1/*
2 * Copyright (c) 2009 Bruce Simpson.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote
14 *    products derived from this software without specific prior written
15 *    permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * IPv6 multicast socket, group, and socket option processing module.
32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: releng/10.3/sys/netinet6/in6_mcast.c 281911 2015-04-24 02:12:25Z ae $");
37
38#include "opt_inet6.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/protosw.h>
49#include <sys/sysctl.h>
50#include <sys/priv.h>
51#include <sys/ktr.h>
52#include <sys/tree.h>
53
54#include <net/if.h>
55#include <net/if_dl.h>
56#include <net/route.h>
57#include <net/vnet.h>
58
59#include <netinet/in.h>
60#include <netinet/in_var.h>
61#include <netinet6/in6_var.h>
62#include <netinet/ip6.h>
63#include <netinet/icmp6.h>
64#include <netinet6/ip6_var.h>
65#include <netinet/in_pcb.h>
66#include <netinet/tcp_var.h>
67#include <netinet6/nd6.h>
68#include <netinet6/mld6_var.h>
69#include <netinet6/scope6_var.h>
70
71#ifndef KTR_MLD
72#define KTR_MLD KTR_INET6
73#endif
74
75#ifndef __SOCKUNION_DECLARED
76union sockunion {
77	struct sockaddr_storage	ss;
78	struct sockaddr		sa;
79	struct sockaddr_dl	sdl;
80	struct sockaddr_in6	sin6;
81};
82typedef union sockunion sockunion_t;
83#define __SOCKUNION_DECLARED
84#endif /* __SOCKUNION_DECLARED */
85
86static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter",
87    "IPv6 multicast PCB-layer source filter");
88static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group");
89static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options");
90static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource",
91    "IPv6 multicast MLD-layer source filter");
92
93RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
94
95/*
96 * Locking:
97 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
98 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however
99 *   it can be taken by code in net/if.c also.
100 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK.
101 *
102 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly
103 * any need for in6_multi itself to be virtualized -- it is bound to an ifp
104 * anyway no matter what happens.
105 */
106struct mtx in6_multi_mtx;
107MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF);
108
109static void	im6f_commit(struct in6_mfilter *);
110static int	im6f_get_source(struct in6_mfilter *imf,
111		    const struct sockaddr_in6 *psin,
112		    struct in6_msource **);
113static struct in6_msource *
114		im6f_graft(struct in6_mfilter *, const uint8_t,
115		    const struct sockaddr_in6 *);
116static void	im6f_leave(struct in6_mfilter *);
117static int	im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
118static void	im6f_purge(struct in6_mfilter *);
119static void	im6f_rollback(struct in6_mfilter *);
120static void	im6f_reap(struct in6_mfilter *);
121static int	im6o_grow(struct ip6_moptions *);
122static size_t	im6o_match_group(const struct ip6_moptions *,
123		    const struct ifnet *, const struct sockaddr *);
124static struct in6_msource *
125		im6o_match_source(const struct ip6_moptions *, const size_t,
126		    const struct sockaddr *);
127static void	im6s_merge(struct ip6_msource *ims,
128		    const struct in6_msource *lims, const int rollback);
129static int	in6_mc_get(struct ifnet *, const struct in6_addr *,
130		    struct in6_multi **);
131static int	in6m_get_source(struct in6_multi *inm,
132		    const struct in6_addr *addr, const int noalloc,
133		    struct ip6_msource **pims);
134#ifdef KTR
135static int	in6m_is_ifp_detached(const struct in6_multi *);
136#endif
137static int	in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
138static void	in6m_purge(struct in6_multi *);
139static void	in6m_reap(struct in6_multi *);
140static struct ip6_moptions *
141		in6p_findmoptions(struct inpcb *);
142static int	in6p_get_source_filters(struct inpcb *, struct sockopt *);
143static int	in6p_join_group(struct inpcb *, struct sockopt *);
144static int	in6p_leave_group(struct inpcb *, struct sockopt *);
145static struct ifnet *
146		in6p_lookup_mcast_ifp(const struct inpcb *,
147		    const struct sockaddr_in6 *);
148static int	in6p_block_unblock_source(struct inpcb *, struct sockopt *);
149static int	in6p_set_multicast_if(struct inpcb *, struct sockopt *);
150static int	in6p_set_source_filters(struct inpcb *, struct sockopt *);
151static int	sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS);
152
153SYSCTL_DECL(_net_inet6_ip6);	/* XXX Not in any common header. */
154
155static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0,
156    "IPv6 multicast");
157
158static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
159SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
160    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0,
161    "Max source filters per group");
162TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc);
163
164static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
165SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
166    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0,
167    "Max source filters per socket");
168TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc);
169
170/* TODO Virtualize this switch. */
171int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
172SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
173    &in6_mcast_loop, 0, "Loopback multicast datagrams by default");
174TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop);
175
176static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
177    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters,
178    "Per-interface stack-wide source filters");
179
180#ifdef KTR
181/*
182 * Inline function which wraps assertions for a valid ifp.
183 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
184 * is detached.
185 */
186static int __inline
187in6m_is_ifp_detached(const struct in6_multi *inm)
188{
189	struct ifnet *ifp;
190
191	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
192	ifp = inm->in6m_ifma->ifma_ifp;
193	if (ifp != NULL) {
194		/*
195		 * Sanity check that network-layer notion of ifp is the
196		 * same as that of link-layer.
197		 */
198		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
199	}
200
201	return (ifp == NULL);
202}
203#endif
204
205/*
206 * Initialize an in6_mfilter structure to a known state at t0, t1
207 * with an empty source filter list.
208 */
209static __inline void
210im6f_init(struct in6_mfilter *imf, const int st0, const int st1)
211{
212	memset(imf, 0, sizeof(struct in6_mfilter));
213	RB_INIT(&imf->im6f_sources);
214	imf->im6f_st[0] = st0;
215	imf->im6f_st[1] = st1;
216}
217
218/*
219 * Resize the ip6_moptions vector to the next power-of-two minus 1.
220 * May be called with locks held; do not sleep.
221 */
222static int
223im6o_grow(struct ip6_moptions *imo)
224{
225	struct in6_multi	**nmships;
226	struct in6_multi	**omships;
227	struct in6_mfilter	 *nmfilters;
228	struct in6_mfilter	 *omfilters;
229	size_t			  idx;
230	size_t			  newmax;
231	size_t			  oldmax;
232
233	nmships = NULL;
234	nmfilters = NULL;
235	omships = imo->im6o_membership;
236	omfilters = imo->im6o_mfilters;
237	oldmax = imo->im6o_max_memberships;
238	newmax = ((oldmax + 1) * 2) - 1;
239
240	if (newmax <= IPV6_MAX_MEMBERSHIPS) {
241		nmships = (struct in6_multi **)realloc(omships,
242		    sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT);
243		nmfilters = (struct in6_mfilter *)realloc(omfilters,
244		    sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER,
245		    M_NOWAIT);
246		if (nmships != NULL && nmfilters != NULL) {
247			/* Initialize newly allocated source filter heads. */
248			for (idx = oldmax; idx < newmax; idx++) {
249				im6f_init(&nmfilters[idx], MCAST_UNDEFINED,
250				    MCAST_EXCLUDE);
251			}
252			imo->im6o_max_memberships = newmax;
253			imo->im6o_membership = nmships;
254			imo->im6o_mfilters = nmfilters;
255		}
256	}
257
258	if (nmships == NULL || nmfilters == NULL) {
259		if (nmships != NULL)
260			free(nmships, M_IP6MOPTS);
261		if (nmfilters != NULL)
262			free(nmfilters, M_IN6MFILTER);
263		return (ETOOMANYREFS);
264	}
265
266	return (0);
267}
268
269/*
270 * Find an IPv6 multicast group entry for this ip6_moptions instance
271 * which matches the specified group, and optionally an interface.
272 * Return its index into the array, or -1 if not found.
273 */
274static size_t
275im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
276    const struct sockaddr *group)
277{
278	const struct sockaddr_in6 *gsin6;
279	struct in6_multi	**pinm;
280	int		  idx;
281	int		  nmships;
282
283	gsin6 = (const struct sockaddr_in6 *)group;
284
285	/* The im6o_membership array may be lazy allocated. */
286	if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0)
287		return (-1);
288
289	nmships = imo->im6o_num_memberships;
290	pinm = &imo->im6o_membership[0];
291	for (idx = 0; idx < nmships; idx++, pinm++) {
292		if (*pinm == NULL)
293			continue;
294		if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) &&
295		    IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr,
296		    &gsin6->sin6_addr)) {
297			break;
298		}
299	}
300	if (idx >= nmships)
301		idx = -1;
302
303	return (idx);
304}
305
306/*
307 * Find an IPv6 multicast source entry for this imo which matches
308 * the given group index for this socket, and source address.
309 *
310 * XXX TODO: The scope ID, if present in src, is stripped before
311 * any comparison. We SHOULD enforce scope/zone checks where the source
312 * filter entry has a link scope.
313 *
314 * NOTE: This does not check if the entry is in-mode, merely if
315 * it exists, which may not be the desired behaviour.
316 */
317static struct in6_msource *
318im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
319    const struct sockaddr *src)
320{
321	struct ip6_msource	 find;
322	struct in6_mfilter	*imf;
323	struct ip6_msource	*ims;
324	const sockunion_t	*psa;
325
326	KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__));
327	KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships,
328	    ("%s: invalid index %d\n", __func__, (int)gidx));
329
330	/* The im6o_mfilters array may be lazy allocated. */
331	if (imo->im6o_mfilters == NULL)
332		return (NULL);
333	imf = &imo->im6o_mfilters[gidx];
334
335	psa = (const sockunion_t *)src;
336	find.im6s_addr = psa->sin6.sin6_addr;
337	in6_clearscope(&find.im6s_addr);		/* XXX */
338	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
339
340	return ((struct in6_msource *)ims);
341}
342
343/*
344 * Perform filtering for multicast datagrams on a socket by group and source.
345 *
346 * Returns 0 if a datagram should be allowed through, or various error codes
347 * if the socket was not a member of the group, or the source was muted, etc.
