in6_mcast.c revision 192923
1/*
2 * Copyright (c) 2009 Bruce Simpson.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote
14 *    products derived from this software without specific prior written
15 *    permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * IPv6 multicast socket, group, and socket option processing module.
32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/netinet6/in6_mcast.c 192923 2009-05-27 18:57:13Z bms $");
37
38#include "opt_inet6.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/protosw.h>
50#include <sys/sysctl.h>
51#include <sys/priv.h>
52#include <sys/ktr.h>
53#include <sys/tree.h>
54#include <sys/vimage.h>
55
56#include <net/if.h>
57#include <net/if_dl.h>
58#include <net/route.h>
59#include <net/vnet.h>
60
61#include <netinet/in.h>
62#include <netinet/in_var.h>
63#include <netinet6/in6_var.h>
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/ip6_var.h>
67#include <netinet/in_pcb.h>
68#include <netinet/tcp_var.h>
69#include <netinet6/nd6.h>
70#include <netinet/vinet.h>
71#include <netinet6/vinet6.h>
72#include <netinet6/mld6_var.h>
73
74#ifndef KTR_MLD
75#define KTR_MLD KTR_INET6
76#endif
77
78#ifndef __SOCKUNION_DECLARED
79union sockunion {
80	struct sockaddr_storage	ss;
81	struct sockaddr		sa;
82	struct sockaddr_dl	sdl;
83	struct sockaddr_in6	sin6;
84};
85typedef union sockunion sockunion_t;
86#define __SOCKUNION_DECLARED
87#endif /* __SOCKUNION_DECLARED */
88
89static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter",
90    "IPv6 multicast PCB-layer source filter");
91static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group");
92static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options");
93static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource",
94    "IPv6 multicast MLD-layer source filter");
95
96RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
97
98/*
99 * Locking:
100 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
101 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however
102 *   it can be taken by code in net/if.c also.
103 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK.
104 *
105 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly
106 * any need for in6_multi itself to be virtualized -- it is bound to an ifp
107 * anyway no matter what happens.
108 */
109struct mtx in6_multi_mtx;
110MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF);
111
112static void	im6f_commit(struct in6_mfilter *);
113static int	im6f_get_source(struct in6_mfilter *imf,
114		    const struct sockaddr_in6 *psin,
115		    struct in6_msource **);
116static struct in6_msource *
117		im6f_graft(struct in6_mfilter *, const uint8_t,
118		    const struct sockaddr_in6 *);
119static void	im6f_leave(struct in6_mfilter *);
120static int	im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
121static void	im6f_purge(struct in6_mfilter *);
122static void	im6f_rollback(struct in6_mfilter *);
123static void	im6f_reap(struct in6_mfilter *);
124static int	im6o_grow(struct ip6_moptions *);
125static size_t	im6o_match_group(const struct ip6_moptions *,
126		    const struct ifnet *, const struct sockaddr *);
127static struct in6_msource *
128		im6o_match_source(const struct ip6_moptions *, const size_t,
129		    const struct sockaddr *);
130static void	im6s_merge(struct ip6_msource *ims,
131		    const struct in6_msource *lims, const int rollback);
132static int	in6_mc_get(struct ifnet *, const struct in6_addr *,
133		    struct in6_multi **);
134static int	in6m_get_source(struct in6_multi *inm,
135		    const struct in6_addr *addr, const int noalloc,
136		    struct ip6_msource **pims);
137static int	in6m_is_ifp_detached(const struct in6_multi *);
138static int	in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
139static void	in6m_purge(struct in6_multi *);
140static void	in6m_reap(struct in6_multi *);
141static struct ip6_moptions *
142		in6p_findmoptions(struct inpcb *);
143static int	in6p_get_source_filters(struct inpcb *, struct sockopt *);
144static int	in6p_join_group(struct inpcb *, struct sockopt *);
145static int	in6p_leave_group(struct inpcb *, struct sockopt *);
146static struct ifnet *
147		in6p_lookup_mcast_ifp(const struct inpcb *,
148		    const struct sockaddr_in6 *);
149static int	in6p_block_unblock_source(struct inpcb *, struct sockopt *);
150static int	in6p_set_multicast_if(struct inpcb *, struct sockopt *);
151static int	in6p_set_source_filters(struct inpcb *, struct sockopt *);
152static int	sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS);
153
154SYSCTL_DECL(_net_inet6_ip6);	/* XXX Not in any common header. */
155
156SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv6 multicast");
157
158static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
159SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
160    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0,
161    "Max source filters per group");
162TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc);
163
164static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
165SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
166    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0,
167    "Max source filters per socket");
168TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc);
169
170/* TODO Virtualize this switch. */
171int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
172SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
173    &in6_mcast_loop, 0, "Loopback multicast datagrams by default");
174TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop);
175
176SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
177    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters,
178    "Per-interface stack-wide source filters");
179
180/*
181 * Inline function which wraps assertions for a valid ifp.
182 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
183 * is detached.
184 */
185static int __inline
186in6m_is_ifp_detached(const struct in6_multi *inm)
187{
188	struct ifnet *ifp;
189
190	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
191	ifp = inm->in6m_ifma->ifma_ifp;
192	if (ifp != NULL) {
193		/*
194		 * Sanity check that network-layer notion of ifp is the
195		 * same as that of link-layer.
196		 */
197		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
198	}
199
200	return (ifp == NULL);
201}
202
203/*
204 * Initialize an in6_mfilter structure to a known state at t0, t1
205 * with an empty source filter list.
206 */
207static __inline void
208im6f_init(struct in6_mfilter *imf, const int st0, const int st1)
209{
210	memset(imf, 0, sizeof(struct in6_mfilter));
211	RB_INIT(&imf->im6f_sources);
212	imf->im6f_st[0] = st0;
213	imf->im6f_st[1] = st1;
214}
215
216/*
217 * Resize the ip6_moptions vector to the next power-of-two minus 1.
218 * May be called with locks held; do not sleep.
219 */
220static int
221im6o_grow(struct ip6_moptions *imo)
222{
223	struct in6_multi	**nmships;
224	struct in6_multi	**omships;
225	struct in6_mfilter	 *nmfilters;
226	struct in6_mfilter	 *omfilters;
227	size_t			  idx;
228	size_t			  newmax;
229	size_t			  oldmax;
230
231	nmships = NULL;
232	nmfilters = NULL;
233	omships = imo->im6o_membership;
234	omfilters = imo->im6o_mfilters;
235	oldmax = imo->im6o_max_memberships;
236	newmax = ((oldmax + 1) * 2) - 1;
237
238	if (newmax <= IPV6_MAX_MEMBERSHIPS) {
239		nmships = (struct in6_multi **)realloc(omships,
240		    sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT);
241		nmfilters = (struct in6_mfilter *)realloc(omfilters,
242		    sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER,
243		    M_NOWAIT);
244		if (nmships != NULL && nmfilters != NULL) {
245			/* Initialize newly allocated source filter heads. */
246			for (idx = oldmax; idx < newmax; idx++) {
247				im6f_init(&nmfilters[idx], MCAST_UNDEFINED,
248				    MCAST_EXCLUDE);
249			}
250			imo->im6o_max_memberships = newmax;
251			imo->im6o_membership = nmships;
252			imo->im6o_mfilters = nmfilters;
253		}
254	}
255
256	if (nmships == NULL || nmfilters == NULL) {
257		if (nmships != NULL)
258			free(nmships, M_IP6MOPTS);
259		if (nmfilters != NULL)
260			free(nmfilters, M_IN6MFILTER);
261		return (ETOOMANYREFS);
262	}
263
264	return (0);
265}
266
267/*
268 * Find an IPv6 multicast group entry for this ip6_moptions instance
269 * which matches the specified group, and optionally an interface.
270 * Return its index into the array, or -1 if not found.
271 */
272static size_t
273im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
274    const struct sockaddr *group)
275{
276	const struct sockaddr_in6 *gsin6;
277	struct in6_multi	**pinm;
278	int		  idx;
279	int		  nmships;
280
281	gsin6 = (const struct sockaddr_in6 *)group;
282
283	/* The im6o_membership array may be lazy allocated. */
284	if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0)
285		return (-1);
286
287	nmships = imo->im6o_num_memberships;
288	pinm = &imo->im6o_membership[0];
289	for (idx = 0; idx < nmships; idx++, pinm++) {
290		if (*pinm == NULL)
291			continue;
292		if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) &&
293		    IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr,
294		    &gsin6->sin6_addr)) {
295			break;
296		}
297	}
298	if (idx >= nmships)
299		idx = -1;
300
301	return (idx);
302}
303
304/*
305 * Find an IPv6 multicast source entry for this imo which matches
306 * the given group index for this socket, and source address.
307 *
308 * XXX TODO: The scope ID, if present in src, is stripped before
309 * any comparison. We SHOULD enforce scope/zone checks where the source
310 * filter entry has a link scope.
311 *
312 * NOTE: This does not check if the entry is in-mode, merely if
313 * it exists, which may not be the desired behaviour.
314 */
315static struct in6_msource *
316im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
317    const struct sockaddr *src)
318{
319	struct ip6_msource	 find;
320	struct in6_mfilter	*imf;
321	struct ip6_msource	*ims;
322	const sockunion_t	*psa;
323
324	KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__));
325	KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships,
326	    ("%s: invalid index %d\n", __func__, (int)gidx));
327
328	/* The im6o_mfilters array may be lazy allocated. */
329	if (imo->im6o_mfilters == NULL)
330		return (NULL);
331	imf = &imo->im6o_mfilters[gidx];
332
333	psa = (const sockunion_t *)src;
334	find.im6s_addr = psa->sin6.sin6_addr;
335	in6_clearscope(&find.im6s_addr);		/* XXX */
336	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
337
338	return ((struct in6_msource *)ims);
339}
340
341/*
342 * Perform filtering for multicast datagrams on a socket by group and source.
343 *
344 * Returns 0 if a datagram should be allowed through, or various error codes
345 * if the socket was not a member of the group, or the source was muted, etc.
346 */
347int
348im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp,
349    const struct sockaddr *group, const struct sockaddr *src)
350{
351	size_t gidx;
352	struct in6_msource *ims;
353	int mode;
354
355	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
356
357	gidx = im6o_match_group(imo, ifp, group);
358	if (gidx == -1)
359		return (MCAST_NOTGMEMBER);
360
361	/*
362	 * Check if the source was included in an (S,G) join.
363	 * Allow reception on exclusive memberships by default,
364	 * reject reception on inclusive memberships by default.
365	 * Exclude source only if an in-mode exclude filter exists.
