buffer_sp->GetBytes(), std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize())); if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) { SetAllRegisterValid(true); return true; } else if (buffer_sp->GetByteSize() > 0) { const int regcount = m_reg_info.GetNumRegisters(); for (int i = 0; i < regcount; i++) { struct RegisterInfo *reginfo = m_reg_info.GetRegisterInfoAtIndex(i); if (reginfo->byte_offset + reginfo->byte_size <= buffer_sp->GetByteSize()) { m_reg_valid[i] = true; } else { m_reg_valid[i] = false; } } return true; } else { Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); LLDB_LOGF( log, "error: GDBRemoteRegisterContext::ReadRegisterBytes tried " "to read the " "entire register context at once, expected at least %" PRId64 " bytes " "but only got %" PRId64 " bytes.", m_reg_data.GetByteSize(), buffer_sp->GetByteSize()); } } return false; } if (reg_info->value_regs) { // Process this composite register request by delegating to the // constituent primordial registers. // Index of the primordial register. bool success = true; for (uint32_t idx = 0; success; ++idx) { const uint32_t prim_reg = reg_info->value_regs[idx]; if (prim_reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. Grab the // corresponding register info. const RegisterInfo *prim_reg_info = GetRegisterInfoAtIndex(prim_reg); if (prim_reg_info == nullptr) success = false; else { // Read the containing register if it hasn't already been read if (!GetRegisterIsValid(prim_reg)) success = GetPrimordialRegister(prim_reg_info, gdb_comm); } } if (success) { // If we reach this point, all primordial register requests have // succeeded. Validate this composite register. SetRegisterIsValid(reg_info, true); } } else { // Get each register individually GetPrimordialRegister(reg_info, gdb_comm); } // Make sure we got a valid register value after reading it if (!GetRegisterIsValid(reg)) return false; } if (&data != &m_reg_data) { assert(m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); // If our register context and our register info disagree, which should // never happen, don't read past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // If we aren't extracting into our own buffer (which only happens when // this function is called from ReadRegisterValue(uint32_t, Scalar&)) then // we transfer bytes from our buffer into the data buffer that was passed // in data.SetByteOrder(m_reg_data.GetByteOrder()); data.SetData(m_reg_data, reg_info->byte_offset, reg_info->byte_size); } return true; } bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info, const RegisterValue &value) { DataExtractor data; if (value.GetData(data)) return WriteRegisterBytes(reg_info, data, 0); return false; } // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes(). bool GDBRemoteRegisterContext::SetPrimordialRegister( const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) { StreamString packet; StringExtractorGDBRemote response; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; // Invalidate just this register SetRegisterIsValid(reg, false); return gdb_comm.WriteRegister( m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size), reg_info->byte_size}); } bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); assert(m_reg_data.GetByteSize() >= reg_info->byte_offset + reg_info->byte_size); // If our register context and our register info disagree, which should never // happen, don't overwrite past the end of the buffer. if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size) return false; // Grab a pointer to where we are going to put this register uint8_t *dst = const_cast( m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size)); if (dst == nullptr) return false; if (data.CopyByteOrderedData(data_offset, // src offset reg_info->byte_size, // src length dst, // dst reg_info->byte_size, // dst length m_reg_data.GetByteOrder())) // dst byte order { GDBRemoteClientBase::Lock lock(gdb_comm, false); if (lock) { if (m_write_all_at_once) { // Invalidate all register values InvalidateIfNeeded(true); // Set all registers in one packet if (gdb_comm.WriteAllRegisters( m_thread.GetProtocolID(), {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())})) { SetAllRegisterValid(false); return true; } } else { bool success = true; if (reg_info->value_regs) { // This