348 */
349int
350im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp,
351    const struct sockaddr *group, const struct sockaddr *src)
352{
353	size_t gidx;
354	struct in6_msource *ims;
355	int mode;
356
357	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
358
359	gidx = im6o_match_group(imo, ifp, group);
360	if (gidx == -1)
361		return (MCAST_NOTGMEMBER);
362
363	/*
364	 * Check if the source was included in an (S,G) join.
365	 * Allow reception on exclusive memberships by default,
366	 * reject reception on inclusive memberships by default.
367	 * Exclude source only if an in-mode exclude filter exists.
368	 * Include source only if an in-mode include filter exists.
369	 * NOTE: We are comparing group state here at MLD t1 (now)
370	 * with socket-layer t0 (since last downcall).
371	 */
372	mode = imo->im6o_mfilters[gidx].im6f_st[1];
373	ims = im6o_match_source(imo, gidx, src);
374
375	if ((ims == NULL && mode == MCAST_INCLUDE) ||
376	    (ims != NULL && ims->im6sl_st[0] != mode))
377		return (MCAST_NOTSMEMBER);
378
379	return (MCAST_PASS);
380}
381
382/*
383 * Find and return a reference to an in6_multi record for (ifp, group),
384 * and bump its reference count.
385 * If one does not exist, try to allocate it, and update link-layer multicast
386 * filters on ifp to listen for group.
387 * Assumes the IN6_MULTI lock is held across the call.
388 * Return 0 if successful, otherwise return an appropriate error code.
389 */
390static int
391in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
392    struct in6_multi **pinm)
393{
394	struct sockaddr_in6	 gsin6;
395	struct ifmultiaddr	*ifma;
396	struct in6_multi	*inm;
397	int			 error;
398
399	error = 0;
400
401	/*
402	 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK;
403	 * if_addmulti() takes this mutex itself, so we must drop and
404	 * re-acquire around the call.
405	 */
406	IN6_MULTI_LOCK_ASSERT();
407	IF_ADDR_WLOCK(ifp);
408
409	inm = in6m_lookup_locked(ifp, group);
410	if (inm != NULL) {
411		/*
412		 * If we already joined this group, just bump the
413		 * refcount and return it.
414		 */
415		KASSERT(inm->in6m_refcount >= 1,
416		    ("%s: bad refcount %d", __func__, inm->in6m_refcount));
417		++inm->in6m_refcount;
418		*pinm = inm;
419		goto out_locked;
420	}
421
422	memset(&gsin6, 0, sizeof(gsin6));
423	gsin6.sin6_family = AF_INET6;
424	gsin6.sin6_len = sizeof(struct sockaddr_in6);
425	gsin6.sin6_addr = *group;
426
427	/*
428	 * Check if a link-layer group is already associated
429	 * with this network-layer group on the given ifnet.
430	 */
431	IF_ADDR_WUNLOCK(ifp);
432	error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma);
433	if (error != 0)
434		return (error);
435	IF_ADDR_WLOCK(ifp);
436
437	/*
438	 * If something other than netinet6 is occupying the link-layer
439	 * group, print a meaningful error message and back out of
440	 * the allocation.
441	 * Otherwise, bump the refcount on the existing network-layer
442	 * group association and return it.
443	 */
444	if (ifma->ifma_protospec != NULL) {
445		inm = (struct in6_multi *)ifma->ifma_protospec;
446#ifdef INVARIANTS
447		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
448		    __func__));
449		KASSERT(ifma->ifma_addr->sa_family == AF_INET6,
450		    ("%s: ifma not AF_INET6", __func__));
451		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
452		if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp ||
453		    !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group))
454			panic("%s: ifma %p is inconsistent with %p (%p)",
455			    __func__, ifma, inm, group);
456#endif
457		++inm->in6m_refcount;
458		*pinm = inm;
459		goto out_locked;
460	}
461
462	IF_ADDR_WLOCK_ASSERT(ifp);
463
464	/*
465	 * A new in6_multi record is needed; allocate and initialize it.
466	 * We DO NOT perform an MLD join as the in6_ layer may need to
467	 * push an initial source list down to MLD to support SSM.
468	 *
469	 * The initial source filter state is INCLUDE, {} as per the RFC.
470	 * Pending state-changes per group are subject to a bounds check.
471	 */
472	inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO);
473	if (inm == NULL) {
474		if_delmulti_ifma(ifma);
475		error = ENOMEM;
476		goto out_locked;
477	}
478	inm->in6m_addr = *group;
479	inm->in6m_ifp = ifp;
480	inm->in6m_mli = MLD_IFINFO(ifp);
481	inm->in6m_ifma = ifma;
482	inm->in6m_refcount = 1;
483	inm->in6m_state = MLD_NOT_MEMBER;
484	IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES);
485
486	inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
487	inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
488	RB_INIT(&inm->in6m_srcs);
489
490	ifma->ifma_protospec = inm;
491	*pinm = inm;
492
493out_locked:
494	IF_ADDR_WUNLOCK(ifp);
495	return (error);
496}
497
498/*
499 * Drop a reference to an in6_multi record.
500 *
501 * If the refcount drops to 0, free the in6_multi record and
502 * delete the underlying link-layer membership.
503 */
504void
505in6m_release_locked(struct in6_multi *inm)
506{
507	struct ifmultiaddr *ifma;
508
509	IN6_MULTI_LOCK_ASSERT();
510
511	CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount);
512
513	if (--inm->in6m_refcount > 0) {
514		CTR2(KTR_MLD, "%s: refcount is now %d", __func__,
515		    inm->in6m_refcount);
516		return;
517	}
518
519	CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm);
520
521	ifma = inm->in6m_ifma;
522
523	/* XXX this access is not covered by IF_ADDR_LOCK */
524	CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma);
525	KASSERT(ifma->ifma_protospec == inm,
526	    ("%s: ifma_protospec != inm", __func__));
527	ifma->ifma_protospec = NULL;
528
529	in6m_purge(inm);
530
531	free(inm, M_IP6MADDR);
532
533	if_delmulti_ifma(ifma);
534}
535
536/*
537 * Clear recorded source entries for a group.
538 * Used by the MLD code. Caller must hold the IN6_MULTI lock.
539 * FIXME: Should reap.
540 */
541void
542in6m_clear_recorded(struct in6_multi *inm)
543{
544	struct ip6_msource	*ims;
545
546	IN6_MULTI_LOCK_ASSERT();
547
548	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
549		if (ims->im6s_stp) {
550			ims->im6s_stp = 0;
551			--inm->in6m_st[1].iss_rec;
552		}
553	}
554	KASSERT(inm->in6m_st[1].iss_rec == 0,
555	    ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec));
556}
557
558/*
559 * Record a source as pending for a Source-Group MLDv2 query.
560 * This lives here as it modifies the shared tree.
561 *
562 * inm is the group descriptor.
563 * naddr is the address of the source to record in network-byte order.
564 *
565 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will
566 * lazy-allocate a source node in response to an SG query.
567 * Otherwise, no allocation is performed. This saves some memory
568 * with the trade-off that the source will not be reported to the
569 * router if joined in the window between the query response and
570 * the group actually being joined on the local host.
571 *
572 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
573 * This turns off the allocation of a recorded source entry if
574 * the group has not been joined.
575 *
576 * Return 0 if the source didn't exist or was already marked as recorded.
577 * Return 1 if the source was marked as recorded by this function.
578 * Return <0 if any error occured (negated errno code).
579 */
580int
581in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
582{
583	struct ip6_msource	 find;
584	struct ip6_msource	*ims, *nims;
585
586	IN6_MULTI_LOCK_ASSERT();
587
588	find.im6s_addr = *addr;
589	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
590	if (ims && ims->im6s_stp)
591		return (0);
592	if (ims == NULL) {
593		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
594			return (-ENOSPC);
595		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
596		    M_NOWAIT | M_ZERO);
597		if (nims == NULL)
598			return (-ENOMEM);
599		nims->im6s_addr = find.im6s_addr;
600		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
601		++inm->in6m_nsrc;
602		ims = nims;
603	}
604
605	/*
606	 * Mark the source as recorded and update the recorded
607	 * source count.
608	 */
609	++ims->im6s_stp;
610	++inm->in6m_st[1].iss_rec;
611
612	return (1);
613}
614
615/*
616 * Return a pointer to an in6_msource owned by an in6_mfilter,
617 * given its source address.
618 * Lazy-allocate if needed. If this is a new entry its filter state is
619 * undefined at t0.
620 *
621 * imf is the filter set being modified.
622 * addr is the source address.
623 *
624 * SMPng: May be called with locks held; malloc must not block.
625 */
626static int
627im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
628    struct in6_msource **plims)
629{
630	struct ip6_msource	 find;
631	struct ip6_msource	*ims, *nims;
632	struct in6_msource	*lims;
633	int			 error;
634
635	error = 0;
636	ims = NULL;
637	lims = NULL;
638
639	find.im6s_addr = psin->sin6_addr;
640	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
641	lims = (struct in6_msource *)ims;
642	if (lims == NULL) {
643		if (imf->im6f_nsrc == in6_mcast_maxsocksrc)
644			return (ENOSPC);
645		nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
646		    M_NOWAIT | M_ZERO);
647		if (nims == NULL)
648			return (ENOMEM);
649		lims = (struct in6_msource *)nims;
650		lims->im6s_addr = find.im6s_addr;
651		lims->im6sl_st[0] = MCAST_UNDEFINED;
652		RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
653		++imf->im6f_nsrc;
654	}
655
656	*plims = lims;
657
658	return (error);
659}
660
661/*
662 * Graft a source entry into an existing socket-layer filter set,
663 * maintaining any required invariants and checking allocations.
664 *
665 * The source is marked as being in the new filter mode at t1.
666 *
667 * Return the pointer to the new node, otherwise return NULL.
668 */
669static struct in6_msource *
670im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
671    const struct sockaddr_in6 *psin)
672{
673	struct ip6_msource	*nims;
674	struct in6_msource	*lims;
675
676	nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
677	    M_NOWAIT | M_ZERO);
678	if (nims == NULL)
679		return (NULL);
680	lims = (struct in6_msource *)nims;
681	lims->im6s_addr = psin->sin6_addr;
682	lims->im6sl_st[0] = MCAST_UNDEFINED;
683	lims->im6sl_st[1] = st1;
684	RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
685	++imf->im6f_nsrc;
686
687	return (lims);
688}
689
690/*
691 * Prune a source entry from an existing socket-layer filter set,
692 * maintaining any required invariants and checking allocations.