366	 * Include source only if an in-mode include filter exists.
367	 * NOTE: We are comparing group state here at MLD t1 (now)
368	 * with socket-layer t0 (since last downcall).
369	 */
370	mode = imo->im6o_mfilters[gidx].im6f_st[1];
371	ims = im6o_match_source(imo, gidx, src);
372
373	if ((ims == NULL && mode == MCAST_INCLUDE) ||
374	    (ims != NULL && ims->im6sl_st[0] != mode))
375		return (MCAST_NOTSMEMBER);
376
377	return (MCAST_PASS);
378}
379
380/*
381 * Find and return a reference to an in6_multi record for (ifp, group),
382 * and bump its reference count.
383 * If one does not exist, try to allocate it, and update link-layer multicast
384 * filters on ifp to listen for group.
385 * Assumes the IN6_MULTI lock is held across the call.
386 * Return 0 if successful, otherwise return an appropriate error code.
387 */
388static int
389in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
390    struct in6_multi **pinm)
391{
392	struct sockaddr_in6	 gsin6;
393	struct ifmultiaddr	*ifma;
394	struct in6_multi	*inm;
395	int			 error;
396
397	error = 0;
398
399	/*
400	 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK;
401	 * if_addmulti() takes this mutex itself, so we must drop and
402	 * re-acquire around the call.
403	 */
404	IN6_MULTI_LOCK_ASSERT();
405	IF_ADDR_LOCK(ifp);
406
407	inm = in6m_lookup_locked(ifp, group);
408	if (inm != NULL) {
409		/*
410		 * If we already joined this group, just bump the
411		 * refcount and return it.
412		 */
413		KASSERT(inm->in6m_refcount >= 1,
414		    ("%s: bad refcount %d", __func__, inm->in6m_refcount));
415		++inm->in6m_refcount;
416		*pinm = inm;
417		goto out_locked;
418	}
419
420	memset(&gsin6, 0, sizeof(gsin6));
421	gsin6.sin6_family = AF_INET6;
422	gsin6.sin6_len = sizeof(struct sockaddr_in6);
423	gsin6.sin6_addr = *group;
424
425	/*
426	 * Check if a link-layer group is already associated
427	 * with this network-layer group on the given ifnet.
428	 */
429	IF_ADDR_UNLOCK(ifp);
430	error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma);
431	if (error != 0)
432		return (error);
433	IF_ADDR_LOCK(ifp);
434
435	/*
436	 * If something other than netinet6 is occupying the link-layer
437	 * group, print a meaningful error message and back out of
438	 * the allocation.
439	 * Otherwise, bump the refcount on the existing network-layer
440	 * group association and return it.
441	 */
442	if (ifma->ifma_protospec != NULL) {
443		inm = (struct in6_multi *)ifma->ifma_protospec;
444#ifdef INVARIANTS
445		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
446		    __func__));
447		KASSERT(ifma->ifma_addr->sa_family == AF_INET6,
448		    ("%s: ifma not AF_INET6", __func__));
449		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
450		if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp ||
451		    !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group))
452			panic("%s: ifma %p is inconsistent with %p (%p)",
453			    __func__, ifma, inm, group);
454#endif
455		++inm->in6m_refcount;
456		*pinm = inm;
457		goto out_locked;
458	}
459
460	IF_ADDR_LOCK_ASSERT(ifp);
461
462	/*
463	 * A new in6_multi record is needed; allocate and initialize it.
464	 * We DO NOT perform an MLD join as the in6_ layer may need to
465	 * push an initial source list down to MLD to support SSM.
466	 *
467	 * The initial source filter state is INCLUDE, {} as per the RFC.
468	 * Pending state-changes per group are subject to a bounds check.
469	 */
470	inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO);
471	if (inm == NULL) {
472		if_delmulti_ifma(ifma);
473		error = ENOMEM;
474		goto out_locked;
475	}
476	inm->in6m_addr = *group;
477	inm->in6m_ifp = ifp;
478	inm->in6m_mli = MLD_IFINFO(ifp);
479	inm->in6m_ifma = ifma;
480	inm->in6m_refcount = 1;
481	inm->in6m_state = MLD_NOT_MEMBER;
482	IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES);
483
484	inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
485	inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
486	RB_INIT(&inm->in6m_srcs);
487
488	ifma->ifma_protospec = inm;
489	*pinm = inm;
490
491out_locked:
492	IF_ADDR_UNLOCK(ifp);
493	return (error);
494}
495
496/*
497 * Drop a reference to an in6_multi record.
498 *
499 * If the refcount drops to 0, free the in6_multi record and
500 * delete the underlying link-layer membership.
501 */
502void
503in6m_release_locked(struct in6_multi *inm)
504{
505	struct ifmultiaddr *ifma;
506
507	IN6_MULTI_LOCK_ASSERT();
508
509	CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount);
510
511	if (--inm->in6m_refcount > 0) {
512		CTR2(KTR_MLD, "%s: refcount is now %d", __func__,
513		    inm->in6m_refcount);
514		return;
515	}
516
517	CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm);
518
519	ifma = inm->in6m_ifma;
520
521	/* XXX this access is not covered by IF_ADDR_LOCK */
522	CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma);
523	KASSERT(ifma->ifma_protospec == inm,
524	    ("%s: ifma_protospec != inm", __func__));
525	ifma->ifma_protospec = NULL;
526
527	in6m_purge(inm);
528
529	free(inm, M_IP6MADDR);
530
531	if_delmulti_ifma(ifma);
532}
533
534/*
535 * Clear recorded source entries for a group.
536 * Used by the MLD code. Caller must hold the IN6_MULTI lock.
537 * FIXME: Should reap.
538 */
539void
540in6m_clear_recorded(struct in6_multi *inm)
541{
542	struct ip6_msource	*ims;
543
544	IN6_MULTI_LOCK_ASSERT();
545
546	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
547		if (ims->im6s_stp) {
548			ims->im6s_stp = 0;
549			--inm->in6m_st[1].iss_rec;
550		}
551	}
552	KASSERT(inm->in6m_st[1].iss_rec == 0,
553	    ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec));
554}
555
556/*
557 * Record a source as pending for a Source-Group MLDv2 query.
558 * This lives here as it modifies the shared tree.
559 *
560 * inm is the group descriptor.
561 * naddr is the address of the source to record in network-byte order.
562 *
563 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will
564 * lazy-allocate a source node in response to an SG query.
565 * Otherwise, no allocation is performed. This saves some memory
566 * with the trade-off that the source will not be reported to the
567 * router if joined in the window between the query response and
568 * the group actually being joined on the local host.
569 *
570 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
571 * This turns off the allocation of a recorded source entry if
572 * the group has not been joined.
573 *
574 * Return 0 if the source didn't exist or was already marked as recorded.
575 * Return 1 if the source was marked as recorded by this function.
576 * Return <0 if any error occured (negated errno code).
577 */
578int
579in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
580{
581	struct ip6_msource	 find;
582	struct ip6_msource	*ims, *nims;
583
584	IN6_MULTI_LOCK_ASSERT();
585
586	find.im6s_addr = *addr;
587	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
588	if (ims && ims->im6s_stp)
589		return (0);
590	if (ims == NULL) {
591		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
592			return (-ENOSPC);
593		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
594		    M_NOWAIT | M_ZERO);
595		if (nims == NULL)
596			return (-ENOMEM);
597		nims->im6s_addr = find.im6s_addr;
598		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
599		++inm->in6m_nsrc;
600		ims = nims;
601	}
602
603	/*
604	 * Mark the source as recorded and update the recorded
605	 * source count.
606	 */
607	++ims->im6s_stp;
608	++inm->in6m_st[1].iss_rec;
609
610	return (1);
611}
612
613/*
614 * Return a pointer to an in6_msource owned by an in6_mfilter,
615 * given its source address.
616 * Lazy-allocate if needed. If this is a new entry its filter state is
617 * undefined at t0.
618 *
619 * imf is the filter set being modified.
620 * addr is the source address.
621 *
622 * SMPng: May be called with locks held; malloc must not block.
623 */
624static int
625im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
626    struct in6_msource **plims)
627{
628	struct ip6_msource	 find;
629	struct ip6_msource	*ims, *nims;
630	struct in6_msource	*lims;
631	int			 error;
632
633	error = 0;
634	ims = NULL;
635	lims = NULL;
636
637	find.im6s_addr = psin->sin6_addr;
638	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
639	lims = (struct in6_msource *)ims;
640	if (lims == NULL) {
641		if (imf->im6f_nsrc == in6_mcast_maxsocksrc)
642			return (ENOSPC);
643		nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
644		    M_NOWAIT | M_ZERO);
645		if (nims == NULL)
646			return (ENOMEM);
647		lims = (struct in6_msource *)nims;
648		lims->im6s_addr = find.im6s_addr;
649		lims->im6sl_st[0] = MCAST_UNDEFINED;
650		RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
651		++imf->im6f_nsrc;
652	}
653
654	*plims = lims;
655
656	return (error);
657}
658
659/*
660 * Graft a source entry into an existing socket-layer filter set,
661 * maintaining any required invariants and checking allocations.
662 *
663 * The source is marked as being in the new filter mode at t1.
664 *
665 * Return the pointer to the new node, otherwise return NULL.
666 */
667static struct in6_msource *
668im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
669    const struct sockaddr_in6 *psin)
670{
671	struct ip6_msource	*nims;
672	struct in6_msource	*lims;
673
674	nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
675	    M_NOWAIT | M_ZERO);
676	if (nims == NULL)
677		return (NULL);
678	lims = (struct in6_msource *)nims;
679	lims->im6s_addr = psin->sin6_addr;
680	lims->im6sl_st[0] = MCAST_UNDEFINED;
681	lims->im6sl_st[1] = st1;
682	RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
683	++imf->im6f_nsrc;
684
685	return (lims);
686}
687
688/*
689 * Prune a source entry from an existing socket-layer filter set,
690 * maintaining any required invariants and checking allocations.
691 *
692 * The source is marked as being left at t1, it is not freed.
693 *
694 * Return 0 if no error occurred, otherwise return an errno value.
695 */
696static int
697im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
698{
699	struct ip6_msource	 find;
700	struct ip6_msource	*ims;
701	struct in6_msource	*lims;
702
703	find.im6s_addr = psin->sin6_addr;
704	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
705	if (ims == NULL)
706		return (ENOENT);
707	lims = (struct in6_msource *)ims;
708	lims->im6sl_st[1] = MCAST_UNDEFINED;
709	return (0);
710}
711
712/*
713 * Revert socket-layer filter set deltas at t1 to t0 state.