register is part of another register. In this case we read // the actual register data for any "value_regs", and once all that // data is read, we will have enough data in our register context // bytes for the value of this register // Invalidate this composite register first. for (uint32_t idx = 0; success; ++idx) { const uint32_t reg = reg_info->value_regs[idx]; if (reg == LLDB_INVALID_REGNUM) break; // We have a valid primordial register as our constituent. Grab the // corresponding register info. const RegisterInfo *value_reg_info = GetRegisterInfoAtIndex(reg); if (value_reg_info == nullptr) success = false; else success = SetPrimordialRegister(value_reg_info, gdb_comm); } } else { // This is an actual register, write it success = SetPrimordialRegister(reg_info, gdb_comm); } // Check if writing this register will invalidate any other register // values? If so, invalidate them if (reg_info->invalidate_regs) { for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0]; reg != LLDB_INVALID_REGNUM; reg = reg_info->invalidate_regs[++idx]) { SetRegisterIsValid(reg, false); } } return success; } } else { Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write register for \"%s\":\n%s", reg_info->name, strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write register for \"%s\"", reg_info->name); } } } return false; } bool GDBRemoteRegisterContext::ReadAllRegisterValues( RegisterCheckpoint ®_checkpoint) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); uint32_t save_id = 0; if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) { reg_checkpoint.SetID(save_id); reg_checkpoint.GetData().reset(); return true; } else { reg_checkpoint.SetID(0); // Invalid save ID is zero return ReadAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::WriteAllRegisterValues( const RegisterCheckpoint ®_checkpoint) { uint32_t save_id = reg_checkpoint.GetID(); if (save_id != 0) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id); } else { return WriteAllRegisterValues(reg_checkpoint.GetData()); } } bool GDBRemoteRegisterContext::ReadAllRegisterValues( lldb::DataBufferSP &data_sp) { ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); const bool use_g_packet = !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); GDBRemoteClientBase::Lock lock(gdb_comm, false); if (lock) { if (gdb_comm.SyncThreadState(m_thread.GetProtocolID())) InvalidateAllRegisters(); if (use_g_packet && (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID()))) return true; // We're going to read each register // individually and store them as binary data in a buffer. const RegisterInfo *reg_info; for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; i++) { if (reg_info ->value_regs) // skip registers that are slices of real registers continue; ReadRegisterBytes(reg_info, m_reg_data); // ReadRegisterBytes saves the contents of the register in to the // m_reg_data buffer } data_sp = std::make_shared( m_reg_data.GetDataStart(), m_reg_info.GetRegisterDataByteSize()); return true; } else { Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "read all registers:\n%s", strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "read all registers"); } } data_sp.reset(); return false; } bool GDBRemoteRegisterContext::WriteAllRegisterValues( const lldb::DataBufferSP &data_sp) { if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0) return false; ExecutionContext exe_ctx(CalculateThread()); Process *process = exe_ctx.GetProcessPtr(); Thread *thread = exe_ctx.GetThreadPtr(); if (process == nullptr || thread == nullptr) return false; GDBRemoteCommunicationClient &gdb_comm( ((ProcessGDBRemote *)process)->GetGDBRemote()); const bool use_g_packet = !