693 *
694 * The source is marked as being left at t1, it is not freed.
695 *
696 * Return 0 if no error occurred, otherwise return an errno value.
697 */
698static int
699im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
700{
701	struct ip6_msource	 find;
702	struct ip6_msource	*ims;
703	struct in6_msource	*lims;
704
705	find.im6s_addr = psin->sin6_addr;
706	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
707	if (ims == NULL)
708		return (ENOENT);
709	lims = (struct in6_msource *)ims;
710	lims->im6sl_st[1] = MCAST_UNDEFINED;
711	return (0);
712}
713
714/*
715 * Revert socket-layer filter set deltas at t1 to t0 state.
716 */
717static void
718im6f_rollback(struct in6_mfilter *imf)
719{
720	struct ip6_msource	*ims, *tims;
721	struct in6_msource	*lims;
722
723	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
724		lims = (struct in6_msource *)ims;
725		if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
726			/* no change at t1 */
727			continue;
728		} else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
729			/* revert change to existing source at t1 */
730			lims->im6sl_st[1] = lims->im6sl_st[0];
731		} else {
732			/* revert source added t1 */
733			CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
734			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
735			free(ims, M_IN6MFILTER);
736			imf->im6f_nsrc--;
737		}
738	}
739	imf->im6f_st[1] = imf->im6f_st[0];
740}
741
742/*
743 * Mark socket-layer filter set as INCLUDE {} at t1.
744 */
745static void
746im6f_leave(struct in6_mfilter *imf)
747{
748	struct ip6_msource	*ims;
749	struct in6_msource	*lims;
750
751	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
752		lims = (struct in6_msource *)ims;
753		lims->im6sl_st[1] = MCAST_UNDEFINED;
754	}
755	imf->im6f_st[1] = MCAST_INCLUDE;
756}
757
758/*
759 * Mark socket-layer filter set deltas as committed.
760 */
761static void
762im6f_commit(struct in6_mfilter *imf)
763{
764	struct ip6_msource	*ims;
765	struct in6_msource	*lims;
766
767	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
768		lims = (struct in6_msource *)ims;
769		lims->im6sl_st[0] = lims->im6sl_st[1];
770	}
771	imf->im6f_st[0] = imf->im6f_st[1];
772}
773
774/*
775 * Reap unreferenced sources from socket-layer filter set.
776 */
777static void
778im6f_reap(struct in6_mfilter *imf)
779{
780	struct ip6_msource	*ims, *tims;
781	struct in6_msource	*lims;
782
783	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
784		lims = (struct in6_msource *)ims;
785		if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
786		    (lims->im6sl_st[1] == MCAST_UNDEFINED)) {
787			CTR2(KTR_MLD, "%s: free lims %p", __func__, ims);
788			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
789			free(ims, M_IN6MFILTER);
790			imf->im6f_nsrc--;
791		}
792	}
793}
794
795/*
796 * Purge socket-layer filter set.
797 */
798static void
799im6f_purge(struct in6_mfilter *imf)
800{
801	struct ip6_msource	*ims, *tims;
802
803	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
804		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
805		RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
806		free(ims, M_IN6MFILTER);
807		imf->im6f_nsrc--;
808	}
809	imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
810	KASSERT(RB_EMPTY(&imf->im6f_sources),
811	    ("%s: im6f_sources not empty", __func__));
812}
813
814/*
815 * Look up a source filter entry for a multicast group.
816 *
817 * inm is the group descriptor to work with.
818 * addr is the IPv6 address to look up.
819 * noalloc may be non-zero to suppress allocation of sources.
820 * *pims will be set to the address of the retrieved or allocated source.
821 *
822 * SMPng: NOTE: may be called with locks held.
823 * Return 0 if successful, otherwise return a non-zero error code.
824 */
825static int
826in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
827    const int noalloc, struct ip6_msource **pims)
828{
829	struct ip6_msource	 find;
830	struct ip6_msource	*ims, *nims;
831#ifdef KTR
832	char			 ip6tbuf[INET6_ADDRSTRLEN];
833#endif
834
835	find.im6s_addr = *addr;
836	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
837	if (ims == NULL && !noalloc) {
838		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
839			return (ENOSPC);
840		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
841		    M_NOWAIT | M_ZERO);
842		if (nims == NULL)
843			return (ENOMEM);
844		nims->im6s_addr = *addr;
845		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
846		++inm->in6m_nsrc;
847		ims = nims;
848		CTR3(KTR_MLD, "%s: allocated %s as %p", __func__,
849		    ip6_sprintf(ip6tbuf, addr), ims);
850	}
851
852	*pims = ims;
853	return (0);
854}
855
856/*
857 * Merge socket-layer source into MLD-layer source.
858 * If rollback is non-zero, perform the inverse of the merge.
859 */
860static void
861im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
862    const int rollback)
863{
864	int n = rollback ? -1 : 1;
865#ifdef KTR
866	char ip6tbuf[INET6_ADDRSTRLEN];
867
868	ip6_sprintf(ip6tbuf, &lims->im6s_addr);
869#endif
870
871	if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
872		CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf);
873		ims->im6s_st[1].ex -= n;
874	} else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
875		CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf);
876		ims->im6s_st[1].in -= n;
877	}
878
879	if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
880		CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf);
881		ims->im6s_st[1].ex += n;
882	} else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
883		CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf);
884		ims->im6s_st[1].in += n;
885	}
886}
887
888/*
889 * Atomically update the global in6_multi state, when a membership's
890 * filter list is being updated in any way.
891 *
892 * imf is the per-inpcb-membership group filter pointer.
893 * A fake imf may be passed for in-kernel consumers.
894 *
895 * XXX This is a candidate for a set-symmetric-difference style loop
896 * which would eliminate the repeated lookup from root of ims nodes,
897 * as they share the same key space.
898 *
899 * If any error occurred this function will back out of refcounts
900 * and return a non-zero value.
901 */
902static int
903in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
904{
905	struct ip6_msource	*ims, *nims;
906	struct in6_msource	*lims;
907	int			 schanged, error;
908	int			 nsrc0, nsrc1;
909
910	schanged = 0;
911	error = 0;
912	nsrc1 = nsrc0 = 0;
913
914	/*
915	 * Update the source filters first, as this may fail.
916	 * Maintain count of in-mode filters at t0, t1. These are
917	 * used to work out if we transition into ASM mode or not.
918	 * Maintain a count of source filters whose state was
919	 * actually modified by this operation.
920	 */
921	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
922		lims = (struct in6_msource *)ims;
923		if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++;
924		if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++;
925		if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue;
926		error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
927		++schanged;
928		if (error)
929			break;
930		im6s_merge(nims, lims, 0);
931	}
932	if (error) {
933		struct ip6_msource *bims;
934
935		RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
936			lims = (struct in6_msource *)ims;
937			if (lims->im6sl_st[0] == lims->im6sl_st[1])
938				continue;
939			(void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
940			if (bims == NULL)
941				continue;
942			im6s_merge(bims, lims, 1);
943		}
944		goto out_reap;
945	}
946
947	CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1",
948	    __func__, nsrc0, nsrc1);
949
950	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
951	if (imf->im6f_st[0] == imf->im6f_st[1] &&
952	    imf->im6f_st[1] == MCAST_INCLUDE) {
953		if (nsrc1 == 0) {
954			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
955			--inm->in6m_st[1].iss_in;
956		}
957	}
958
959	/* Handle filter mode transition on socket. */
960	if (imf->im6f_st[0] != imf->im6f_st[1]) {
961		CTR3(KTR_MLD, "%s: imf transition %d to %d",
962		    __func__, imf->im6f_st[0], imf->im6f_st[1]);
963
964		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
965			CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__);
966			--inm->in6m_st[1].iss_ex;
967		} else if (imf->im6f_st[0] == MCAST_INCLUDE) {
968			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
969			--inm->in6m_st[1].iss_in;
970		}
971
972		if (imf->im6f_st[1] == MCAST_EXCLUDE) {
973			CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__);
974			inm->in6m_st[1].iss_ex++;
975		} else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
976			CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__);
977			inm->in6m_st[1].iss_in++;
978		}
979	}
980
981	/*
982	 * Track inm filter state in terms of listener counts.
983	 * If there are any exclusive listeners, stack-wide
984	 * membership is exclusive.
985	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
986	 * If no listeners remain, state is undefined at t1,
987	 * and the MLD lifecycle for this group should finish.
988	 */
989	if (inm->in6m_st[1].iss_ex > 0) {
990		CTR1(KTR_MLD, "%s: transition to EX", __func__);
991		inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
992	} else if (inm->in6m_st[1].iss_in > 0) {
993		CTR1(KTR_MLD, "%s: transition to IN", __func__);
994		inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
995	} else {
996		CTR1(KTR_MLD, "%s: transition to UNDEF", __func__);
997		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
998	}
999
1000	/* Decrement ASM listener count on transition out of ASM mode. */
1001	if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1002		if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
1003		    (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
1004			CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__);
1005			--inm->in6m_st[1].iss_asm;
1006	}
1007
1008	/* Increment ASM listener count on transition to ASM mode. */
1009	if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1010		CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__);
1011		inm->in6m_st[1].iss_asm++;
1012	}
1013
1014	CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm);
1015	in6m_print(inm);
1016
1017out_reap:
1018	if (schanged > 0) {
1019		CTR1(KTR_MLD, "%s: sources changed; reaping", __func__);
1020		in6m_reap(inm);
1021	}
1022	return (error);
1023}
1024
1025/*
1026 * Mark an in6_multi's filter set deltas as committed.
1027 * Called by MLD after a state change has been enqueued.
1028 */
1029void
1030in6m_commit(struct in6_multi *inm)
1031{
1032	struct ip6_msource	*ims;
1033
1034	CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm);
1035	CTR1(KTR_MLD, "%s: pre commit:", __func__);
1036	in6m_print(inm);
1037
1038	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
1039		ims->im6s_st[0] = ims->im6s_st[1];
1040	}
1041	inm->in6m_st[0] = inm->in6m_st[1];
1042}
1043
1044/*
1045 * Reap unreferenced nodes from an in6_multi's filter set.