714 */
715static void
716im6f_rollback(struct in6_mfilter *imf)
717{
718	struct ip6_msource	*ims, *tims;
719	struct in6_msource	*lims;
720
721	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
722		lims = (struct in6_msource *)ims;
723		if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
724			/* no change at t1 */
725			continue;
726		} else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
727			/* revert change to existing source at t1 */
728			lims->im6sl_st[1] = lims->im6sl_st[0];
729		} else {
730			/* revert source added t1 */
731			CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
732			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
733			free(ims, M_IN6MFILTER);
734			imf->im6f_nsrc--;
735		}
736	}
737	imf->im6f_st[1] = imf->im6f_st[0];
738}
739
740/*
741 * Mark socket-layer filter set as INCLUDE {} at t1.
742 */
743static void
744im6f_leave(struct in6_mfilter *imf)
745{
746	struct ip6_msource	*ims;
747	struct in6_msource	*lims;
748
749	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
750		lims = (struct in6_msource *)ims;
751		lims->im6sl_st[1] = MCAST_UNDEFINED;
752	}
753	imf->im6f_st[1] = MCAST_INCLUDE;
754}
755
756/*
757 * Mark socket-layer filter set deltas as committed.
758 */
759static void
760im6f_commit(struct in6_mfilter *imf)
761{
762	struct ip6_msource	*ims;
763	struct in6_msource	*lims;
764
765	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
766		lims = (struct in6_msource *)ims;
767		lims->im6sl_st[0] = lims->im6sl_st[1];
768	}
769	imf->im6f_st[0] = imf->im6f_st[1];
770}
771
772/*
773 * Reap unreferenced sources from socket-layer filter set.
774 */
775static void
776im6f_reap(struct in6_mfilter *imf)
777{
778	struct ip6_msource	*ims, *tims;
779	struct in6_msource	*lims;
780
781	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
782		lims = (struct in6_msource *)ims;
783		if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
784		    (lims->im6sl_st[1] == MCAST_UNDEFINED)) {
785			CTR2(KTR_MLD, "%s: free lims %p", __func__, ims);
786			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
787			free(ims, M_IN6MFILTER);
788			imf->im6f_nsrc--;
789		}
790	}
791}
792
793/*
794 * Purge socket-layer filter set.
795 */
796static void
797im6f_purge(struct in6_mfilter *imf)
798{
799	struct ip6_msource	*ims, *tims;
800
801	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
802		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
803		RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
804		free(ims, M_IN6MFILTER);
805		imf->im6f_nsrc--;
806	}
807	imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
808	KASSERT(RB_EMPTY(&imf->im6f_sources),
809	    ("%s: im6f_sources not empty", __func__));
810}
811
812/*
813 * Look up a source filter entry for a multicast group.
814 *
815 * inm is the group descriptor to work with.
816 * addr is the IPv6 address to look up.
817 * noalloc may be non-zero to suppress allocation of sources.
818 * *pims will be set to the address of the retrieved or allocated source.
819 *
820 * SMPng: NOTE: may be called with locks held.
821 * Return 0 if successful, otherwise return a non-zero error code.
822 */
823static int
824in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
825    const int noalloc, struct ip6_msource **pims)
826{
827	struct ip6_msource	 find;
828	struct ip6_msource	*ims, *nims;
829#ifdef KTR
830	char			 ip6tbuf[INET6_ADDRSTRLEN];
831#endif
832
833	find.im6s_addr = *addr;
834	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
835	if (ims == NULL && !noalloc) {
836		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
837			return (ENOSPC);
838		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
839		    M_NOWAIT | M_ZERO);
840		if (nims == NULL)
841			return (ENOMEM);
842		nims->im6s_addr = *addr;
843		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
844		++inm->in6m_nsrc;
845		ims = nims;
846		CTR3(KTR_MLD, "%s: allocated %s as %p", __func__,
847		    ip6_sprintf(ip6tbuf, addr), ims);
848	}
849
850	*pims = ims;
851	return (0);
852}
853
854/*
855 * Merge socket-layer source into MLD-layer source.
856 * If rollback is non-zero, perform the inverse of the merge.
857 */
858static void
859im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
860    const int rollback)
861{
862	int n = rollback ? -1 : 1;
863#ifdef KTR
864	char ip6tbuf[INET6_ADDRSTRLEN];
865
866	ip6_sprintf(ip6tbuf, &lims->im6s_addr);
867#endif
868
869	if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
870		CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf);
871		ims->im6s_st[1].ex -= n;
872	} else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
873		CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf);
874		ims->im6s_st[1].in -= n;
875	}
876
877	if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
878		CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf);
879		ims->im6s_st[1].ex += n;
880	} else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
881		CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf);
882		ims->im6s_st[1].in += n;
883	}
884}
885
886/*
887 * Atomically update the global in6_multi state, when a membership's
888 * filter list is being updated in any way.
889 *
890 * imf is the per-inpcb-membership group filter pointer.
891 * A fake imf may be passed for in-kernel consumers.
892 *
893 * XXX This is a candidate for a set-symmetric-difference style loop
894 * which would eliminate the repeated lookup from root of ims nodes,
895 * as they share the same key space.
896 *
897 * If any error occurred this function will back out of refcounts
898 * and return a non-zero value.
899 */
900static int
901in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
902{
903	struct ip6_msource	*ims, *nims;
904	struct in6_msource	*lims;
905	int			 schanged, error;
906	int			 nsrc0, nsrc1;
907
908	schanged = 0;
909	error = 0;
910	nsrc1 = nsrc0 = 0;
911
912	/*
913	 * Update the source filters first, as this may fail.
914	 * Maintain count of in-mode filters at t0, t1. These are
915	 * used to work out if we transition into ASM mode or not.
916	 * Maintain a count of source filters whose state was
917	 * actually modified by this operation.
918	 */
919	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
920		lims = (struct in6_msource *)ims;
921		if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++;
922		if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++;
923		if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue;
924		error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
925		++schanged;
926		if (error)
927			break;
928		im6s_merge(nims, lims, 0);
929	}
930	if (error) {
931		struct ip6_msource *bims;
932
933		RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
934			lims = (struct in6_msource *)ims;
935			if (lims->im6sl_st[0] == lims->im6sl_st[1])
936				continue;
937			(void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
938			if (bims == NULL)
939				continue;
940			im6s_merge(bims, lims, 1);
941		}
942		goto out_reap;
943	}
944
945	CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1",
946	    __func__, nsrc0, nsrc1);
947
948	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
949	if (imf->im6f_st[0] == imf->im6f_st[1] &&
950	    imf->im6f_st[1] == MCAST_INCLUDE) {
951		if (nsrc1 == 0) {
952			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
953			--inm->in6m_st[1].iss_in;
954		}
955	}
956
957	/* Handle filter mode transition on socket. */
958	if (imf->im6f_st[0] != imf->im6f_st[1]) {
959		CTR3(KTR_MLD, "%s: imf transition %d to %d",
960		    __func__, imf->im6f_st[0], imf->im6f_st[1]);
961
962		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
963			CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__);
964			--inm->in6m_st[1].iss_ex;
965		} else if (imf->im6f_st[0] == MCAST_INCLUDE) {
966			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
967			--inm->in6m_st[1].iss_in;
968		}
969
970		if (imf->im6f_st[1] == MCAST_EXCLUDE) {
971			CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__);
972			inm->in6m_st[1].iss_ex++;
973		} else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
974			CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__);
975			inm->in6m_st[1].iss_in++;
976		}
977	}
978
979	/*
980	 * Track inm filter state in terms of listener counts.
981	 * If there are any exclusive listeners, stack-wide
982	 * membership is exclusive.
983	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
984	 * If no listeners remain, state is undefined at t1,
985	 * and the MLD lifecycle for this group should finish.
986	 */
987	if (inm->in6m_st[1].iss_ex > 0) {
988		CTR1(KTR_MLD, "%s: transition to EX", __func__);
989		inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
990	} else if (inm->in6m_st[1].iss_in > 0) {
991		CTR1(KTR_MLD, "%s: transition to IN", __func__);
992		inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
993	} else {
994		CTR1(KTR_MLD, "%s: transition to UNDEF", __func__);
995		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
996	}
997
998	/* Decrement ASM listener count on transition out of ASM mode. */
999	if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1000		if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
1001		    (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1002			CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__);
1003			--inm->in6m_st[1].iss_asm;
1004	}
1005
1006	/* Increment ASM listener count on transition to ASM mode. */
1007	if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1008		CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__);
1009		inm->in6m_st[1].iss_asm++;
1010	}
1011
1012	CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm);
1013	in6m_print(inm);
1014
1015out_reap:
1016	if (schanged > 0) {
1017		CTR1(KTR_MLD, "%s: sources changed; reaping", __func__);
1018		in6m_reap(inm);
1019	}
1020	return (error);
1021}
1022
1023/*
1024 * Mark an in6_multi's filter set deltas as committed.
1025 * Called by MLD after a state change has been enqueued.
1026 */
1027void
1028in6m_commit(struct in6_multi *inm)
1029{
1030	struct ip6_msource	*ims;
1031
1032	CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm);
1033	CTR1(KTR_MLD, "%s: pre commit:", __func__);
1034	in6m_print(inm);
1035
1036	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
1037		ims->im6s_st[0] = ims->im6s_st[1];
1038	}
1039	inm->in6m_st[0] = inm->in6m_st[1];
1040}
1041
1042/*
1043 * Reap unreferenced nodes from an in6_multi's filter set.
1044 */
1045static void
1046in6m_reap(struct in6_multi *inm)
1047{
1048	struct ip6_msource	*ims, *tims;
1049
1050	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1051		if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
1052		    ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
1053		    ims->im6s_stp != 0)
1054			continue;
1055		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1056		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1057		free(ims, M_IP6MSOURCE);
1058		inm->in6m_nsrc--;
1059	}
1060}
1061
1062/*
1063 * Purge all source nodes from an in6_multi's filter set.
1064 */
1065static void
1066in6m_purge(struct in6_multi *inm)
1067{
1068	struct ip6_msource	*ims, *tims;
1069
1070	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1071		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1072		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1073		free(ims, M_IP6MSOURCE);
1074		inm->in6m_nsrc--;
1075	}
1076}
1077
1078/*
1079 * Join a multicast address w/o sources.
1080 * KAME compatibility entry point.
1081 *
1082 * SMPng: Assume no mc locks held by caller.