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process); GDBRemoteClientBase::Lock lock(gdb_comm, false); if (lock) { // The data_sp contains the G response packet. if (use_g_packet) { if (gdb_comm.WriteAllRegisters( m_thread.GetProtocolID(), {data_sp->GetBytes(), size_t(data_sp->GetByteSize())})) return true; uint32_t num_restored = 0; // We need to manually go through all of the registers and restore them // manually DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(), m_reg_data.GetAddressByteSize()); const RegisterInfo *reg_info; // The g packet contents may either include the slice registers // (registers defined in terms of other registers, e.g. eax is a subset // of rax) or not. The slice registers should NOT be in the g packet, // but some implementations may incorrectly include them. // // If the slice registers are included in the packet, we must step over // the slice registers when parsing the packet -- relying on the // RegisterInfo byte_offset field would be incorrect. If the slice // registers are not included, then using the byte_offset values into the // data buffer is the best way to find individual register values. uint64_t size_including_slice_registers = 0; uint64_t size_not_including_slice_registers = 0; uint64_t size_by_highest_offset = 0; for (uint32_t reg_idx = 0; (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) { size_including_slice_registers += reg_info->byte_size; if (reg_info->value_regs == nullptr) size_not_including_slice_registers += reg_info->byte_size; if (reg_info->byte_offset >= size_by_highest_offset) size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size; } bool use_byte_offset_into_buffer; if (size_by_highest_offset == restore_data.GetByteSize()) { // The size of the packet agrees with the highest offset: + size in the // register file use_byte_offset_into_buffer = true; } else if (size_not_including_slice_registers == restore_data.GetByteSize()) { // The size of the packet is the same as concatenating all of the // registers sequentially, skipping the slice registers use_byte_offset_into_buffer = true; } else if (size_including_slice_registers == restore_data.GetByteSize()) { // The slice registers are present in the packet (when they shouldn't // be). Don't try to use the RegisterInfo byte_offset into the // restore_data, it will point to the wrong place. use_byte_offset_into_buffer = false; } else { // None of our expected sizes match the actual g packet data we're // looking at. The most conservative approach here is to use the // running total byte offset. use_byte_offset_into_buffer = false; } // In case our register definitions don't include the correct offsets, // keep track of the size of each reg & compute offset based on that. uint32_t running_byte_offset = 0; for (uint32_t reg_idx = 0; (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx, running_byte_offset += reg_info->byte_size) { // Skip composite aka slice registers (e.g. eax is a slice of rax). if (reg_info->value_regs) continue; const uint32_t reg = reg_info->kinds[eRegisterKindLLDB]; uint32_t register_offset; if (use_byte_offset_into_buffer) { register_offset = reg_info->byte_offset; } else { register_offset = running_byte_offset; } const uint32_t reg_byte_size = reg_info->byte_size; const uint8_t *restore_src = restore_data.PeekData(register_offset, reg_byte_size); if (restore_src) { SetRegisterIsValid(reg, false); if (gdb_comm.WriteRegister( m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {restore_src, reg_byte_size})) ++num_restored; } } return num_restored > 0; } else { // For the use_g_packet == false case, we're going to write each register // individually. The data buffer is binary data in this case, instead of // ascii characters. bool arm64_debugserver = false; if (m_thread.GetProcess().get()) { const ArchSpec &arch = m_thread.GetProcess()->GetTarget().GetArchitecture(); if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 || arch.GetMachine() == llvm::Triple::aarch64_32) && arch.GetTriple().getVendor() == llvm::Triple::Apple && arch.GetTriple().getOS() == llvm::Triple::IOS) { arm64_debugserver = true; } } uint32_t num_restored = 0; const RegisterInfo *reg_info; for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr; i++) { if (reg_info->value_regs) // skip registers that are slices of real // registers continue; // Skip the fpsr and fpcr floating point status/control register // writing to work around a bug in an older version of debugserver that // would lead to register context corruption when writing fpsr/fpcr. if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 || strcmp(reg_info->name, "fpcr") == 0)) { continue; } SetRegisterIsValid(reg_info, false); if (gdb_comm.WriteRegister(m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin], {data_sp->GetBytes() + reg_info->byte_offset, reg_info->byte_size})) ++num_restored; } return num_restored > 0; } } else { Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD | GDBR_LOG_PACKETS)); if (log) { if (log->GetVerbose()) { StreamString strm; gdb_comm.DumpHistory(strm); LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write all registers:\n%s", strm.GetData()); } else LLDB_LOGF(log, "error: failed to get packet sequence mutex, not sending " "write all registers"); } } return false; } uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber( lldb::RegisterKind kind, uint32_t num) { return m_reg_info.ConvertRegisterKindToRegisterNumber(kind, num); } void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) { // For Advanced SIMD and VFP register mapping. static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM}; // (s0, s1) static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM}; // (s2, s3) static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM}; // (s4, s5) static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM}; // (s6, s7) static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM}; // (s8, s9) static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM}; // (s10, s11) static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM}; // (s12, s13) static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM}; // (s14, s15) static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM}; // (s16, s17) static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM}; // (s18, s19) static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21) static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23) static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25) static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27) static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29) static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31) static uint32_t g_q0_regs[] = { 26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3) static uint32_t g_q1_regs[] = { 30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7) static uint32_t g_q2_regs[] = { 34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11) static uint32_t g_q3_regs[] = { 38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15) static uint32_t g_q4_regs[] = { 42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19) static uint32_t g_q5_regs[] = { 46, 47, 48, 49, LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23) static uint32_t g_q6_regs[] = { 50, 51, 52, 53, LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27) static uint32_t g_q7_regs[] = { 54, 55, 56, 57, LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31) static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM}; // (d16, d17) static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM}; // (d18, d19) static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21) static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23) static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25) static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27) static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29) static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31) // This is our array of composite registers, with each element coming from // the above register mappings. static uint32_t *g_composites[] = { g_d0_regs, g_d1_regs, g_d2_regs, g_d3_regs, g_d4_regs, g_d5_regs, g_d6_regs, g_d7_regs, g_d8_regs, g_d9_regs, g_d10_regs, g_d11_regs, g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs, g_q1_regs, g_q2_regs, g_q3_regs, g_q4_regs, g_q5_regs, g_q6_regs, g_q7_regs, g_q8_regs, g_q9_regs, g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs, g_q14_regs, g_q15_regs}; // clang-format off static RegisterInfo g_register_infos[] = { // NAME ALT SZ OFF ENCODING FORMAT EH_FRAME DWARF GENERIC PROCESS PLUGIN LLDB VALUE REGS INVALIDATE REGS SIZE EXPR SIZE LEN // ====== ====== === === ============= ========== =================== =================== ====================== ============= ==== ========== =============== ========= ======== { "r0", "arg1", 4, 0, eEncodingUint, eFormatHex, { ehframe_r0, dwarf_r0, LLDB_REGNUM_GENERIC_ARG1,0, 0 }, nullptr, nullptr, nullptr, 0 }, { "r1", "arg2", 4, 0, eEncodingUint, eFormatHex, { ehframe_r1, dwarf_r1, LLDB_REGNUM_GENERIC_ARG2,1, 1 }, nullptr, nullptr, nullptr, 0 }, { "r2", "arg3", 4, 