1046 */
1047static void
1048in6m_reap(struct in6_multi *inm)
1049{
1050	struct ip6_msource	*ims, *tims;
1051
1052	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1053		if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
1054		    ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
1055		    ims->im6s_stp != 0)
1056			continue;
1057		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1058		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1059		free(ims, M_IP6MSOURCE);
1060		inm->in6m_nsrc--;
1061	}
1062}
1063
1064/*
1065 * Purge all source nodes from an in6_multi's filter set.
1066 */
1067static void
1068in6m_purge(struct in6_multi *inm)
1069{
1070	struct ip6_msource	*ims, *tims;
1071
1072	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1073		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1074		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1075		free(ims, M_IP6MSOURCE);
1076		inm->in6m_nsrc--;
1077	}
1078	/* Free state-change requests that might be queued. */
1079	_IF_DRAIN(&inm->in6m_scq);
1080}
1081
1082/*
1083 * Join a multicast address w/o sources.
1084 * KAME compatibility entry point.
1085 *
1086 * SMPng: Assume no mc locks held by caller.
1087 */
1088struct in6_multi_mship *
1089in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
1090    int *errorp, int delay)
1091{
1092	struct in6_multi_mship *imm;
1093	int error;
1094
1095	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1096	if (imm == NULL) {
1097		*errorp = ENOBUFS;
1098		return (NULL);
1099	}
1100
1101	delay = (delay * PR_FASTHZ) / hz;
1102
1103	error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
1104	if (error) {
1105		*errorp = error;
1106		free(imm, M_IP6MADDR);
1107		return (NULL);
1108	}
1109
1110	return (imm);
1111}
1112
1113/*
1114 * Leave a multicast address w/o sources.
1115 * KAME compatibility entry point.
1116 *
1117 * SMPng: Assume no mc locks held by caller.
1118 */
1119int
1120in6_leavegroup(struct in6_multi_mship *imm)
1121{
1122
1123	if (imm->i6mm_maddr != NULL)
1124		in6_mc_leave(imm->i6mm_maddr, NULL);
1125	free(imm,  M_IP6MADDR);
1126	return 0;
1127}
1128
1129/*
1130 * Join a multicast group; unlocked entry point.
1131 *
1132 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper
1133 * locks are not held. Fortunately, ifp is unlikely to have been detached
1134 * at this point, so we assume it's OK to recurse.
1135 */
1136int
1137in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
1138    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1139    const int delay)
1140{
1141	int error;
1142
1143	IN6_MULTI_LOCK();
1144	error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay);
1145	IN6_MULTI_UNLOCK();
1146
1147	return (error);
1148}
1149
1150/*
1151 * Join a multicast group; real entry point.
1152 *
1153 * Only preserves atomicity at inm level.
1154 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1155 *
1156 * If the MLD downcall fails, the group is not joined, and an error
1157 * code is returned.
1158 */
1159int
1160in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr,
1161    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1162    const int delay)
1163{
1164	struct in6_mfilter	 timf;
1165	struct in6_multi	*inm;
1166	int			 error;
1167#ifdef KTR
1168	char			 ip6tbuf[INET6_ADDRSTRLEN];
1169#endif
1170
1171#ifdef INVARIANTS
1172	/*
1173	 * Sanity: Check scope zone ID was set for ifp, if and
1174	 * only if group is scoped to an interface.
1175	 */
1176	KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr),
1177	    ("%s: not a multicast address", __func__));
1178	if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
1179	    IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) {
1180		KASSERT(mcaddr->s6_addr16[1] != 0,
1181		    ("%s: scope zone ID not set", __func__));
1182	}
1183#endif
1184
1185	IN6_MULTI_LOCK_ASSERT();
1186
1187	CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__,
1188	    ip6_sprintf(ip6tbuf, mcaddr), ifp, ifp->if_xname);
1189
1190	error = 0;
1191	inm = NULL;
1192
1193	/*
1194	 * If no imf was specified (i.e. kernel consumer),
1195	 * fake one up and assume it is an ASM join.
1196	 */
1197	if (imf == NULL) {
1198		im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1199		imf = &timf;
1200	}
1201
1202	error = in6_mc_get(ifp, mcaddr, &inm);
1203	if (error) {
1204		CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__);
1205		return (error);
1206	}
1207
1208	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1209	error = in6m_merge(inm, imf);
1210	if (error) {
1211		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1212		goto out_in6m_release;
1213	}
1214
1215	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1216	error = mld_change_state(inm, delay);
1217	if (error) {
1218		CTR1(KTR_MLD, "%s: failed to update source", __func__);
1219		goto out_in6m_release;
1220	}
1221
1222out_in6m_release:
1223	if (error) {
1224		CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1225		in6m_release_locked(inm);
1226	} else {
1227		*pinm = inm;
1228	}
1229
1230	return (error);
1231}
1232
1233/*
1234 * Leave a multicast group; unlocked entry point.
1235 */
1236int
1237in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1238{
1239	struct ifnet *ifp;
1240	int error;
1241
1242	ifp = inm->in6m_ifp;
1243
1244	IN6_MULTI_LOCK();
1245	error = in6_mc_leave_locked(inm, imf);
1246	IN6_MULTI_UNLOCK();
1247
1248	return (error);
1249}
1250
1251/*
1252 * Leave a multicast group; real entry point.
1253 * All source filters will be expunged.
1254 *
1255 * Only preserves atomicity at inm level.
1256 *
1257 * Holding the write lock for the INP which contains imf
1258 * is highly advisable. We can't assert for it as imf does not
1259 * contain a back-pointer to the owning inp.
1260 *
1261 * Note: This is not the same as in6m_release(*) as this function also
1262 * makes a state change downcall into MLD.
1263 */
1264int
1265in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1266{
1267	struct in6_mfilter	 timf;
1268	int			 error;
1269#ifdef KTR
1270	char			 ip6tbuf[INET6_ADDRSTRLEN];
1271#endif
1272
1273	error = 0;
1274
1275	IN6_MULTI_LOCK_ASSERT();
1276
1277	CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__,
1278	    inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1279	    (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_xname),
1280	    imf);
1281
1282	/*
1283	 * If no imf was specified (i.e. kernel consumer),
1284	 * fake one up and assume it is an ASM join.
1285	 */
1286	if (imf == NULL) {
1287		im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1288		imf = &timf;
1289	}
1290
1291	/*
1292	 * Begin state merge transaction at MLD layer.
1293	 *
1294	 * As this particular invocation should not cause any memory
1295	 * to be allocated, and there is no opportunity to roll back
1296	 * the transaction, it MUST NOT fail.
1297	 */
1298	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1299	error = in6m_merge(inm, imf);
1300	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1301
1302	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1303	error = mld_change_state(inm, 0);
1304	if (error)
1305		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1306
1307	CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1308	in6m_release_locked(inm);
1309
1310	return (error);
1311}
1312
1313/*
1314 * Block or unblock an ASM multicast source on an inpcb.
1315 * This implements the delta-based API described in RFC 3678.
1316 *
1317 * The delta-based API applies only to exclusive-mode memberships.
1318 * An MLD downcall will be performed.
1319 *
1320 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1321 *
1322 * Return 0 if successful, otherwise return an appropriate error code.
1323 */
1324static int
1325in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1326{
1327	struct group_source_req		 gsr;
1328	sockunion_t			*gsa, *ssa;
1329	struct ifnet			*ifp;
1330	struct in6_mfilter		*imf;
1331	struct ip6_moptions		*imo;
1332	struct in6_msource		*ims;
1333	struct in6_multi			*inm;
1334	size_t				 idx;
1335	uint16_t			 fmode;
1336	int				 error, doblock;
1337#ifdef KTR
1338	char				 ip6tbuf[INET6_ADDRSTRLEN];
1339#endif
1340
1341	ifp = NULL;
1342	error = 0;
1343	doblock = 0;
1344
1345	memset(&gsr, 0, sizeof(struct group_source_req));
1346	gsa = (sockunion_t *)&gsr.gsr_group;
1347	ssa = (sockunion_t *)&gsr.gsr_source;
1348
1349	switch (sopt->sopt_name) {
1350	case MCAST_BLOCK_SOURCE:
1351	case MCAST_UNBLOCK_SOURCE:
1352		error = sooptcopyin(sopt, &gsr,
1353		    sizeof(struct group_source_req),
1354		    sizeof(struct group_source_req));
1355		if (error)
1356			return (error);
1357
1358		if (gsa->sin6.sin6_family != AF_INET6 ||
1359		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1360			return (EINVAL);
1361
1362		if (ssa->sin6.sin6_family != AF_INET6 ||
1363		    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1364			return (EINVAL);
1365
1366		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1367			return (EADDRNOTAVAIL);
1368
1369		ifp = ifnet_byindex(gsr.gsr_interface);
1370
1371		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1372			doblock = 1;
1373		break;
1374
1375	default:
1376		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1377		    __func__, sopt->sopt_name);
1378		return (EOPNOTSUPP);
1379		break;
1380	}
1381
1382	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1383		return (EINVAL);
1384
1385	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1386
1387	/*
1388	 * Check if we are actually a member of this group.
1389	 */
1390	imo = in6p_findmoptions(inp);
1391	idx = im6o_match_group(imo, ifp, &gsa->sa);
1392	if (idx == -1 || imo->im6o_mfilters == NULL) {
1393		error = EADDRNOTAVAIL;
1394		goto out_in6p_locked;
1395	}
1396
1397	KASSERT(imo->im6o_mfilters != NULL,
1398	    ("%s: im6o_mfilters not allocated", __func__));
1399	imf = &imo->im6o_mfilters[idx];
1400	inm = imo->im6o_membership[idx];
1401
1402	/*
1403	 * Attempting to use the delta-based API on an
1404	 * non exclusive-mode membership is an error.
1405	 */
1406	fmode = imf->im6f_st[0];
1407	if (fmode != MCAST_EXCLUDE) {
1408		error = EINVAL;
1409		goto out_in6p_locked;
1410	}
1411
1412	/*
1413	 * Deal with error cases up-front:
1414	 *  Asked to block, but already blocked; or
1415	 *  Asked to unblock, but nothing to unblock.
1416	 * If adding a new block entry, allocate it.
1417	 */
1418	ims = im6o_match_source(imo, idx, &ssa->sa);
1419	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1420		CTR3(KTR_MLD, "%s: source %s %spresent", __func__,
1421		    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
1422		    doblock ? "" : "not ");
1423		error = EADDRNOTAVAIL;
1424		goto out_in6p_locked;
1425	}
1426
1427	INP_WLOCK_ASSERT(inp);
1428
1429	/*
1430	 * Begin state merge transaction at socket layer.