1083 */
1084struct in6_multi_mship *
1085in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
1086    int *errorp, int delay)
1087{
1088	struct in6_multi_mship *imm;
1089	int error;
1090
1091	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1092	if (imm == NULL) {
1093		*errorp = ENOBUFS;
1094		return (NULL);
1095	}
1096
1097	delay = (delay * PR_FASTHZ) / hz;
1098
1099	error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
1100	if (error) {
1101		*errorp = error;
1102		free(imm, M_IP6MADDR);
1103		return (NULL);
1104	}
1105
1106	return (imm);
1107}
1108
1109/*
1110 * Leave a multicast address w/o sources.
1111 * KAME compatibility entry point.
1112 *
1113 * SMPng: Assume no mc locks held by caller.
1114 */
1115int
1116in6_leavegroup(struct in6_multi_mship *imm)
1117{
1118
1119	if (imm->i6mm_maddr != NULL)
1120		in6_mc_leave(imm->i6mm_maddr, NULL);
1121	free(imm,  M_IP6MADDR);
1122	return 0;
1123}
1124
1125/*
1126 * Join a multicast group; unlocked entry point.
1127 *
1128 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper
1129 * locks are not held. Fortunately, ifp is unlikely to have been detached
1130 * at this point, so we assume it's OK to recurse.
1131 */
1132int
1133in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
1134    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1135    const int delay)
1136{
1137	int error;
1138
1139	IN6_MULTI_LOCK();
1140	error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay);
1141	IN6_MULTI_UNLOCK();
1142
1143	return (error);
1144}
1145
1146/*
1147 * Join a multicast group; real entry point.
1148 *
1149 * Only preserves atomicity at inm level.
1150 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1151 *
1152 * If the MLD downcall fails, the group is not joined, and an error
1153 * code is returned.
1154 */
1155int
1156in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr,
1157    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1158    const int delay)
1159{
1160	struct in6_mfilter	 timf;
1161	struct in6_multi	*inm;
1162	int			 error;
1163#ifdef KTR
1164	char			 ip6tbuf[INET6_ADDRSTRLEN];
1165#endif
1166
1167#ifdef INVARIANTS
1168	/*
1169	 * Sanity: Check scope zone ID was set for ifp, if and
1170	 * only if group is scoped to an interface.
1171	 */
1172	KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr),
1173	    ("%s: not a multicast address", __func__));
1174	if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
1175	    IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) {
1176		KASSERT(mcaddr->s6_addr16[1] != 0,
1177		    ("%s: scope zone ID not set", __func__));
1178	}
1179#endif
1180
1181	IN6_MULTI_LOCK_ASSERT();
1182
1183	CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__,
1184	    ip6_sprintf(ip6tbuf, mcaddr), ifp, ifp->if_xname);
1185
1186	error = 0;
1187	inm = NULL;
1188
1189	/*
1190	 * If no imf was specified (i.e. kernel consumer),
1191	 * fake one up and assume it is an ASM join.
1192	 */
1193	if (imf == NULL) {
1194		im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1195		imf = &timf;
1196	}
1197
1198	error = in6_mc_get(ifp, mcaddr, &inm);
1199	if (error) {
1200		CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__);
1201		return (error);
1202	}
1203
1204	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1205	error = in6m_merge(inm, imf);
1206	if (error) {
1207		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1208		goto out_in6m_release;
1209	}
1210
1211	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1212	error = mld_change_state(inm, delay);
1213	if (error) {
1214		CTR1(KTR_MLD, "%s: failed to update source", __func__);
1215		goto out_in6m_release;
1216	}
1217
1218out_in6m_release:
1219	if (error) {
1220		CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1221		in6m_release_locked(inm);
1222	} else {
1223		*pinm = inm;
1224	}
1225
1226	return (error);
1227}
1228
1229/*
1230 * Leave a multicast group; unlocked entry point.
1231 */
1232int
1233in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1234{
1235	struct ifnet *ifp;
1236	int error;
1237
1238	ifp = inm->in6m_ifp;
1239
1240	IN6_MULTI_LOCK();
1241	error = in6_mc_leave_locked(inm, imf);
1242	IN6_MULTI_UNLOCK();
1243
1244	return (error);
1245}
1246
1247/*
1248 * Leave a multicast group; real entry point.
1249 * All source filters will be expunged.
1250 *
1251 * Only preserves atomicity at inm level.
1252 *
1253 * Holding the write lock for the INP which contains imf
1254 * is highly advisable. We can't assert for it as imf does not
1255 * contain a back-pointer to the owning inp.
1256 *
1257 * Note: This is not the same as in6m_release(*) as this function also
1258 * makes a state change downcall into MLD.
1259 */
1260int
1261in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1262{
1263	struct in6_mfilter	 timf;
1264	int			 error;
1265#ifdef KTR
1266	char			 ip6tbuf[INET6_ADDRSTRLEN];
1267#endif
1268
1269	error = 0;
1270
1271	IN6_MULTI_LOCK_ASSERT();
1272
1273	CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__,
1274	    inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1275	    (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_xname),
1276	    imf);
1277
1278	/*
1279	 * If no imf was specified (i.e. kernel consumer),
1280	 * fake one up and assume it is an ASM join.
1281	 */
1282	if (imf == NULL) {
1283		im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1284		imf = &timf;
1285	}
1286
1287	/*
1288	 * Begin state merge transaction at MLD layer.
1289	 *
1290	 * As this particular invocation should not cause any memory
1291	 * to be allocated, and there is no opportunity to roll back
1292	 * the transaction, it MUST NOT fail.
1293	 */
1294	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1295	error = in6m_merge(inm, imf);
1296	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1297
1298	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1299	error = mld_change_state(inm, 0);
1300	if (error)
1301		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1302
1303	CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1304	in6m_release_locked(inm);
1305
1306	return (error);
1307}
1308
1309/*
1310 * Block or unblock an ASM multicast source on an inpcb.
1311 * This implements the delta-based API described in RFC 3678.
1312 *
1313 * The delta-based API applies only to exclusive-mode memberships.
1314 * An MLD downcall will be performed.
1315 *
1316 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1317 *
1318 * Return 0 if successful, otherwise return an appropriate error code.
1319 */
1320static int
1321in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1322{
1323	INIT_VNET_NET(curvnet);
1324	struct group_source_req		 gsr;
1325	sockunion_t			*gsa, *ssa;
1326	struct ifnet			*ifp;
1327	struct in6_mfilter		*imf;
1328	struct ip6_moptions		*imo;
1329	struct in6_msource		*ims;
1330	struct in6_multi			*inm;
1331	size_t				 idx;
1332	uint16_t			 fmode;
1333	int				 error, doblock;
1334#ifdef KTR
1335	char				 ip6tbuf[INET6_ADDRSTRLEN];
1336#endif
1337
1338	ifp = NULL;
1339	error = 0;
1340	doblock = 0;
1341
1342	memset(&gsr, 0, sizeof(struct group_source_req));
1343	gsa = (sockunion_t *)&gsr.gsr_group;
1344	ssa = (sockunion_t *)&gsr.gsr_source;
1345
1346	switch (sopt->sopt_name) {
1347	case MCAST_BLOCK_SOURCE:
1348	case MCAST_UNBLOCK_SOURCE:
1349		error = sooptcopyin(sopt, &gsr,
1350		    sizeof(struct group_source_req),
1351		    sizeof(struct group_source_req));
1352		if (error)
1353			return (error);
1354
1355		if (gsa->sin6.sin6_family != AF_INET6 ||
1356		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1357			return (EINVAL);
1358
1359		if (ssa->sin6.sin6_family != AF_INET6 ||
1360		    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1361			return (EINVAL);
1362
1363		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1364			return (EADDRNOTAVAIL);
1365
1366		ifp = ifnet_byindex(gsr.gsr_interface);
1367
1368		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1369			doblock = 1;
1370		break;
1371
1372	default:
1373		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1374		    __func__, sopt->sopt_name);
1375		return (EOPNOTSUPP);
1376		break;
1377	}
1378
1379	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1380		return (EINVAL);
1381
1382	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1383
1384	/*
1385	 * Check if we are actually a member of this group.
1386	 */
1387	imo = in6p_findmoptions(inp);
1388	idx = im6o_match_group(imo, ifp, &gsa->sa);
1389	if (idx == -1 || imo->im6o_mfilters == NULL) {
1390		error = EADDRNOTAVAIL;
1391		goto out_in6p_locked;
1392	}
1393
1394	KASSERT(imo->im6o_mfilters != NULL,
1395	    ("%s: im6o_mfilters not allocated", __func__));
1396	imf = &imo->im6o_mfilters[idx];
1397	inm = imo->im6o_membership[idx];
1398
1399	/*
1400	 * Attempting to use the delta-based API on an
1401	 * non exclusive-mode membership is an error.
1402	 */
1403	fmode = imf->im6f_st[0];
1404	if (fmode != MCAST_EXCLUDE) {
1405		error = EINVAL;
1406		goto out_in6p_locked;
1407	}
1408
1409	/*
1410	 * Deal with error cases up-front:
1411	 *  Asked to block, but already blocked; or
1412	 *  Asked to unblock, but nothing to unblock.
1413	 * If adding a new block entry, allocate it.
1414	 */
1415	ims = im6o_match_source(imo, idx, &ssa->sa);
1416	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1417		CTR3(KTR_MLD, "%s: source %s %spresent", __func__,
1418		    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
1419		    doblock ? "" : "not ");
1420		error = EADDRNOTAVAIL;
1421		goto out_in6p_locked;
1422	}
1423
1424	INP_WLOCK_ASSERT(inp);
1425
1426	/*
1427	 * Begin state merge transaction at socket layer.
1428	 */
1429	if (doblock) {
1430		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
1431		ims = im6f_graft(imf, fmode, &ssa->sin6);
1432		if (ims == NULL)
1433			error = ENOMEM;
1434	} else {
1435		CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1436		error = im6f_prune(imf, &ssa->sin6);
1437	}
1438
1439	if (error) {
1440		CTR1(KTR_MLD, "%s: merge imf state failed", __func__);
1441		goto out_im6f_rollback;
1442	}
1443
1444	/*
1445	 * Begin state merge transaction at MLD layer.
1446	 */
1447	IN6_MULTI_LOCK();
1448
1449	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1450	error = in6m_merge(inm, imf);
1451	if (error) {
1452		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1453		goto out_im6f_rollback;
1454	}
1455
1456	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1457	error = mld_change_state(inm, 0);
1458	if (error)
1459		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1460
1461	IN6_MULTI_UNLOCK();
1462
1463out_im6f_rollback:
1464	if (error)
1465		im6f_rollback(imf);
1466	else
1467		im6f_commit(imf);
1468
1469	im6f_reap(imf);
1470
1471out_in6p_locked:
1472	INP_WUNLOCK(inp);
1473	return (error);
1474}
1475
1476/*
1477 * Given an inpcb, return its multicast options structure pointer.  Accepts
1478 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1479 *
1480 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1481 * SMPng: NOTE: Returns with the INP write lock held.