0, eEncodingUint, eFormatHex, { ehframe_r2, dwarf_r2, LLDB_REGNUM_GENERIC_ARG3,2, 2 }, nullptr, nullptr, nullptr, 0 }, { "r3", "arg4", 4, 0, eEncodingUint, eFormatHex, { ehframe_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG4,3, 3 }, nullptr, nullptr, nullptr, 0 }, { "r4", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r4, dwarf_r4, LLDB_INVALID_REGNUM, 4, 4 }, nullptr, nullptr, nullptr, 0 }, { "r5", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r5, dwarf_r5, LLDB_INVALID_REGNUM, 5, 5 }, nullptr, nullptr, nullptr, 0 }, { "r6", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r6, dwarf_r6, LLDB_INVALID_REGNUM, 6, 6 }, nullptr, nullptr, nullptr, 0 }, { "r7", "fp", 4, 0, eEncodingUint, eFormatHex, { ehframe_r7, dwarf_r7, LLDB_REGNUM_GENERIC_FP, 7, 7 }, nullptr, nullptr, nullptr, 0 }, { "r8", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r8, dwarf_r8, LLDB_INVALID_REGNUM, 8, 8 }, nullptr, nullptr, nullptr, 0 }, { "r9", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r9, dwarf_r9, LLDB_INVALID_REGNUM, 9, 9 }, nullptr, nullptr, nullptr, 0 }, { "r10", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r10, dwarf_r10, LLDB_INVALID_REGNUM, 10, 10 }, nullptr, nullptr, nullptr, 0 }, { "r11", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r11, dwarf_r11, LLDB_INVALID_REGNUM, 11, 11 }, nullptr, nullptr, nullptr, 0 }, { "r12", nullptr, 4, 0, eEncodingUint, eFormatHex, { ehframe_r12, dwarf_r12, LLDB_INVALID_REGNUM, 12, 12 }, nullptr, nullptr, nullptr, 0 }, { "sp", "r13", 4, 0, eEncodingUint, eFormatHex, { ehframe_sp, dwarf_sp, LLDB_REGNUM_GENERIC_SP, 13, 13 }, nullptr, nullptr, nullptr, 0 }, { "lr", "r14", 4, 0, eEncodingUint, eFormatHex, { ehframe_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA, 14, 14 }, nullptr, nullptr, nullptr, 0 }, { "pc", "r15", 4, 0, eEncodingUint, eFormatHex, { ehframe_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, 15, 15 }, nullptr, nullptr, nullptr, 0 }, { "f0", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 16, 16 }, nullptr, nullptr, nullptr, 0 }, { "f1", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 17, 17 }, nullptr, nullptr, nullptr, 0 }, { "f2", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 18, 18 }, nullptr, nullptr, nullptr, 0 }, { "f3", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 19, 19 }, nullptr, nullptr, nullptr, 0 }, { "f4", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 20, 20 }, nullptr, nullptr, nullptr, 0 }, { "f5", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 21, 21 }, nullptr, nullptr, nullptr, 0 }, { "f6", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 22, 22 }, nullptr, nullptr, nullptr, 0 }, { "f7", nullptr, 12, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 23, 23 }, nullptr, nullptr, nullptr, 0 }, { "fps", nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 24, 24 }, nullptr, nullptr, nullptr, 0 }, { "cpsr","flags", 4, 0, eEncodingUint, eFormatHex, { ehframe_cpsr, dwarf_cpsr, LLDB_INVALID_REGNUM, 25, 25 }, nullptr, nullptr, nullptr, 0 }, { "s0", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0, LLDB_INVALID_REGNUM, 26, 26 }, nullptr, nullptr, nullptr, 0 }, { "s1", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1, LLDB_INVALID_REGNUM, 27, 27 }, nullptr, nullptr, nullptr, 0 }, { "s2", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2, LLDB_INVALID_REGNUM, 28, 28 }, nullptr, nullptr, nullptr, 0 }, { "s3", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3, LLDB_INVALID_REGNUM, 29, 29 }, nullptr, nullptr, nullptr, 0 }, { "s4", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4, LLDB_INVALID_REGNUM, 30, 30 }, nullptr, nullptr, nullptr, 0 }, { "s5", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5, LLDB_INVALID_REGNUM, 31, 31 }, nullptr, nullptr, nullptr, 0 }, { "s6", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6, LLDB_INVALID_REGNUM, 32, 32 }, nullptr, nullptr, nullptr, 0 }, { "s7", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7, LLDB_INVALID_REGNUM, 33, 33 }, nullptr, nullptr, nullptr, 0 }, { "s8", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8, LLDB_INVALID_REGNUM, 34, 34 }, nullptr, nullptr, nullptr, 0 }, { "s9", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9, LLDB_INVALID_REGNUM, 35, 35 }, nullptr, nullptr, nullptr, 0 }, { "s10", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10, LLDB_INVALID_REGNUM, 36, 36 }, nullptr, nullptr, nullptr, 0 }, { "s11", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11, LLDB_INVALID_REGNUM, 37, 37 }, nullptr, nullptr, nullptr, 0 }, { "s12", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12, LLDB_INVALID_REGNUM, 38, 38 }, nullptr, nullptr, nullptr, 0 }, { "s13", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13, LLDB_INVALID_REGNUM, 39, 39 }, nullptr, nullptr, nullptr, 0 }, { "s14", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14, LLDB_INVALID_REGNUM, 40, 40 }, nullptr, nullptr, nullptr, 0 }, { "s15", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15, LLDB_INVALID_REGNUM, 41, 41 }, nullptr, nullptr, nullptr, 0 }, { "s16", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16, LLDB_INVALID_REGNUM, 42, 42 }, nullptr, nullptr, nullptr, 0 }, { "s17", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17, LLDB_INVALID_REGNUM, 43, 43 }, nullptr, nullptr, nullptr, 0 }, { "s18", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18, LLDB_INVALID_REGNUM, 44, 44 }, nullptr, nullptr, nullptr, 0 }, { "s19", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19, LLDB_INVALID_REGNUM, 45, 45 }, nullptr, nullptr, nullptr, 0 }, { "s20", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20, LLDB_INVALID_REGNUM, 46, 46 }, nullptr, nullptr, nullptr, 0 }, { "s21", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21, LLDB_INVALID_REGNUM, 47, 47 }, nullptr, nullptr, nullptr, 0 }, { "s22", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22, LLDB_INVALID_REGNUM, 48, 48 }, nullptr, nullptr, nullptr, 0 }, { "s23", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23, LLDB_INVALID_REGNUM, 49, 49 }, nullptr, nullptr, nullptr, 0 }, { "s24", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24, LLDB_INVALID_REGNUM, 50, 50 }, nullptr, nullptr, nullptr, 0 }, { "s25", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25, LLDB_INVALID_REGNUM, 51, 51 }, nullptr, nullptr, nullptr, 0 }, { "s26", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26, LLDB_INVALID_REGNUM, 52, 52 }, nullptr, nullptr, nullptr, 0 }, { "s27", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27, LLDB_INVALID_REGNUM, 53, 53 }, nullptr, nullptr, nullptr, 0 }, { "s28", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28, LLDB_INVALID_REGNUM, 54, 54 }, nullptr, nullptr, nullptr, 0 }, { "s29", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29, LLDB_INVALID_REGNUM, 55, 55 }, nullptr, nullptr, nullptr, 0 }, { "s30", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30, LLDB_INVALID_REGNUM, 56, 56 }, nullptr, nullptr, nullptr, 0 }, { "s31", nullptr, 4, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31, LLDB_INVALID_REGNUM, 57, 57 }, nullptr, nullptr, nullptr, 0 }, { "fpscr",nullptr, 4, 0, eEncodingUint, eFormatHex, { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, 58, 58 }, nullptr, nullptr, nullptr, 0 }, { "d16", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16, LLDB_INVALID_REGNUM, 59, 59 }, nullptr, nullptr, nullptr, 0 }, { "d17", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17, LLDB_INVALID_REGNUM, 60, 60 }, nullptr, nullptr, nullptr, 0 }, { "d18", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18, LLDB_INVALID_REGNUM, 61, 61 }, nullptr, nullptr, nullptr, 0 }, { "d19", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19, LLDB_INVALID_REGNUM, 62, 62 }, nullptr, nullptr, nullptr, 0 }, { "d20", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20, LLDB_INVALID_REGNUM, 63, 63 }, nullptr, nullptr, nullptr, 0 }, { "d21", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21, LLDB_INVALID_REGNUM, 64, 64 }, nullptr, nullptr, nullptr, 0 }, { "d22", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22, LLDB_INVALID_REGNUM, 65, 65 }, nullptr, nullptr, nullptr, 0 }, { "d23", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23, LLDB_INVALID_REGNUM, 66, 66 }, nullptr, nullptr, nullptr, 0 }, { "d24", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24, LLDB_INVALID_REGNUM, 67, 67 }, nullptr, nullptr, nullptr, 0 }, { "d25", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25, LLDB_INVALID_REGNUM, 68, 68 }, nullptr, nullptr, nullptr, 0 }, { "d26", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26, LLDB_INVALID_REGNUM, 