1431	 */
1432	if (doblock) {
1433		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
1434		ims = im6f_graft(imf, fmode, &ssa->sin6);
1435		if (ims == NULL)
1436			error = ENOMEM;
1437	} else {
1438		CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1439		error = im6f_prune(imf, &ssa->sin6);
1440	}
1441
1442	if (error) {
1443		CTR1(KTR_MLD, "%s: merge imf state failed", __func__);
1444		goto out_im6f_rollback;
1445	}
1446
1447	/*
1448	 * Begin state merge transaction at MLD layer.
1449	 */
1450	IN6_MULTI_LOCK();
1451
1452	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1453	error = in6m_merge(inm, imf);
1454	if (error)
1455		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1456	else {
1457		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1458		error = mld_change_state(inm, 0);
1459		if (error)
1460			CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1461	}
1462
1463	IN6_MULTI_UNLOCK();
1464
1465out_im6f_rollback:
1466	if (error)
1467		im6f_rollback(imf);
1468	else
1469		im6f_commit(imf);
1470
1471	im6f_reap(imf);
1472
1473out_in6p_locked:
1474	INP_WUNLOCK(inp);
1475	return (error);
1476}
1477
1478/*
1479 * Given an inpcb, return its multicast options structure pointer.  Accepts
1480 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1481 *
1482 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1483 * SMPng: NOTE: Returns with the INP write lock held.
1484 */
1485static struct ip6_moptions *
1486in6p_findmoptions(struct inpcb *inp)
1487{
1488	struct ip6_moptions	 *imo;
1489	struct in6_multi		**immp;
1490	struct in6_mfilter	 *imfp;
1491	size_t			  idx;
1492
1493	INP_WLOCK(inp);
1494	if (inp->in6p_moptions != NULL)
1495		return (inp->in6p_moptions);
1496
1497	INP_WUNLOCK(inp);
1498
1499	imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK);
1500	immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS,
1501	    M_WAITOK | M_ZERO);
1502	imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS,
1503	    M_IN6MFILTER, M_WAITOK);
1504
1505	imo->im6o_multicast_ifp = NULL;
1506	imo->im6o_multicast_hlim = V_ip6_defmcasthlim;
1507	imo->im6o_multicast_loop = in6_mcast_loop;
1508	imo->im6o_num_memberships = 0;
1509	imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
1510	imo->im6o_membership = immp;
1511
1512	/* Initialize per-group source filters. */
1513	for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++)
1514		im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1515	imo->im6o_mfilters = imfp;
1516
1517	INP_WLOCK(inp);
1518	if (inp->in6p_moptions != NULL) {
1519		free(imfp, M_IN6MFILTER);
1520		free(immp, M_IP6MOPTS);
1521		free(imo, M_IP6MOPTS);
1522		return (inp->in6p_moptions);
1523	}
1524	inp->in6p_moptions = imo;
1525	return (imo);
1526}
1527
1528/*
1529 * Discard the IPv6 multicast options (and source filters).
1530 *
1531 * SMPng: NOTE: assumes INP write lock is held.
1532 */
1533void
1534ip6_freemoptions(struct ip6_moptions *imo)
1535{
1536	struct in6_mfilter	*imf;
1537	size_t			 idx, nmships;
1538
1539	KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__));
1540
1541	nmships = imo->im6o_num_memberships;
1542	for (idx = 0; idx < nmships; ++idx) {
1543		imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL;
1544		if (imf)
1545			im6f_leave(imf);
1546		/* XXX this will thrash the lock(s) */
1547		(void)in6_mc_leave(imo->im6o_membership[idx], imf);
1548		if (imf)
1549			im6f_purge(imf);
1550	}
1551
1552	if (imo->im6o_mfilters)
1553		free(imo->im6o_mfilters, M_IN6MFILTER);
1554	free(imo->im6o_membership, M_IP6MOPTS);
1555	free(imo, M_IP6MOPTS);
1556}
1557
1558/*
1559 * Atomically get source filters on a socket for an IPv6 multicast group.
1560 * Called with INP lock held; returns with lock released.
1561 */
1562static int
1563in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1564{
1565	struct __msfilterreq	 msfr;
1566	sockunion_t		*gsa;
1567	struct ifnet		*ifp;
1568	struct ip6_moptions	*imo;
1569	struct in6_mfilter	*imf;
1570	struct ip6_msource	*ims;
1571	struct in6_msource	*lims;
1572	struct sockaddr_in6	*psin;
1573	struct sockaddr_storage	*ptss;
1574	struct sockaddr_storage	*tss;
1575	int			 error;
1576	size_t			 idx, nsrcs, ncsrcs;
1577
1578	INP_WLOCK_ASSERT(inp);
1579
1580	imo = inp->in6p_moptions;
1581	KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__));
1582
1583	INP_WUNLOCK(inp);
1584
1585	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1586	    sizeof(struct __msfilterreq));
1587	if (error)
1588		return (error);
1589
1590	if (msfr.msfr_group.ss_family != AF_INET6 ||
1591	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
1592		return (EINVAL);
1593
1594	gsa = (sockunion_t *)&msfr.msfr_group;
1595	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1596		return (EINVAL);
1597
1598	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1599		return (EADDRNOTAVAIL);
1600	ifp = ifnet_byindex(msfr.msfr_ifindex);
1601	if (ifp == NULL)
1602		return (EADDRNOTAVAIL);
1603	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1604
1605	INP_WLOCK(inp);
1606
1607	/*
1608	 * Lookup group on the socket.
1609	 */
1610	idx = im6o_match_group(imo, ifp, &gsa->sa);
1611	if (idx == -1 || imo->im6o_mfilters == NULL) {
1612		INP_WUNLOCK(inp);
1613		return (EADDRNOTAVAIL);
1614	}
1615	imf = &imo->im6o_mfilters[idx];
1616
1617	/*
1618	 * Ignore memberships which are in limbo.
1619	 */
1620	if (imf->im6f_st[1] == MCAST_UNDEFINED) {
1621		INP_WUNLOCK(inp);
1622		return (EAGAIN);
1623	}
1624	msfr.msfr_fmode = imf->im6f_st[1];
1625
1626	/*
1627	 * If the user specified a buffer, copy out the source filter
1628	 * entries to userland gracefully.
1629	 * We only copy out the number of entries which userland
1630	 * has asked for, but we always tell userland how big the
1631	 * buffer really needs to be.
1632	 */
1633	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
1634		msfr.msfr_nsrcs = in6_mcast_maxsocksrc;
1635	tss = NULL;
1636	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1637		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1638		    M_TEMP, M_NOWAIT | M_ZERO);
1639		if (tss == NULL) {
1640			INP_WUNLOCK(inp);
1641			return (ENOBUFS);
1642		}
1643	}
1644
1645	/*
1646	 * Count number of sources in-mode at t0.
1647	 * If buffer space exists and remains, copy out source entries.
1648	 */
1649	nsrcs = msfr.msfr_nsrcs;
1650	ncsrcs = 0;
1651	ptss = tss;
1652	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
1653		lims = (struct in6_msource *)ims;
1654		if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
1655		    lims->im6sl_st[0] != imf->im6f_st[0])
1656			continue;
1657		++ncsrcs;
1658		if (tss != NULL && nsrcs > 0) {
1659			psin = (struct sockaddr_in6 *)ptss;
1660			psin->sin6_family = AF_INET6;
1661			psin->sin6_len = sizeof(struct sockaddr_in6);
1662			psin->sin6_addr = lims->im6s_addr;
1663			psin->sin6_port = 0;
1664			--nsrcs;
1665			++ptss;
1666		}
1667	}
1668
1669	INP_WUNLOCK(inp);
1670
1671	if (tss != NULL) {
1672		error = copyout(tss, msfr.msfr_srcs,
1673		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1674		free(tss, M_TEMP);
1675		if (error)
1676			return (error);
1677	}
1678
1679	msfr.msfr_nsrcs = ncsrcs;
1680	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1681
1682	return (error);
1683}
1684
1685/*
1686 * Return the IP multicast options in response to user getsockopt().
1687 */
1688int
1689ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1690{
1691	struct ip6_moptions	*im6o;
1692	int			 error;
1693	u_int			 optval;
1694
1695	INP_WLOCK(inp);
1696	im6o = inp->in6p_moptions;
1697	/*
1698	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1699	 * or is a divert socket, reject it.
1700	 */
1701	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1702	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1703	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1704		INP_WUNLOCK(inp);
1705		return (EOPNOTSUPP);
1706	}
1707
1708	error = 0;
1709	switch (sopt->sopt_name) {
1710	case IPV6_MULTICAST_IF:
1711		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
1712			optval = 0;
1713		} else {
1714			optval = im6o->im6o_multicast_ifp->if_index;
1715		}
1716		INP_WUNLOCK(inp);
1717		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1718		break;
1719
1720	case IPV6_MULTICAST_HOPS:
1721		if (im6o == NULL)
1722			optval = V_ip6_defmcasthlim;
1723		else
1724			optval = im6o->im6o_multicast_hlim;
1725		INP_WUNLOCK(inp);
1726		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1727		break;
1728
1729	case IPV6_MULTICAST_LOOP:
1730		if (im6o == NULL)
1731			optval = in6_mcast_loop; /* XXX VIMAGE */
1732		else
1733			optval = im6o->im6o_multicast_loop;
1734		INP_WUNLOCK(inp);
1735		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1736		break;
1737
1738	case IPV6_MSFILTER:
1739		if (im6o == NULL) {
1740			error = EADDRNOTAVAIL;
1741			INP_WUNLOCK(inp);
1742		} else {
1743			error = in6p_get_source_filters(inp, sopt);
1744		}
1745		break;
1746
1747	default:
1748		INP_WUNLOCK(inp);
1749		error = ENOPROTOOPT;
1750		break;
1751	}
1752
1753	INP_UNLOCK_ASSERT(inp);
1754
1755	return (error);
1756}
1757
1758/*
1759 * Look up the ifnet to use for a multicast group membership,
1760 * given the address of an IPv6 group.
1761 *
1762 * This routine exists to support legacy IPv6 multicast applications.
1763 *
1764 * If inp is non-NULL, use this socket's current FIB number for any
1765 * required FIB lookup. Look up the group address in the unicast FIB,
1766 * and use its ifp; usually, this points to the default next-hop.