1482 */
1483static struct ip6_moptions *
1484in6p_findmoptions(struct inpcb *inp)
1485{
1486	INIT_VNET_INET6(curvnet);
1487	struct ip6_moptions	 *imo;
1488	struct in6_multi		**immp;
1489	struct in6_mfilter	 *imfp;
1490	size_t			  idx;
1491
1492	INP_WLOCK(inp);
1493	if (inp->in6p_moptions != NULL)
1494		return (inp->in6p_moptions);
1495
1496	INP_WUNLOCK(inp);
1497
1498	imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK);
1499	immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS,
1500	    M_WAITOK | M_ZERO);
1501	imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS,
1502	    M_IN6MFILTER, M_WAITOK);
1503
1504	imo->im6o_multicast_ifp = NULL;
1505	imo->im6o_multicast_hlim = V_ip6_defmcasthlim;
1506	imo->im6o_multicast_loop = in6_mcast_loop;
1507	imo->im6o_num_memberships = 0;
1508	imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
1509	imo->im6o_membership = immp;
1510
1511	/* Initialize per-group source filters. */
1512	for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++)
1513		im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1514	imo->im6o_mfilters = imfp;
1515
1516	INP_WLOCK(inp);
1517	if (inp->in6p_moptions != NULL) {
1518		free(imfp, M_IN6MFILTER);
1519		free(immp, M_IP6MOPTS);
1520		free(imo, M_IP6MOPTS);
1521		return (inp->in6p_moptions);
1522	}
1523	inp->in6p_moptions = imo;
1524	return (imo);
1525}
1526
1527/*
1528 * Discard the IPv6 multicast options (and source filters).
1529 *
1530 * SMPng: NOTE: assumes INP write lock is held.
1531 */
1532void
1533ip6_freemoptions(struct ip6_moptions *imo)
1534{
1535	struct in6_mfilter	*imf;
1536	size_t			 idx, nmships;
1537
1538	KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__));
1539
1540	nmships = imo->im6o_num_memberships;
1541	for (idx = 0; idx < nmships; ++idx) {
1542		imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL;
1543		if (imf)
1544			im6f_leave(imf);
1545		/* XXX this will thrash the lock(s) */
1546		(void)in6_mc_leave(imo->im6o_membership[idx], imf);
1547		if (imf)
1548			im6f_purge(imf);
1549	}
1550
1551	if (imo->im6o_mfilters)
1552		free(imo->im6o_mfilters, M_IN6MFILTER);
1553	free(imo->im6o_membership, M_IP6MOPTS);
1554	free(imo, M_IP6MOPTS);
1555}
1556
1557/*
1558 * Atomically get source filters on a socket for an IPv6 multicast group.
1559 * Called with INP lock held; returns with lock released.
1560 */
1561static int
1562in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1563{
1564	INIT_VNET_NET(curvnet);
1565	struct __msfilterreq	 msfr;
1566	sockunion_t		*gsa;
1567	struct ifnet		*ifp;
1568	struct ip6_moptions	*imo;
1569	struct in6_mfilter	*imf;
1570	struct ip6_msource	*ims;
1571	struct in6_msource	*lims;
1572	struct sockaddr_in6	*psin;
1573	struct sockaddr_storage	*ptss;
1574	struct sockaddr_storage	*tss;
1575	int			 error;
1576	size_t			 idx, nsrcs, ncsrcs;
1577
1578	INP_WLOCK_ASSERT(inp);
1579
1580	imo = inp->in6p_moptions;
1581	KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__));
1582
1583	INP_WUNLOCK(inp);
1584
1585	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1586	    sizeof(struct __msfilterreq));
1587	if (error)
1588		return (error);
1589
1590	if (msfr.msfr_group.ss_family != AF_INET6 ||
1591	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
1592		return (EINVAL);
1593
1594	gsa = (sockunion_t *)&msfr.msfr_group;
1595	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1596		return (EINVAL);
1597
1598	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1599		return (EADDRNOTAVAIL);
1600	ifp = ifnet_byindex(msfr.msfr_ifindex);
1601	if (ifp == NULL)
1602		return (EADDRNOTAVAIL);
1603	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1604
1605	INP_WLOCK(inp);
1606
1607	/*
1608	 * Lookup group on the socket.
1609	 */
1610	idx = im6o_match_group(imo, ifp, &gsa->sa);
1611	if (idx == -1 || imo->im6o_mfilters == NULL) {
1612		INP_WUNLOCK(inp);
1613		return (EADDRNOTAVAIL);
1614	}
1615	imf = &imo->im6o_mfilters[idx];
1616
1617	/*
1618	 * Ignore memberships which are in limbo.
1619	 */
1620	if (imf->im6f_st[1] == MCAST_UNDEFINED) {
1621		INP_WUNLOCK(inp);
1622		return (EAGAIN);
1623	}
1624	msfr.msfr_fmode = imf->im6f_st[1];
1625
1626	/*
1627	 * If the user specified a buffer, copy out the source filter
1628	 * entries to userland gracefully.
1629	 * We only copy out the number of entries which userland
1630	 * has asked for, but we always tell userland how big the
1631	 * buffer really needs to be.
1632	 */
1633	tss = NULL;
1634	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1635		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1636		    M_TEMP, M_NOWAIT | M_ZERO);
1637		if (tss == NULL) {
1638			INP_WUNLOCK(inp);
1639			return (ENOBUFS);
1640		}
1641	}
1642
1643	/*
1644	 * Count number of sources in-mode at t0.
1645	 * If buffer space exists and remains, copy out source entries.
1646	 */
1647	nsrcs = msfr.msfr_nsrcs;
1648	ncsrcs = 0;
1649	ptss = tss;
1650	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
1651		lims = (struct in6_msource *)ims;
1652		if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
1653		    lims->im6sl_st[0] != imf->im6f_st[0])
1654			continue;
1655		++ncsrcs;
1656		if (tss != NULL && nsrcs > 0) {
1657			psin = (struct sockaddr_in6 *)ptss;
1658			psin->sin6_family = AF_INET6;
1659			psin->sin6_len = sizeof(struct sockaddr_in6);
1660			psin->sin6_addr = lims->im6s_addr;
1661			psin->sin6_port = 0;
1662			--nsrcs;
1663			++ptss;
1664		}
1665	}
1666
1667	INP_WUNLOCK(inp);
1668
1669	if (tss != NULL) {
1670		error = copyout(tss, msfr.msfr_srcs,
1671		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1672		free(tss, M_TEMP);
1673		if (error)
1674			return (error);
1675	}
1676
1677	msfr.msfr_nsrcs = ncsrcs;
1678	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1679
1680	return (error);
1681}
1682
1683/*
1684 * Return the IP multicast options in response to user getsockopt().
1685 */
1686int
1687ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1688{
1689	INIT_VNET_INET6(curvnet);
1690	struct ip6_moptions	*im6o;
1691	int			 error;
1692	u_int			 optval;
1693
1694	INP_WLOCK(inp);
1695	im6o = inp->in6p_moptions;
1696	/*
1697	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1698	 * or is a divert socket, reject it.
1699	 */
1700	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1701	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1702	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1703		INP_WUNLOCK(inp);
1704		return (EOPNOTSUPP);
1705	}
1706
1707	error = 0;
1708	switch (sopt->sopt_name) {
1709	case IPV6_MULTICAST_IF:
1710		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
1711			optval = 0;
1712		} else {
1713			optval = im6o->im6o_multicast_ifp->if_index;
1714		}
1715		INP_WUNLOCK(inp);
1716		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1717		break;
1718
1719	case IPV6_MULTICAST_HOPS:
1720		if (im6o == NULL)
1721			optval = V_ip6_defmcasthlim;
1722		else
1723			optval = im6o->im6o_multicast_loop;
1724		INP_WUNLOCK(inp);
1725		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1726		break;
1727
1728	case IPV6_MULTICAST_LOOP:
1729		if (im6o == NULL)
1730			optval = in6_mcast_loop; /* XXX VIMAGE */
1731		else
1732			optval = im6o->im6o_multicast_loop;
1733		INP_WUNLOCK(inp);
1734		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1735		break;
1736
1737	case IPV6_MSFILTER:
1738		if (im6o == NULL) {
1739			error = EADDRNOTAVAIL;
1740			INP_WUNLOCK(inp);
1741		} else {
1742			error = in6p_get_source_filters(inp, sopt);
1743		}
1744		break;
1745
1746	default:
1747		INP_WUNLOCK(inp);
1748		error = ENOPROTOOPT;
1749		break;
1750	}
1751
1752	INP_UNLOCK_ASSERT(inp);
1753
1754	return (error);
1755}
1756
1757/*
1758 * Look up the ifnet to use for a multicast group membership,
1759 * given the address of an IPv6 group.
1760 *
1761 * This routine exists to support legacy IPv6 multicast applications.
1762 *
1763 * If inp is non-NULL, use this socket's current FIB number for any
1764 * required FIB lookup. Look up the group address in the unicast FIB,
1765 * and use its ifp; usually, this points to the default next-hop.
1766 * If the FIB lookup fails, return NULL.
1767 *
1768 * FUTURE: Support multiple forwarding tables for IPv6.
1769 *
1770 * Returns NULL if no ifp could be found.
1771 */
1772static struct ifnet *
1773in6p_lookup_mcast_ifp(const struct inpcb *in6p __unused,
1774    const struct sockaddr_in6 *gsin6)
1775{
1776	struct route_in6	 ro6;
1777	struct ifnet		*ifp;
1778
1779	KASSERT(in6p->inp_vflag & INP_IPV6,
1780	    ("%s: not INP_IPV6 inpcb", __func__));
1781	KASSERT(gsin6->sin6_family == AF_INET6,
1782	    ("%s: not AF_INET6 group", __func__));
1783	KASSERT(IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr),
1784	    ("%s: not multicast", __func__));
1785
1786	ifp = NULL;
1787	memset(&ro6, 0, sizeof(struct route_in6));
1788	memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
1789#ifdef notyet
1790	rtalloc_ign_fib(&ro6, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1791#else
1792	rtalloc_ign((struct route *)&ro6, 0);
1793#endif
1794	if (ro6.ro_rt != NULL) {
1795		ifp = ro6.ro_rt->rt_ifp;
1796		KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1797		RTFREE(ro6.ro_rt);
1798	}
1799
1800	return (ifp);
1801}
1802
1803/*
1804 * Join an IPv6 multicast group, possibly with a source.