69, 69 }, nullptr, nullptr, nullptr, 0 }, { "d27", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27, LLDB_INVALID_REGNUM, 70, 70 }, nullptr, nullptr, nullptr, 0 }, { "d28", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28, LLDB_INVALID_REGNUM, 71, 71 }, nullptr, nullptr, nullptr, 0 }, { "d29", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29, LLDB_INVALID_REGNUM, 72, 72 }, nullptr, nullptr, nullptr, 0 }, { "d30", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30, LLDB_INVALID_REGNUM, 73, 73 }, nullptr, nullptr, nullptr, 0 }, { "d31", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31, LLDB_INVALID_REGNUM, 74, 74 }, nullptr, nullptr, nullptr, 0 }, { "d0", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0, LLDB_INVALID_REGNUM, 75, 75 }, g_d0_regs, nullptr, nullptr, 0 }, { "d1", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1, LLDB_INVALID_REGNUM, 76, 76 }, g_d1_regs, nullptr, nullptr, 0 }, { "d2", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2, LLDB_INVALID_REGNUM, 77, 77 }, g_d2_regs, nullptr, nullptr, 0 }, { "d3", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3, LLDB_INVALID_REGNUM, 78, 78 }, g_d3_regs, nullptr, nullptr, 0 }, { "d4", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4, LLDB_INVALID_REGNUM, 79, 79 }, g_d4_regs, nullptr, nullptr, 0 }, { "d5", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5, LLDB_INVALID_REGNUM, 80, 80 }, g_d5_regs, nullptr, nullptr, 0 }, { "d6", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6, LLDB_INVALID_REGNUM, 81, 81 }, g_d6_regs, nullptr, nullptr, 0 }, { "d7", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7, LLDB_INVALID_REGNUM, 82, 82 }, g_d7_regs, nullptr, nullptr, 0 }, { "d8", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8, LLDB_INVALID_REGNUM, 83, 83 }, g_d8_regs, nullptr, nullptr, 0 }, { "d9", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9, LLDB_INVALID_REGNUM, 84, 84 }, g_d9_regs, nullptr, nullptr, 0 }, { "d10", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10, LLDB_INVALID_REGNUM, 85, 85 }, g_d10_regs, nullptr, nullptr, 0 }, { "d11", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11, LLDB_INVALID_REGNUM, 86, 86 }, g_d11_regs, nullptr, nullptr, 0 }, { "d12", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12, LLDB_INVALID_REGNUM, 87, 87 }, g_d12_regs, nullptr, nullptr, 0 }, { "d13", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13, LLDB_INVALID_REGNUM, 88, 88 }, g_d13_regs, nullptr, nullptr, 0 }, { "d14", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14, LLDB_INVALID_REGNUM, 89, 89 }, g_d14_regs, nullptr, nullptr, 0 }, { "d15", nullptr, 8, 0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15, LLDB_INVALID_REGNUM, 90, 90 }, g_d15_regs, nullptr, nullptr, 0 }, { "q0", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0, LLDB_INVALID_REGNUM, 91, 91 }, g_q0_regs, nullptr, nullptr, 0 }, { "q1", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1, LLDB_INVALID_REGNUM, 92, 92 }, g_q1_regs, nullptr, nullptr, 0 }, { "q2", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2, LLDB_INVALID_REGNUM, 93, 93 }, g_q2_regs, nullptr, nullptr, 0 }, { "q3", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3, LLDB_INVALID_REGNUM, 94, 94 }, g_q3_regs, nullptr, nullptr, 0 }, { "q4", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4, LLDB_INVALID_REGNUM, 95, 95 }, g_q4_regs, nullptr, nullptr, 0 }, { "q5", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5, LLDB_INVALID_REGNUM, 96, 96 }, g_q5_regs, nullptr, nullptr, 0 }, { "q6", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6, LLDB_INVALID_REGNUM, 97, 97 }, g_q6_regs, nullptr, nullptr, 0 }, { "q7", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7, LLDB_INVALID_REGNUM, 98, 98 }, g_q7_regs, nullptr, nullptr, 0 }, { "q8", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8, LLDB_INVALID_REGNUM, 99, 99 }, g_q8_regs, nullptr, nullptr, 0 }, { "q9", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9, LLDB_INVALID_REGNUM, 100, 100 }, g_q9_regs, nullptr, nullptr, 0 }, { "q10", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10, LLDB_INVALID_REGNUM, 101, 101 }, g_q10_regs, nullptr, nullptr, 0 }, { "q11", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11, LLDB_INVALID_REGNUM, 102, 102 }, g_q11_regs, nullptr, nullptr, 