1767 * If the FIB lookup fails, return NULL.
1768 *
1769 * FUTURE: Support multiple forwarding tables for IPv6.
1770 *
1771 * Returns NULL if no ifp could be found.
1772 */
1773static struct ifnet *
1774in6p_lookup_mcast_ifp(const struct inpcb *in6p,
1775    const struct sockaddr_in6 *gsin6)
1776{
1777	struct route_in6	 ro6;
1778	struct ifnet		*ifp;
1779
1780	KASSERT(in6p->inp_vflag & INP_IPV6,
1781	    ("%s: not INP_IPV6 inpcb", __func__));
1782	KASSERT(gsin6->sin6_family == AF_INET6,
1783	    ("%s: not AF_INET6 group", __func__));
1784
1785	ifp = NULL;
1786	memset(&ro6, 0, sizeof(struct route_in6));
1787	memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
1788	rtalloc_ign_fib((struct route *)&ro6, 0,
1789	    in6p ? in6p->inp_inc.inc_fibnum : RT_DEFAULT_FIB);
1790	if (ro6.ro_rt != NULL) {
1791		ifp = ro6.ro_rt->rt_ifp;
1792		KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1793		RTFREE(ro6.ro_rt);
1794	}
1795
1796	return (ifp);
1797}
1798
1799/*
1800 * Join an IPv6 multicast group, possibly with a source.
1801 *
1802 * FIXME: The KAME use of the unspecified address (::)
1803 * to join *all* multicast groups is currently unsupported.
1804 */
1805static int
1806in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
1807{
1808	struct group_source_req		 gsr;
1809	sockunion_t			*gsa, *ssa;
1810	struct ifnet			*ifp;
1811	struct in6_mfilter		*imf;
1812	struct ip6_moptions		*imo;
1813	struct in6_multi		*inm;
1814	struct in6_msource		*lims;
1815	size_t				 idx;
1816	int				 error, is_new;
1817
1818	ifp = NULL;
1819	imf = NULL;
1820	lims = NULL;
1821	error = 0;
1822	is_new = 0;
1823
1824	memset(&gsr, 0, sizeof(struct group_source_req));
1825	gsa = (sockunion_t *)&gsr.gsr_group;
1826	gsa->ss.ss_family = AF_UNSPEC;
1827	ssa = (sockunion_t *)&gsr.gsr_source;
1828	ssa->ss.ss_family = AF_UNSPEC;
1829
1830	/*
1831	 * Chew everything into struct group_source_req.
1832	 * Overwrite the port field if present, as the sockaddr
1833	 * being copied in may be matched with a binary comparison.
1834	 * Ignore passed-in scope ID.
1835	 */
1836	switch (sopt->sopt_name) {
1837	case IPV6_JOIN_GROUP: {
1838		struct ipv6_mreq mreq;
1839
1840		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
1841		    sizeof(struct ipv6_mreq));
1842		if (error)
1843			return (error);
1844
1845		gsa->sin6.sin6_family = AF_INET6;
1846		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
1847		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
1848
1849		if (mreq.ipv6mr_interface == 0) {
1850			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
1851		} else {
1852			if (V_if_index < mreq.ipv6mr_interface)
1853				return (EADDRNOTAVAIL);
1854			ifp = ifnet_byindex(mreq.ipv6mr_interface);
1855		}
1856		CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p",
1857		    __func__, mreq.ipv6mr_interface, ifp);
1858	} break;
1859
1860	case MCAST_JOIN_GROUP:
1861	case MCAST_JOIN_SOURCE_GROUP:
1862		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1863			error = sooptcopyin(sopt, &gsr,
1864			    sizeof(struct group_req),
1865			    sizeof(struct group_req));
1866		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1867			error = sooptcopyin(sopt, &gsr,
1868			    sizeof(struct group_source_req),
1869			    sizeof(struct group_source_req));
1870		}
1871		if (error)
1872			return (error);
1873
1874		if (gsa->sin6.sin6_family != AF_INET6 ||
1875		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1876			return (EINVAL);
1877
1878		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1879			if (ssa->sin6.sin6_family != AF_INET6 ||
1880			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1881				return (EINVAL);
1882			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
1883				return (EINVAL);
1884			/*
1885			 * TODO: Validate embedded scope ID in source
1886			 * list entry against passed-in ifp, if and only
1887			 * if source list filter entry is iface or node local.
1888			 */
1889			in6_clearscope(&ssa->sin6.sin6_addr);
1890			ssa->sin6.sin6_port = 0;
1891			ssa->sin6.sin6_scope_id = 0;
1892		}
1893
1894		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1895			return (EADDRNOTAVAIL);
1896		ifp = ifnet_byindex(gsr.gsr_interface);
1897		break;
1898
1899	default:
1900		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1901		    __func__, sopt->sopt_name);
1902		return (EOPNOTSUPP);
1903		break;
1904	}
1905
1906	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1907		return (EINVAL);
1908
1909	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1910		return (EADDRNOTAVAIL);
1911
1912	gsa->sin6.sin6_port = 0;
1913	gsa->sin6.sin6_scope_id = 0;
1914
1915	/*
1916	 * Always set the scope zone ID on memberships created from userland.
1917	 * Use the passed-in ifp to do this.
1918	 * XXX The in6_setscope() return value is meaningless.
1919	 * XXX SCOPE6_LOCK() is taken by in6_setscope().
1920	 */
1921	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1922
1923	imo = in6p_findmoptions(inp);
1924	idx = im6o_match_group(imo, ifp, &gsa->sa);
1925	if (idx == -1) {
1926		is_new = 1;
1927	} else {
1928		inm = imo->im6o_membership[idx];
1929		imf = &imo->im6o_mfilters[idx];
1930		if (ssa->ss.ss_family != AF_UNSPEC) {
1931			/*
1932			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1933			 * is an error. On an existing inclusive membership,
1934			 * it just adds the source to the filter list.
1935			 */
1936			if (imf->im6f_st[1] != MCAST_INCLUDE) {
1937				error = EINVAL;
1938				goto out_in6p_locked;
1939			}
1940			/*
1941			 * Throw out duplicates.
1942			 *
1943			 * XXX FIXME: This makes a naive assumption that
1944			 * even if entries exist for *ssa in this imf,
1945			 * they will be rejected as dupes, even if they
1946			 * are not valid in the current mode (in-mode).
1947			 *
1948			 * in6_msource is transactioned just as for anything
1949			 * else in SSM -- but note naive use of in6m_graft()
1950			 * below for allocating new filter entries.
1951			 *
1952			 * This is only an issue if someone mixes the
1953			 * full-state SSM API with the delta-based API,
1954			 * which is discouraged in the relevant RFCs.
1955			 */
1956			lims = im6o_match_source(imo, idx, &ssa->sa);
1957			if (lims != NULL /*&&
1958			    lims->im6sl_st[1] == MCAST_INCLUDE*/) {
1959				error = EADDRNOTAVAIL;
1960				goto out_in6p_locked;
1961			}
1962		} else {
1963			/*
1964			 * MCAST_JOIN_GROUP alone, on any existing membership,
1965			 * is rejected, to stop the same inpcb tying up
1966			 * multiple refs to the in_multi.
1967			 * On an existing inclusive membership, this is also
1968			 * an error; if you want to change filter mode,
1969			 * you must use the userland API setsourcefilter().
1970			 * XXX We don't reject this for imf in UNDEFINED
1971			 * state at t1, because allocation of a filter
1972			 * is atomic with allocation of a membership.
1973			 */
1974			error = EINVAL;
1975			goto out_in6p_locked;
1976		}
1977	}
1978
1979	/*
1980	 * Begin state merge transaction at socket layer.
1981	 */
1982	INP_WLOCK_ASSERT(inp);
1983
1984	if (is_new) {
1985		if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
1986			error = im6o_grow(imo);
1987			if (error)
1988				goto out_in6p_locked;
1989		}
1990		/*
1991		 * Allocate the new slot upfront so we can deal with
1992		 * grafting the new source filter in same code path
1993		 * as for join-source on existing membership.
1994		 */
1995		idx = imo->im6o_num_memberships;
1996		imo->im6o_membership[idx] = NULL;
1997		imo->im6o_num_memberships++;
1998		KASSERT(imo->im6o_mfilters != NULL,
1999		    ("%s: im6f_mfilters vector was not allocated", __func__));
2000		imf = &imo->im6o_mfilters[idx];
2001		KASSERT(RB_EMPTY(&imf->im6f_sources),
2002		    ("%s: im6f_sources not empty", __func__));
2003	}
2004
2005	/*
2006	 * Graft new source into filter list for this inpcb's
2007	 * membership of the group. The in6_multi may not have
2008	 * been allocated yet if this is a new membership, however,
2009	 * the in_mfilter slot will be allocated and must be initialized.
2010	 *
2011	 * Note: Grafting of exclusive mode filters doesn't happen
2012	 * in this path.
2013	 * XXX: Should check for non-NULL lims (node exists but may
2014	 * not be in-mode) for interop with full-state API.
2015	 */
2016	if (ssa->ss.ss_family != AF_UNSPEC) {
2017		/* Membership starts in IN mode */
2018		if (is_new) {
2019			CTR1(KTR_MLD, "%s: new join w/source", __func__);
2020			im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2021		} else {
2022			CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
2023		}
2024		lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6);
2025		if (lims == NULL) {
2026			CTR1(KTR_MLD, "%s: merge imf state failed",
2027			    __func__);
2028			error = ENOMEM;
2029			goto out_im6o_free;
2030		}
2031	} else {
2032		/* No address specified; Membership starts in EX mode */
2033		if (is_new) {
2034			CTR1(KTR_MLD, "%s: new join w/o source", __func__);
2035			im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2036		}
2037	}
2038
2039	/*
2040	 * Begin state merge transaction at MLD layer.