1805 *
1806 * FIXME: The KAME use of the unspecified address (::)
1807 * to join *all* multicast groups is currently unsupported.
1808 */
1809static int
1810in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
1811{
1812	INIT_VNET_NET(curvnet);
1813	struct group_source_req		 gsr;
1814	sockunion_t			*gsa, *ssa;
1815	struct ifnet			*ifp;
1816	struct in6_mfilter		*imf;
1817	struct ip6_moptions		*imo;
1818	struct in6_multi		*inm;
1819	struct in6_msource		*lims;
1820	size_t				 idx;
1821	int				 error, is_new;
1822
1823	ifp = NULL;
1824	imf = NULL;
1825	error = 0;
1826	is_new = 0;
1827
1828	memset(&gsr, 0, sizeof(struct group_source_req));
1829	gsa = (sockunion_t *)&gsr.gsr_group;
1830	gsa->ss.ss_family = AF_UNSPEC;
1831	ssa = (sockunion_t *)&gsr.gsr_source;
1832	ssa->ss.ss_family = AF_UNSPEC;
1833
1834	/*
1835	 * Chew everything into struct group_source_req.
1836	 * Overwrite the port field if present, as the sockaddr
1837	 * being copied in may be matched with a binary comparison.
1838	 * Ignore passed-in scope ID.
1839	 */
1840	switch (sopt->sopt_name) {
1841	case IPV6_JOIN_GROUP: {
1842		struct ipv6_mreq mreq;
1843
1844		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
1845		    sizeof(struct ipv6_mreq));
1846		if (error)
1847			return (error);
1848
1849		gsa->sin6.sin6_family = AF_INET6;
1850		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
1851		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
1852
1853		if (mreq.ipv6mr_interface == 0) {
1854			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
1855		} else {
1856			if (mreq.ipv6mr_interface < 0 ||
1857			    V_if_index < mreq.ipv6mr_interface)
1858				return (EADDRNOTAVAIL);
1859			ifp = ifnet_byindex(mreq.ipv6mr_interface);
1860		}
1861		CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p",
1862		    __func__, mreq.ipv6mr_interface, ifp);
1863	} break;
1864
1865	case MCAST_JOIN_GROUP:
1866	case MCAST_JOIN_SOURCE_GROUP:
1867		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1868			error = sooptcopyin(sopt, &gsr,
1869			    sizeof(struct group_req),
1870			    sizeof(struct group_req));
1871		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1872			error = sooptcopyin(sopt, &gsr,
1873			    sizeof(struct group_source_req),
1874			    sizeof(struct group_source_req));
1875		}
1876		if (error)
1877			return (error);
1878
1879		if (gsa->sin6.sin6_family != AF_INET6 ||
1880		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1881			return (EINVAL);
1882
1883		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1884			if (ssa->sin6.sin6_family != AF_INET6 ||
1885			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1886				return (EINVAL);
1887			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
1888				return (EINVAL);
1889			/*
1890			 * TODO: Validate embedded scope ID in source
1891			 * list entry against passed-in ifp, if and only
1892			 * if source list filter entry is iface or node local.
1893			 */
1894			in6_clearscope(&ssa->sin6.sin6_addr);
1895			ssa->sin6.sin6_port = 0;
1896			ssa->sin6.sin6_scope_id = 0;
1897		}
1898
1899		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1900			return (EADDRNOTAVAIL);
1901		ifp = ifnet_byindex(gsr.gsr_interface);
1902		break;
1903
1904	default:
1905		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1906		    __func__, sopt->sopt_name);
1907		return (EOPNOTSUPP);
1908		break;
1909	}
1910
1911	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1912		return (EINVAL);
1913
1914	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1915		return (EADDRNOTAVAIL);
1916
1917	gsa->sin6.sin6_port = 0;
1918	gsa->sin6.sin6_scope_id = 0;
1919
1920	/*
1921	 * Always set the scope zone ID on memberships created from userland.
1922	 * Use the passed-in ifp to do this.
1923	 * XXX The in6_setscope() return value is meaningless.
1924	 * XXX SCOPE6_LOCK() is taken by in6_setscope().
1925	 */
1926	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1927
1928	/*
1929	 * MCAST_JOIN_SOURCE on an exclusive membership is an error.
1930	 * On an existing inclusive membership, it just adds the
1931	 * source to the filter list.
1932	 */
1933	imo = in6p_findmoptions(inp);
1934	idx = im6o_match_group(imo, ifp, &gsa->sa);
1935	if (idx == -1) {
1936		is_new = 1;
1937	} else {
1938		inm = imo->im6o_membership[idx];
1939		imf = &imo->im6o_mfilters[idx];
1940		if (ssa->ss.ss_family != AF_UNSPEC &&
1941		    imf->im6f_st[1] != MCAST_INCLUDE) {
1942			error = EINVAL;
1943			goto out_in6p_locked;
1944		}
1945		lims = im6o_match_source(imo, idx, &ssa->sa);
1946		if (lims != NULL) {
1947			error = EADDRNOTAVAIL;
1948			goto out_in6p_locked;
1949		}
1950	}
1951
1952	/*
1953	 * Begin state merge transaction at socket layer.
1954	 */
1955	INP_WLOCK_ASSERT(inp);
1956
1957	if (is_new) {
1958		if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
1959			error = im6o_grow(imo);
1960			if (error)
1961				goto out_in6p_locked;
1962		}
1963		/*
1964		 * Allocate the new slot upfront so we can deal with
1965		 * grafting the new source filter in same code path
1966		 * as for join-source on existing membership.
1967		 */
1968		idx = imo->im6o_num_memberships;
1969		imo->im6o_membership[idx] = NULL;
1970		imo->im6o_num_memberships++;
1971		KASSERT(imo->im6o_mfilters != NULL,
1972		    ("%s: im6f_mfilters vector was not allocated", __func__));
1973		imf = &imo->im6o_mfilters[idx];
1974		KASSERT(RB_EMPTY(&imf->im6f_sources),
1975		    ("%s: im6f_sources not empty", __func__));
1976	}
1977
1978	/*
1979	 * Graft new source into filter list for this inpcb's
1980	 * membership of the group. The in6_multi may not have
1981	 * been allocated yet if this is a new membership.
1982	 */
1983	if (ssa->ss.ss_family != AF_UNSPEC) {
1984		/* Membership starts in IN mode */
1985		if (is_new) {
1986			CTR1(KTR_MLD, "%s: new join w/source", __func__);
1987			im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
1988		} else {
1989			CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1990		}
1991		lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6);
1992		if (lims == NULL) {
1993			CTR1(KTR_MLD, "%s: merge imf state failed",
1994			    __func__);
1995			error = ENOMEM;
1996			goto out_im6o_free;
1997		}
1998	}
1999
2000	/*
2001	 * Begin state merge transaction at MLD layer.
2002	 */
2003	IN6_MULTI_LOCK();
2004
2005	if (is_new) {
2006		error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf,
2007		    &inm, 0);
2008		if (error)
2009			goto out_im6o_free;
2010		imo->im6o_membership[idx] = inm;
2011	} else {
2012		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2013		error = in6m_merge(inm, imf);
2014		if (error) {
2015			CTR1(KTR_MLD, "%s: failed to merge inm state",
2016			    __func__);
2017			goto out_im6f_rollback;
2018		}
2019		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2020		error = mld_change_state(inm, 0);
2021		if (error) {
2022			CTR1(KTR_MLD, "%s: failed mld downcall",
2023			    __func__);
2024			goto out_im6f_rollback;
2025		}
2026	}
2027
2028	IN6_MULTI_UNLOCK();
2029
2030out_im6f_rollback:
2031	INP_WLOCK_ASSERT(inp);
2032	if (error) {
2033		im6f_rollback(imf);
2034		if (is_new)
2035			im6f_purge(imf);
2036		else
2037			im6f_reap(imf);
2038	} else {
2039		im6f_commit(imf);
2040	}
2041
2042out_im6o_free:
2043	if (error && is_new) {
2044		imo->im6o_membership[idx] = NULL;
2045		--imo->im6o_num_memberships;
2046	}
2047
2048out_in6p_locked:
2049	INP_WUNLOCK(inp);
2050	return (error);
2051}
2052
2053/*
2054 * Leave an IPv6 multicast group on an inpcb, possibly with a source.
2055 */
2056static int
2057in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
2058{
2059	INIT_VNET_NET(curvnet);
2060	INIT_VNET_INET6(curvnet);
2061	struct ipv6_mreq		 mreq;
2062	struct group_source_req		 gsr;
2063	sockunion_t			*gsa, *ssa;
2064	struct ifnet			*ifp;
2065	struct in6_mfilter		*imf;
2066	struct ip6_moptions		*imo;
2067	struct in6_msource		*ims;
2068	struct in6_multi		*inm;
2069	uint32_t			 ifindex;
2070	size_t				 idx;
2071	int				 error, is_final;
2072#ifdef KTR
2073	char				 ip6tbuf[INET6_ADDRSTRLEN];
2074#endif
2075
2076	ifp = NULL;
2077	ifindex = 0;
2078	error = 0;
2079	is_final = 1;
2080
2081	memset(&gsr, 0, sizeof(struct group_source_req));
2082	gsa = (sockunion_t *)&gsr.gsr_group;
2083	gsa->ss.ss_family = AF_UNSPEC;
2084	ssa = (sockunion_t *)&gsr.gsr_source;
2085	ssa->ss.ss_family = AF_UNSPEC;
2086
2087	/*
2088	 * Chew everything passed in up into a struct group_source_req
2089	 * as that is easier to process.
2090	 * Note: Any embedded scope ID in the multicast group passed
2091	 * in by userland is ignored, the interface index is the recommended
2092	 * mechanism to specify an interface; see below.
2093	 */
2094	switch (sopt->sopt_name) {
2095	case IPV6_LEAVE_GROUP:
2096		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
2097		    sizeof(struct ipv6_mreq));
2098		if (error)
2099			return (error);
2100		gsa->sin6.sin6_family = AF_INET6;
2101		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
2102		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
2103		gsa->sin6.sin6_port = 0;
2104		gsa->sin6.sin6_scope_id = 0;
2105		ifindex = mreq.ipv6mr_interface;
2106		break;
2107
2108	case MCAST_LEAVE_GROUP:
2109	case MCAST_LEAVE_SOURCE_GROUP:
2110		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2111			error = sooptcopyin(sopt, &gsr,
2112			    sizeof(struct group_req),
2113			    sizeof(struct group_req));
2114		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2115			error = sooptcopyin(sopt, &gsr,
2116			    sizeof(struct group_source_req),
2117			    sizeof(struct group_source_req));
2118		}
2119		if (error)
2120			return (error);
2121
2122		if (gsa->sin6.sin6_family != AF_INET6 ||
2123		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2124			return (EINVAL);
2125		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2126			if (ssa->sin6.sin6_family != AF_INET6 ||
2127			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2128				return (EINVAL);
2129			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
2130				return (EINVAL);
2131			/*
2132			 * TODO: Validate embedded scope ID in source
2133			 * list entry against passed-in ifp, if and only
2134			 * if source list filter entry is iface or node local.