0 }, { "q12", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12, LLDB_INVALID_REGNUM, 103, 103 }, g_q12_regs, nullptr, nullptr, 0 }, { "q13", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13, LLDB_INVALID_REGNUM, 104, 104 }, g_q13_regs, nullptr, nullptr, 0 }, { "q14", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14, LLDB_INVALID_REGNUM, 105, 105 }, g_q14_regs, nullptr, nullptr, 0 }, { "q15", nullptr, 16, 0, eEncodingVector, eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15, LLDB_INVALID_REGNUM, 106, 106 }, g_q15_regs, nullptr, nullptr, 0 } }; // clang-format on static const uint32_t num_registers = llvm::array_lengthof(g_register_infos); static ConstString gpr_reg_set("General Purpose Registers"); static ConstString sfp_reg_set("Software Floating Point Registers"); static ConstString vfp_reg_set("Floating Point Registers"); size_t i; if (from_scratch) { // Calculate the offsets of the registers // Note that the layout of the "composite" registers (d0-d15 and q0-q15) // which comes after the "primordial" registers is important. This enables // us to calculate the offset of the composite register by using the offset // of its first primordial register. For example, to calculate the offset // of q0, use s0's offset. if (g_register_infos[2].byte_offset == 0) { uint32_t byte_offset = 0; for (i = 0; i < num_registers; ++i) { // For primordial registers, increment the byte_offset by the byte_size // to arrive at the byte_offset for the next register. Otherwise, we // have a composite register whose offset can be calculated by // consulting the offset of its first primordial register. if (!g_register_infos[i].value_regs) { g_register_infos[i].byte_offset = byte_offset; byte_offset += g_register_infos[i].byte_size; } else { const uint32_t first_primordial_reg = g_register_infos[i].value_regs[0]; g_register_infos[i].byte_offset = g_register_infos[first_primordial_reg].byte_offset; } } } for (i = 0; i < num_registers; ++i) { ConstString name; ConstString alt_name; if (g_register_infos[i].name && g_register_infos[i].name[0]) name.SetCString(g_register_infos[i].name); if (g_register_infos[i].alt_name && g_register_infos[i].alt_name[0]) alt_name.SetCString(g_register_infos[i].alt_name); if (i <= 15 || i == 25) AddRegister(g_register_infos[i], name, alt_name, gpr_reg_set); else if (i <= 24) AddRegister(g_register_infos[i], name, alt_name, sfp_reg_set); else AddRegister(g_register_infos[i], name, alt_name, vfp_reg_set); } } else { // Add composite registers to our primordial registers, then. const size_t num_composites = llvm::array_lengthof(g_composites); const size_t num_dynamic_regs = GetNumRegisters(); const size_t num_common_regs = num_registers - num_composites; RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs; // First we need to validate that all registers that we already have match // the non composite regs. If so, then we can add the registers, else we // need to bail bool match = true; if (num_dynamic_regs == num_common_regs) { for (i = 0; match && i < num_dynamic_regs; ++i) { // Make sure all register names match if (m_regs[i].name && g_register_infos[i].name) { if (strcmp(m_regs[i].name, g_register_infos[i].name)) { match = false; break; } } // Make sure all register byte sizes match if (m_regs[i].byte_size != g_register_infos[i].byte_size) { match = false; break; } } } else { // Wrong number of registers. match = false; } // If "match" is true, then we can add extra registers. if (match) { for (i = 0; i < num_composites; ++i) { ConstString name; ConstString alt_name; const uint32_t first_primordial_reg = g_comp_register_infos[i].value_regs[0]; const char *reg_name = g_register_infos[first_primordial_reg].name; if (reg_name && reg_name[0]) { for (uint32_t j = 0; j < num_dynamic_regs; ++j) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j); // Find a matching primordial register info entry. if (reg_info && reg_info->name && ::strcasecmp(reg_info->name, reg_name) == 0) { // The name matches the existing primordial entry. Find and // assign the offset, and then add this composite register entry. g_comp_register_infos[i].byte_offset = reg_info->byte_offset; name.SetCString(g_comp_register_infos[i].name); AddRegister(g_comp_register_infos[i], name, alt_name, vfp_reg_set); } } } } } } }