2041	 */
2042	IN6_MULTI_LOCK();
2043
2044	if (is_new) {
2045		error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf,
2046		    &inm, 0);
2047		if (error) {
2048			IN6_MULTI_UNLOCK();
2049			goto out_im6o_free;
2050		}
2051		imo->im6o_membership[idx] = inm;
2052	} else {
2053		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2054		error = in6m_merge(inm, imf);
2055		if (error)
2056			CTR1(KTR_MLD, "%s: failed to merge inm state",
2057			    __func__);
2058		else {
2059			CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2060			error = mld_change_state(inm, 0);
2061			if (error)
2062				CTR1(KTR_MLD, "%s: failed mld downcall",
2063				    __func__);
2064		}
2065	}
2066
2067	IN6_MULTI_UNLOCK();
2068	INP_WLOCK_ASSERT(inp);
2069	if (error) {
2070		im6f_rollback(imf);
2071		if (is_new)
2072			im6f_purge(imf);
2073		else
2074			im6f_reap(imf);
2075	} else {
2076		im6f_commit(imf);
2077	}
2078
2079out_im6o_free:
2080	if (error && is_new) {
2081		imo->im6o_membership[idx] = NULL;
2082		--imo->im6o_num_memberships;
2083	}
2084
2085out_in6p_locked:
2086	INP_WUNLOCK(inp);
2087	return (error);
2088}
2089
2090/*
2091 * Leave an IPv6 multicast group on an inpcb, possibly with a source.
2092 */
2093static int
2094in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
2095{
2096	struct ipv6_mreq		 mreq;
2097	struct group_source_req		 gsr;
2098	sockunion_t			*gsa, *ssa;
2099	struct ifnet			*ifp;
2100	struct in6_mfilter		*imf;
2101	struct ip6_moptions		*imo;
2102	struct in6_msource		*ims;
2103	struct in6_multi		*inm;
2104	uint32_t			 ifindex;
2105	size_t				 idx;
2106	int				 error, is_final;
2107#ifdef KTR
2108	char				 ip6tbuf[INET6_ADDRSTRLEN];
2109#endif
2110
2111	ifp = NULL;
2112	ifindex = 0;
2113	error = 0;
2114	is_final = 1;
2115
2116	memset(&gsr, 0, sizeof(struct group_source_req));
2117	gsa = (sockunion_t *)&gsr.gsr_group;
2118	gsa->ss.ss_family = AF_UNSPEC;
2119	ssa = (sockunion_t *)&gsr.gsr_source;
2120	ssa->ss.ss_family = AF_UNSPEC;
2121
2122	/*
2123	 * Chew everything passed in up into a struct group_source_req
2124	 * as that is easier to process.
2125	 * Note: Any embedded scope ID in the multicast group passed
2126	 * in by userland is ignored, the interface index is the recommended
2127	 * mechanism to specify an interface; see below.
2128	 */
2129	switch (sopt->sopt_name) {
2130	case IPV6_LEAVE_GROUP:
2131		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
2132		    sizeof(struct ipv6_mreq));
2133		if (error)
2134			return (error);
2135		gsa->sin6.sin6_family = AF_INET6;
2136		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
2137		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
2138		gsa->sin6.sin6_port = 0;
2139		gsa->sin6.sin6_scope_id = 0;
2140		ifindex = mreq.ipv6mr_interface;
2141		break;
2142
2143	case MCAST_LEAVE_GROUP:
2144	case MCAST_LEAVE_SOURCE_GROUP:
2145		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2146			error = sooptcopyin(sopt, &gsr,
2147			    sizeof(struct group_req),
2148			    sizeof(struct group_req));
2149		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2150			error = sooptcopyin(sopt, &gsr,
2151			    sizeof(struct group_source_req),
2152			    sizeof(struct group_source_req));
2153		}
2154		if (error)
2155			return (error);
2156
2157		if (gsa->sin6.sin6_family != AF_INET6 ||
2158		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2159			return (EINVAL);
2160		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2161			if (ssa->sin6.sin6_family != AF_INET6 ||
2162			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2163				return (EINVAL);
2164			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
2165				return (EINVAL);
2166			/*
2167			 * TODO: Validate embedded scope ID in source
2168			 * list entry against passed-in ifp, if and only
2169			 * if source list filter entry is iface or node local.
2170			 */
2171			in6_clearscope(&ssa->sin6.sin6_addr);
2172		}
2173		gsa->sin6.sin6_port = 0;
2174		gsa->sin6.sin6_scope_id = 0;
2175		ifindex = gsr.gsr_interface;
2176		break;
2177
2178	default:
2179		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
2180		    __func__, sopt->sopt_name);
2181		return (EOPNOTSUPP);
2182		break;
2183	}
2184
2185	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2186		return (EINVAL);
2187
2188	/*
2189	 * Validate interface index if provided. If no interface index
2190	 * was provided separately, attempt to look the membership up
2191	 * from the default scope as a last resort to disambiguate
2192	 * the membership we are being asked to leave.
2193	 * XXX SCOPE6 lock potentially taken here.
2194	 */
2195	if (ifindex != 0) {
2196		if (V_if_index < ifindex)
2197			return (EADDRNOTAVAIL);
2198		ifp = ifnet_byindex(ifindex);
2199		if (ifp == NULL)
2200			return (EADDRNOTAVAIL);
2201		(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2202	} else {
2203		error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone);
2204		if (error)
2205			return (EADDRNOTAVAIL);
2206		/*
2207		 * Some badly behaved applications don't pass an ifindex
2208		 * or a scope ID, which is an API violation. In this case,
2209		 * perform a lookup as per a v6 join.
2210		 *
2211		 * XXX For now, stomp on zone ID for the corner case.
2212		 * This is not the 'KAME way', but we need to see the ifp
2213		 * directly until such time as this implementation is
2214		 * refactored, assuming the scope IDs are the way to go.
2215		 */
2216		ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]);
2217		if (ifindex == 0) {
2218			CTR2(KTR_MLD, "%s: warning: no ifindex, looking up "
2219			    "ifp for group %s.", __func__,
2220			    ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr));
2221			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
2222		} else {
2223			ifp = ifnet_byindex(ifindex);
2224		}
2225		if (ifp == NULL)
2226			return (EADDRNOTAVAIL);
2227	}
2228
2229	CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp);
2230	KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__));
2231
2232	/*
2233	 * Find the membership in the membership array.
2234	 */
2235	imo = in6p_findmoptions(inp);
2236	idx = im6o_match_group(imo, ifp, &gsa->sa);
2237	if (idx == -1) {
2238		error = EADDRNOTAVAIL;
2239		goto out_in6p_locked;
2240	}
2241	inm = imo->im6o_membership[idx];
2242	imf = &imo->im6o_mfilters[idx];
2243
2244	if (ssa->ss.ss_family != AF_UNSPEC)
2245		is_final = 0;
2246
2247	/*
2248	 * Begin state merge transaction at socket layer.
2249	 */
2250	INP_WLOCK_ASSERT(inp);
2251
2252	/*
2253	 * If we were instructed only to leave a given source, do so.
2254	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2255	 */
2256	if (is_final) {
2257		im6f_leave(imf);
2258	} else {
2259		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
2260			error = EADDRNOTAVAIL;
2261			goto out_in6p_locked;
2262		}
2263		ims = im6o_match_source(imo, idx, &ssa->sa);
2264		if (ims == NULL) {
2265			CTR3(KTR_MLD, "%s: source %p %spresent", __func__,
2266			    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
2267			    "not ");
2268			error = EADDRNOTAVAIL;
2269			goto out_in6p_locked;
2270		}
2271		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
2272		error = im6f_prune(imf, &ssa->sin6);
2273		if (error) {
2274			CTR1(KTR_MLD, "%s: merge imf state failed",
2275			    __func__);
2276			goto out_in6p_locked;
2277		}
2278	}
2279
2280	/*
2281	 * Begin state merge transaction at MLD layer.
2282	 */
2283	IN6_MULTI_LOCK();
2284
2285	if (is_final) {
2286		/*
2287		 * Give up the multicast address record to which
2288		 * the membership points.
2289		 */
2290		(void)in6_mc_leave_locked(inm, imf);
2291	} else {
2292		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2293		error = in6m_merge(inm, imf);
2294		if (error)
2295			CTR1(KTR_MLD, "%s: failed to merge inm state",
2296			    __func__);
2297		else {
2298			CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2299			error = mld_change_state(inm, 0);
2300			if (error)
2301				CTR1(KTR_MLD, "%s: failed mld downcall",
2302				    __func__);
2303		}
2304	}
2305
2306	IN6_MULTI_UNLOCK();
2307
2308	if (error)
2309		im6f_rollback(imf);
2310	else
2311		im6f_commit(imf);
2312
2313	im6f_reap(imf);
2314
2315	if (is_final) {
2316		/* Remove the gap in the membership array. */
2317		for (++idx; idx < imo->im6o_num_memberships; ++idx) {
2318			imo->im6o_membership[idx-1] = imo->im6o_membership[idx];
2319			imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx];
2320		}
2321		imo->im6o_num_memberships--;
2322	}
2323
2324out_in6p_locked:
2325	INP_WUNLOCK(inp);
2326	return (error);
2327}
2328
2329/*
2330 * Select the interface for transmitting IPv6 multicast datagrams.
2331 *
2332 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
2333 * may be passed to this socket option. An address of in6addr_any or an
2334 * interface index of 0 is used to remove a previous selection.
2335 * When no interface is selected, one is chosen for every send.
2336 */
2337static int
2338in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2339{
2340	struct ifnet		*ifp;
2341	struct ip6_moptions	*imo;
2342	u_int			 ifindex;
2343	int			 error;
2344
2345	if (sopt->sopt_valsize != sizeof(u_int))
2346		return (EINVAL);
2347
2348	error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
2349	if (error)
2350		return (error);
2351	if (V_if_index < ifindex)
2352		return (EINVAL);
2353	if (ifindex == 0)
2354		ifp = NULL;
2355	else {
2356		ifp = ifnet_byindex(ifindex);
2357		if (ifp == NULL)
2358			return (EINVAL);
2359		if ((ifp->if_flags & IFF_MULTICAST) == 0)
2360			return (EADDRNOTAVAIL);
2361	}
2362	imo = in6p_findmoptions(inp);
2363	imo->im6o_multicast_ifp = ifp;
2364	INP_WUNLOCK(inp);
2365
2366	return (0);
2367}
2368
2369/*
2370 * Atomically set source filters on a socket for an IPv6 multicast group.