2135			 */
2136			in6_clearscope(&ssa->sin6.sin6_addr);
2137		}
2138		gsa->sin6.sin6_port = 0;
2139		gsa->sin6.sin6_scope_id = 0;
2140		ifindex = gsr.gsr_interface;
2141		break;
2142
2143	default:
2144		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
2145		    __func__, sopt->sopt_name);
2146		return (EOPNOTSUPP);
2147		break;
2148	}
2149
2150	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2151		return (EINVAL);
2152
2153	/*
2154	 * Validate interface index if provided. If no interface index
2155	 * was provided separately, attempt to look the membership up
2156	 * from the default scope as a last resort to disambiguate
2157	 * the membership we are being asked to leave.
2158	 * XXX SCOPE6 lock potentially taken here.
2159	 */
2160	if (ifindex != 0) {
2161		if (ifindex < 0 || V_if_index < ifindex)
2162			return (EADDRNOTAVAIL);
2163		ifp = ifnet_byindex(ifindex);
2164		if (ifp == NULL)
2165			return (EADDRNOTAVAIL);
2166		(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2167	} else {
2168		error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone);
2169		if (error)
2170			return (EADDRNOTAVAIL);
2171		/*
2172		 * XXX For now, stomp on zone ID for the corner case.
2173		 * This is not the 'KAME way', but we need to see the ifp
2174		 * directly until such time as this implementation is
2175		 * refactored, assuming the scope IDs are the way to go.
2176		 */
2177		ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]);
2178		KASSERT(ifindex != 0, ("%s: bad zone ID", __func__));
2179		ifp = ifnet_byindex(ifindex);
2180		if (ifp == NULL)
2181			return (EADDRNOTAVAIL);
2182	}
2183
2184	CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp);
2185	KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__));
2186
2187	/*
2188	 * Find the membership in the membership array.
2189	 */
2190	imo = in6p_findmoptions(inp);
2191	idx = im6o_match_group(imo, ifp, &gsa->sa);
2192	if (idx == -1) {
2193		error = EADDRNOTAVAIL;
2194		goto out_in6p_locked;
2195	}
2196	inm = imo->im6o_membership[idx];
2197	imf = &imo->im6o_mfilters[idx];
2198
2199	if (ssa->ss.ss_family != AF_UNSPEC)
2200		is_final = 0;
2201
2202	/*
2203	 * Begin state merge transaction at socket layer.
2204	 */
2205	INP_WLOCK_ASSERT(inp);
2206
2207	/*
2208	 * If we were instructed only to leave a given source, do so.
2209	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2210	 */
2211	if (is_final) {
2212		im6f_leave(imf);
2213	} else {
2214		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
2215			error = EADDRNOTAVAIL;
2216			goto out_in6p_locked;
2217		}
2218		ims = im6o_match_source(imo, idx, &ssa->sa);
2219		if (ims == NULL) {
2220			CTR3(KTR_MLD, "%s: source %p %spresent", __func__,
2221			    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
2222			    "not ");
2223			error = EADDRNOTAVAIL;
2224			goto out_in6p_locked;
2225		}
2226		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
2227		error = im6f_prune(imf, &ssa->sin6);
2228		if (error) {
2229			CTR1(KTR_MLD, "%s: merge imf state failed",
2230			    __func__);
2231			goto out_in6p_locked;
2232		}
2233	}
2234
2235	/*
2236	 * Begin state merge transaction at MLD layer.
2237	 */
2238	IN6_MULTI_LOCK();
2239
2240	if (is_final) {
2241		/*
2242		 * Give up the multicast address record to which
2243		 * the membership points.
2244		 */
2245		(void)in6_mc_leave_locked(inm, imf);
2246	} else {
2247		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2248		error = in6m_merge(inm, imf);
2249		if (error) {
2250			CTR1(KTR_MLD, "%s: failed to merge inm state",
2251			    __func__);
2252			goto out_im6f_rollback;
2253		}
2254
2255		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2256		error = mld_change_state(inm, 0);
2257		if (error) {
2258			CTR1(KTR_MLD, "%s: failed mld downcall",
2259			    __func__);
2260		}
2261	}
2262
2263	IN6_MULTI_UNLOCK();
2264
2265out_im6f_rollback:
2266	if (error)
2267		im6f_rollback(imf);
2268	else
2269		im6f_commit(imf);
2270
2271	im6f_reap(imf);
2272
2273	if (is_final) {
2274		/* Remove the gap in the membership array. */
2275		for (++idx; idx < imo->im6o_num_memberships; ++idx)
2276			imo->im6o_membership[idx-1] = imo->im6o_membership[idx];
2277		imo->im6o_num_memberships--;
2278	}
2279
2280out_in6p_locked:
2281	INP_WUNLOCK(inp);
2282	return (error);
2283}
2284
2285/*
2286 * Select the interface for transmitting IPv6 multicast datagrams.
2287 *
2288 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
2289 * may be passed to this socket option. An address of in6addr_any or an
2290 * interface index of 0 is used to remove a previous selection.
2291 * When no interface is selected, one is chosen for every send.
2292 */
2293static int
2294in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2295{
2296	INIT_VNET_NET(curvnet);
2297	struct ifnet		*ifp;
2298	struct ip6_moptions	*imo;
2299	u_int			 ifindex;
2300	int			 error;
2301
2302	if (sopt->sopt_valsize != sizeof(u_int))
2303		return (EINVAL);
2304
2305	error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
2306	if (error)
2307		return (error);
2308	if (ifindex < 0 || V_if_index < ifindex)
2309		return (EINVAL);
2310
2311	ifp = ifnet_byindex(ifindex);
2312	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2313		return (EADDRNOTAVAIL);
2314
2315	imo = in6p_findmoptions(inp);
2316	imo->im6o_multicast_ifp = ifp;
2317	INP_WUNLOCK(inp);
2318
2319	return (0);
2320}
2321
2322/*
2323 * Atomically set source filters on a socket for an IPv6 multicast group.
2324 *
2325 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2326 */
2327static int
2328in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2329{
2330	INIT_VNET_NET(curvnet);
2331	struct __msfilterreq	 msfr;
2332	sockunion_t		*gsa;
2333	struct ifnet		*ifp;
2334	struct in6_mfilter	*imf;
2335	struct ip6_moptions	*imo;
2336	struct in6_multi		*inm;
2337	size_t			 idx;
2338	int			 error;
2339
2340	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2341	    sizeof(struct __msfilterreq));
2342	if (error)
2343		return (error);
2344
2345	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc ||
2346	    (msfr.msfr_fmode != MCAST_EXCLUDE &&
2347	     msfr.msfr_fmode != MCAST_INCLUDE))
2348		return (EINVAL);
2349
2350	if (msfr.msfr_group.ss_family != AF_INET6 ||
2351	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
2352		return (EINVAL);
2353
2354	gsa = (sockunion_t *)&msfr.msfr_group;
2355	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2356		return (EINVAL);
2357
2358	gsa->sin6.sin6_port = 0;	/* ignore port */
2359
2360	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2361		return (EADDRNOTAVAIL);
2362	ifp = ifnet_byindex(msfr.msfr_ifindex);
2363	if (ifp == NULL)
2364		return (EADDRNOTAVAIL);
2365	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2366
2367	/*
2368	 * Take the INP write lock.
2369	 * Check if this socket is a member of this group.
2370	 */
2371	imo = in6p_findmoptions(inp);
2372	idx = im6o_match_group(imo, ifp, &gsa->sa);
2373	if (idx == -1 || imo->im6o_mfilters == NULL) {
2374		error = EADDRNOTAVAIL;
2375		goto out_in6p_locked;
2376	}
2377	inm = imo->im6o_membership[idx];
2378	imf = &imo->im6o_mfilters[idx];
2379
2380	/*
2381	 * Begin state merge transaction at socket layer.
2382	 */
2383	INP_WLOCK_ASSERT(inp);
2384
2385	imf->im6f_st[1] = msfr.msfr_fmode;
2386
2387	/*
2388	 * Apply any new source filters, if present.
2389	 * Make a copy of the user-space source vector so
2390	 * that we may copy them with a single copyin. This
2391	 * allows us to deal with page faults up-front.
2392	 */
2393	if (msfr.msfr_nsrcs > 0) {
2394		struct in6_msource	*lims;
2395		struct sockaddr_in6	*psin;
2396		struct sockaddr_storage	*kss, *pkss;
2397		int			 i;
2398
2399		INP_WUNLOCK(inp);
2400
2401		CTR2(KTR_MLD, "%s: loading %lu source list entries",
2402		    __func__, (unsigned long)msfr.msfr_nsrcs);
2403		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2404		    M_TEMP, M_WAITOK);
2405		error = copyin(msfr.msfr_srcs, kss,
2406		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2407		if (error) {
2408			free(kss, M_TEMP);
2409			return (error);
2410		}
2411
2412		INP_WLOCK(inp);
2413
2414		/*
2415		 * Mark all source filters as UNDEFINED at t1.
2416		 * Restore new group filter mode, as im6f_leave()
2417		 * will set it to INCLUDE.
2418		 */
2419		im6f_leave(imf);
2420		imf->im6f_st[1] = msfr.msfr_fmode;
2421
2422		/*
2423		 * Update socket layer filters at t1, lazy-allocating
2424		 * new entries. This saves a bunch of memory at the
2425		 * cost of one RB_FIND() per source entry; duplicate
2426		 * entries in the msfr_nsrcs vector are ignored.
2427		 * If we encounter an error, rollback transaction.
2428		 *
2429		 * XXX This too could be replaced with a set-symmetric
2430		 * difference like loop to avoid walking from root
2431		 * every time, as the key space is common.
2432		 */
2433		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2434			psin = (struct sockaddr_in6 *)pkss;
2435			if (psin->sin6_family != AF_INET6) {
2436				error = EAFNOSUPPORT;
2437				break;
2438			}
2439			if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
2440				error = EINVAL;
2441				break;
2442			}
2443			if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
2444				error = EINVAL;
2445				break;
2446			}
2447			/*
2448			 * TODO: Validate embedded scope ID in source
2449			 * list entry against passed-in ifp, if and only
2450			 * if source list filter entry is iface or node local.
2451			 */
2452			in6_clearscope(&psin->sin6_addr);
2453			error = im6f_get_source(imf, psin, &lims);
2454			if (error)
2455				break;
2456			lims->im6sl_st[1] = imf->im6f_st[1];
2457		}
2458		free(kss, M_TEMP);
2459	}
2460
2461	if (error)
2462		goto out_im6f_rollback;
2463
2464	INP_WLOCK_ASSERT(inp);
2465	IN6_MULTI_LOCK();
2466
2467	/*
2468	 * Begin state merge transaction at MLD layer.
2469	 */
2470	CTR1(KTR_MLD, "%s: merge inm state", __func__);
2471	error = in6m_merge(inm, imf);
2472	if (error) {
2473		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
2474		goto out_im6f_rollback;
2475	}
2476
2477	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2478	error = mld_change_state(inm, 0);
2479	if (error)
2480		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
2481
2482	IN6_MULTI_UNLOCK();
2483
2484out_im6f_rollback:
2485	if (error)
2486		im6f_rollback(imf);
2487	else
2488		im6f_commit(imf);
2489
2490	im6f_reap(imf);
2491
2492out_in6p_locked:
2493	INP_WUNLOCK(inp);
2494	return (error);
2495}
2496
2497/*
2498 * Set the IP multicast options in response to user setsockopt().
2499 *
2500 * Many of the socket options handled in this function duplicate the
2501 * functionality of socket options in the regular unicast API. However,
2502 * it is not possible to merge the duplicate code, because the idempotence
2503 * of the IPv6 multicast part of the BSD Sockets API must be preserved;
2504 * the effects of these options must be treated as separate and distinct.
2505 *
2506 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2507 */
2508int
2509ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2510{
2511	INIT_VNET_INET6(curvnet);
2512	struct ip6_moptions	*im6o;
2513	int			 error;
2514
2515	error = 0;
2516
2517	/*
2518	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2519	 * or is a divert socket, reject it.
2520	 */
2521	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2522	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2523	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2524		return (EOPNOTSUPP);
2525
2526	switch (sopt->sopt_name) {
2527	case IPV6_MULTICAST_IF:
2528		error = in6p_set_multicast_if(inp, sopt);
2529		break;
2530
2531	case IPV6_MULTICAST_HOPS: {
2532		int hlim;
2533
2534		if (sopt->sopt_valsize != sizeof(int)) {
2535			error = EINVAL;
2536			break;
2537		}
2538		error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
2539		if (error)
2540			break;
2541		if (hlim < -1 || hlim > 255) {
2542			error = EINVAL;
2543			break;
2544		} else if (hlim == -1) {
2545			hlim = V_ip6_defmcasthlim;
2546		}
2547		im6o = in6p_findmoptions(inp);
2548		im6o->im6o_multicast_hlim = hlim;
2549		INP_WUNLOCK(inp);
2550		break;
2551	}
2552
2553	case IPV6_MULTICAST_LOOP: {
2554		u_int loop;
2555
2556		/*
2557		 * Set the loopback flag for outgoing multicast packets.
2558		 * Must be zero or one.
2559		 */
2560		if (sopt->sopt_valsize != sizeof(u_int)) {
2561			error = EINVAL;
2562			break;
2563		}
2564		error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
2565		if (error)
2566			break;
2567		if (loop > 1) {
2568			error = EINVAL;
2569			break;
2570		}
2571		im6o = in6p_findmoptions(inp);
2572		im6o->im6o_multicast_loop = loop;
2573		INP_WUNLOCK(inp);
2574		break;
2575	}
2576
2577	case IPV6_JOIN_GROUP:
2578	case MCAST_JOIN_GROUP:
2579	case MCAST_JOIN_SOURCE_GROUP:
2580		error = in6p_join_group(inp, sopt);
2581		break;
2582
2583	case IPV6_LEAVE_GROUP:
2584	case MCAST_LEAVE_GROUP:
2585	case MCAST_LEAVE_SOURCE_GROUP:
2586		error = in6p_leave_group(inp, sopt);
2587		break;
2588
2589	case MCAST_BLOCK_SOURCE:
2590	case MCAST_UNBLOCK_SOURCE:
2591		error = in6p_block_unblock_source(inp, sopt);
2592		break;
2593
2594	case IPV6_MSFILTER:
2595		error = in6p_set_source_filters(inp, sopt);
2596		break;
2597
2598	default:
2599		error = EOPNOTSUPP;
2600		break;
2601	}
2602
2603	INP_UNLOCK_ASSERT(inp);
2604
2605	return (error);
2606}
2607
2608/*
2609 * Expose MLD's multicast filter mode and source list(s) to userland,
2610 * keyed by (ifindex, group).
2611 * The filter mode is written out as a uint32_t, followed by
2612 * 0..n of struct in6_addr.
2613 * For use by ifmcstat(8).
2614 * SMPng: NOTE: unlocked read of ifindex space.
2615 */
2616static int
2617sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS)
2618{
2619	INIT_VNET_NET(curvnet);
2620	struct in6_addr			 mcaddr;
2621	struct in6_addr			 src;
2622	struct ifnet			*ifp;
2623	struct ifmultiaddr		*ifma;
2624	struct in6_multi		*inm;
2625	struct ip6_msource		*ims;
2626	int				*name;
2627	int				 retval;
2628	u_int				 namelen;
2629	uint32_t			 fmode, ifindex;
2630#ifdef KTR
2631	char				 ip6tbuf[INET6_ADDRSTRLEN];
2632#endif
2633
2634	name = (int *)arg1;
2635	namelen = arg2;
2636
2637	if (req->newptr != NULL)
2638		return (EPERM);
2639
2640	/* int: ifindex + 4 * 32 bits of IPv6 address */
2641	if (namelen != 5)
2642		return (EINVAL);
2643
2644	ifindex = name[0];
2645	if (ifindex <= 0 || ifindex > V_if_index) {
2646		CTR2(KTR_MLD, "%s: ifindex %u out of range",
2647		    __func__, ifindex);
2648		return (ENOENT);
2649	}
2650
2651	memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
2652	if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
2653		CTR2(KTR_MLD, "%s: group %s is not multicast",
2654		    __func__, ip6_sprintf(ip6tbuf, &mcaddr));
2655		return (EINVAL);
2656	}
2657
2658	ifp = ifnet_byindex(ifindex);
2659	if (ifp == NULL) {
2660		CTR2(KTR_MLD, "%s: no ifp for ifindex %u",
2661		    __func__, ifindex);
2662		return (ENOENT);
2663	}
2664	/*
2665	 * Internal MLD lookups require that scope/zone ID is set.
2666	 */
2667	(void)in6_setscope(&mcaddr, ifp, NULL);
2668
2669	retval = sysctl_wire_old_buffer(req,
2670	    sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr)));
2671	if (retval)
2672		return (retval);
2673
2674	IN6_MULTI_LOCK();
2675
2676	IF_ADDR_LOCK(ifp);
2677	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2678		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2679		    ifma->ifma_protospec == NULL)
2680			continue;
2681		inm = (struct in6_multi *)ifma->ifma_protospec;
2682		if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr))
2683			continue;
2684		fmode = inm->in6m_st[1].iss_fmode;
2685		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2686		if (retval != 0)
2687			break;
2688		RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
2689			CTR2(KTR_MLD, "%s: visit node %p", __func__, ims);
2690			/*
2691			 * Only copy-out sources which are in-mode.
2692			 */
2693			if (fmode != im6s_get_mode(inm, ims, 1)) {
2694				CTR1(KTR_MLD, "%s: skip non-in-mode",
2695				    __func__);
2696				continue;
2697			}
2698			src = ims->im6s_addr;
2699			retval = SYSCTL_OUT(req, &src,
2700			    sizeof(struct in6_addr));
2701			if (retval != 0)
2702				break;
2703		}
2704	}
2705	IF_ADDR_UNLOCK(ifp);
2706
2707	IN6_MULTI_UNLOCK();
2708
2709	return (retval);
2710}
2711
2712#ifdef KTR
2713
2714static const char *in6m_modestrs[] = { "un", "in", "ex" };
2715
2716static const char *
2717in6m_mode_str(const int mode)
2718{
2719
2720	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2721		return (in6m_modestrs[mode]);
2722	return ("??");
2723}
2724
2725static const char *in6m_statestrs[] = {
2726	"not-member",
2727	"silent",
2728	"idle",
2729	"lazy",
2730	"sleeping",
2731	"awakening",
2732	"query-pending",
2733	"sg-query-pending",
2734	"leaving"
2735};
2736
2737static const char *
2738in6m_state_str(const int state)
2739{
2740
2741	if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER)
2742		return (in6m_statestrs[state]);
2743	return ("??");
2744}
2745
2746/*
2747 * Dump an in6_multi structure to the console.
2748 */
2749void
2750in6m_print(const struct in6_multi *inm)
2751{
2752	int t;
2753	char ip6tbuf[INET6_ADDRSTRLEN];
2754
2755	if ((ktr_mask & KTR_MLD) == 0)
2756		return;
2757
2758	printf("%s: --- begin in6m %p ---\n", __func__, inm);
2759	printf("addr %s ifp %p(%s) ifma %p\n",
2760	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2761	    inm->in6m_ifp,
2762	    inm->in6m_ifp->if_xname,
2763	    inm->in6m_ifma);
2764	printf("timer %u state %s refcount %u scq.len %u\n",
2765	    inm->in6m_timer,
2766	    in6m_state_str(inm->in6m_state),
2767	    inm->in6m_refcount,
2768	    inm->in6m_scq.ifq_len);
2769	printf("mli %p nsrc %lu sctimer %u scrv %u\n",
2770	    inm->in6m_mli,
2771	    inm->in6m_nsrc,
2772	    inm->in6m_sctimer,
2773	    inm->in6m_scrv);
2774	for (t = 0; t < 2; t++) {
2775		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2776		    in6m_mode_str(inm->in6m_st[t].iss_fmode),
2777		    inm->in6m_st[t].iss_asm,
2778		    inm->in6m_st[t].iss_ex,
2779		    inm->in6m_st[t].iss_in,
2780		    inm->in6m_st[t].iss_rec);
2781	}
2782	printf("%s: --- end in6m %p ---\n", __func__, inm);
2783}
2784
2785#else /* !KTR */
2786
2787void
2788in6m_print(const struct in6_multi *inm)
2789{
2790
2791}
2792
2793#endif /* KTR */
2794