2371 *
2372 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2373 */
2374static int
2375in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2376{
2377	struct __msfilterreq	 msfr;
2378	sockunion_t		*gsa;
2379	struct ifnet		*ifp;
2380	struct in6_mfilter	*imf;
2381	struct ip6_moptions	*imo;
2382	struct in6_multi		*inm;
2383	size_t			 idx;
2384	int			 error;
2385
2386	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2387	    sizeof(struct __msfilterreq));
2388	if (error)
2389		return (error);
2390
2391	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
2392		return (ENOBUFS);
2393
2394	if (msfr.msfr_fmode != MCAST_EXCLUDE &&
2395	    msfr.msfr_fmode != MCAST_INCLUDE)
2396		return (EINVAL);
2397
2398	if (msfr.msfr_group.ss_family != AF_INET6 ||
2399	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
2400		return (EINVAL);
2401
2402	gsa = (sockunion_t *)&msfr.msfr_group;
2403	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2404		return (EINVAL);
2405
2406	gsa->sin6.sin6_port = 0;	/* ignore port */
2407
2408	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2409		return (EADDRNOTAVAIL);
2410	ifp = ifnet_byindex(msfr.msfr_ifindex);
2411	if (ifp == NULL)
2412		return (EADDRNOTAVAIL);
2413	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2414
2415	/*
2416	 * Take the INP write lock.
2417	 * Check if this socket is a member of this group.
2418	 */
2419	imo = in6p_findmoptions(inp);
2420	idx = im6o_match_group(imo, ifp, &gsa->sa);
2421	if (idx == -1 || imo->im6o_mfilters == NULL) {
2422		error = EADDRNOTAVAIL;
2423		goto out_in6p_locked;
2424	}
2425	inm = imo->im6o_membership[idx];
2426	imf = &imo->im6o_mfilters[idx];
2427
2428	/*
2429	 * Begin state merge transaction at socket layer.
2430	 */
2431	INP_WLOCK_ASSERT(inp);
2432
2433	imf->im6f_st[1] = msfr.msfr_fmode;
2434
2435	/*
2436	 * Apply any new source filters, if present.
2437	 * Make a copy of the user-space source vector so
2438	 * that we may copy them with a single copyin. This
2439	 * allows us to deal with page faults up-front.
2440	 */
2441	if (msfr.msfr_nsrcs > 0) {
2442		struct in6_msource	*lims;
2443		struct sockaddr_in6	*psin;
2444		struct sockaddr_storage	*kss, *pkss;
2445		int			 i;
2446
2447		INP_WUNLOCK(inp);
2448
2449		CTR2(KTR_MLD, "%s: loading %lu source list entries",
2450		    __func__, (unsigned long)msfr.msfr_nsrcs);
2451		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2452		    M_TEMP, M_WAITOK);
2453		error = copyin(msfr.msfr_srcs, kss,
2454		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2455		if (error) {
2456			free(kss, M_TEMP);
2457			return (error);
2458		}
2459
2460		INP_WLOCK(inp);
2461
2462		/*
2463		 * Mark all source filters as UNDEFINED at t1.
2464		 * Restore new group filter mode, as im6f_leave()
2465		 * will set it to INCLUDE.
2466		 */
2467		im6f_leave(imf);
2468		imf->im6f_st[1] = msfr.msfr_fmode;
2469
2470		/*
2471		 * Update socket layer filters at t1, lazy-allocating
2472		 * new entries. This saves a bunch of memory at the
2473		 * cost of one RB_FIND() per source entry; duplicate
2474		 * entries in the msfr_nsrcs vector are ignored.
2475		 * If we encounter an error, rollback transaction.
2476		 *
2477		 * XXX This too could be replaced with a set-symmetric
2478		 * difference like loop to avoid walking from root
2479		 * every time, as the key space is common.
2480		 */
2481		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2482			psin = (struct sockaddr_in6 *)pkss;
2483			if (psin->sin6_family != AF_INET6) {
2484				error = EAFNOSUPPORT;
2485				break;
2486			}
2487			if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
2488				error = EINVAL;
2489				break;
2490			}
2491			if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
2492				error = EINVAL;
2493				break;
2494			}
2495			/*
2496			 * TODO: Validate embedded scope ID in source
2497			 * list entry against passed-in ifp, if and only
2498			 * if source list filter entry is iface or node local.
2499			 */
2500			in6_clearscope(&psin->sin6_addr);
2501			error = im6f_get_source(imf, psin, &lims);
2502			if (error)
2503				break;
2504			lims->im6sl_st[1] = imf->im6f_st[1];
2505		}
2506		free(kss, M_TEMP);
2507	}
2508
2509	if (error)
2510		goto out_im6f_rollback;
2511
2512	INP_WLOCK_ASSERT(inp);
2513	IN6_MULTI_LOCK();
2514
2515	/*
2516	 * Begin state merge transaction at MLD layer.
2517	 */
2518	CTR1(KTR_MLD, "%s: merge inm state", __func__);
2519	error = in6m_merge(inm, imf);
2520	if (error)
2521		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
2522	else {
2523		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2524		error = mld_change_state(inm, 0);
2525		if (error)
2526			CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
2527	}
2528
2529	IN6_MULTI_UNLOCK();
2530
2531out_im6f_rollback:
2532	if (error)
2533		im6f_rollback(imf);
2534	else
2535		im6f_commit(imf);
2536
2537	im6f_reap(imf);
2538
2539out_in6p_locked:
2540	INP_WUNLOCK(inp);
2541	return (error);
2542}
2543
2544/*
2545 * Set the IP multicast options in response to user setsockopt().
2546 *
2547 * Many of the socket options handled in this function duplicate the
2548 * functionality of socket options in the regular unicast API. However,
2549 * it is not possible to merge the duplicate code, because the idempotence
2550 * of the IPv6 multicast part of the BSD Sockets API must be preserved;
2551 * the effects of these options must be treated as separate and distinct.
2552 *
2553 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2554 */
2555int
2556ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2557{
2558	struct ip6_moptions	*im6o;
2559	int			 error;
2560
2561	error = 0;
2562
2563	/*
2564	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2565	 * or is a divert socket, reject it.
2566	 */
2567	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2568	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2569	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2570		return (EOPNOTSUPP);
2571
2572	switch (sopt->sopt_name) {
2573	case IPV6_MULTICAST_IF:
2574		error = in6p_set_multicast_if(inp, sopt);
2575		break;
2576
2577	case IPV6_MULTICAST_HOPS: {
2578		int hlim;
2579
2580		if (sopt->sopt_valsize != sizeof(int)) {
2581			error = EINVAL;
2582			break;
2583		}
2584		error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
2585		if (error)
2586			break;
2587		if (hlim < -1 || hlim > 255) {
2588			error = EINVAL;
2589			break;
2590		} else if (hlim == -1) {
2591			hlim = V_ip6_defmcasthlim;
2592		}
2593		im6o = in6p_findmoptions(inp);
2594		im6o->im6o_multicast_hlim = hlim;
2595		INP_WUNLOCK(inp);
2596		break;
2597	}
2598
2599	case IPV6_MULTICAST_LOOP: {
2600		u_int loop;
2601
2602		/*
2603		 * Set the loopback flag for outgoing multicast packets.
2604		 * Must be zero or one.
2605		 */
2606		if (sopt->sopt_valsize != sizeof(u_int)) {
2607			error = EINVAL;
2608			break;
2609		}
2610		error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
2611		if (error)
2612			break;
2613		if (loop > 1) {
2614			error = EINVAL;
2615			break;
2616		}
2617		im6o = in6p_findmoptions(inp);
2618		im6o->im6o_multicast_loop = loop;
2619		INP_WUNLOCK(inp);
2620		break;
2621	}
2622
2623	case IPV6_JOIN_GROUP:
2624	case MCAST_JOIN_GROUP:
2625	case MCAST_JOIN_SOURCE_GROUP:
2626		error = in6p_join_group(inp, sopt);
2627		break;
2628
2629	case IPV6_LEAVE_GROUP:
2630	case MCAST_LEAVE_GROUP:
2631	case MCAST_LEAVE_SOURCE_GROUP:
2632		error = in6p_leave_group(inp, sopt);
2633		break;
2634
2635	case MCAST_BLOCK_SOURCE:
2636	case MCAST_UNBLOCK_SOURCE:
2637		error = in6p_block_unblock_source(inp, sopt);
2638		break;
2639
2640	case IPV6_MSFILTER:
2641		error = in6p_set_source_filters(inp, sopt);
2642		break;
2643
2644	default:
2645		error = EOPNOTSUPP;
2646		break;
2647	}
2648
2649	INP_UNLOCK_ASSERT(inp);
2650
2651	return (error);
2652}
2653
2654/*
2655 * Expose MLD's multicast filter mode and source list(s) to userland,
2656 * keyed by (ifindex, group).
2657 * The filter mode is written out as a uint32_t, followed by
2658 * 0..n of struct in6_addr.
2659 * For use by ifmcstat(8).
2660 * SMPng: NOTE: unlocked read of ifindex space.
2661 */
2662static int
2663sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS)
2664{
2665	struct in6_addr			 mcaddr;
2666	struct in6_addr			 src;
2667	struct ifnet			*ifp;
2668	struct ifmultiaddr		*ifma;
2669	struct in6_multi		*inm;
2670	struct ip6_msource		*ims;
2671	int				*name;
2672	int				 retval;
2673	u_int				 namelen;
2674	uint32_t			 fmode, ifindex;
2675#ifdef KTR
2676	char				 ip6tbuf[INET6_ADDRSTRLEN];
2677#endif
2678
2679	name = (int *)arg1;
2680	namelen = arg2;
2681
2682	if (req->newptr != NULL)
2683		return (EPERM);
2684
2685	/* int: ifindex + 4 * 32 bits of IPv6 address */
2686	if (namelen != 5)
2687		return (EINVAL);
2688
2689	ifindex = name[0];
2690	if (ifindex <= 0 || ifindex > V_if_index) {
2691		CTR2(KTR_MLD, "%s: ifindex %u out of range",
2692		    __func__, ifindex);
2693		return (ENOENT);
2694	}
2695
2696	memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
2697	if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
2698		CTR2(KTR_MLD, "%s: group %s is not multicast",
2699		    __func__, ip6_sprintf(ip6tbuf, &mcaddr));
2700		return (EINVAL);
2701	}
2702
2703	ifp = ifnet_byindex(ifindex);
2704	if (ifp == NULL) {
2705		CTR2(KTR_MLD, "%s: no ifp for ifindex %u",
2706		    __func__, ifindex);
2707		return (ENOENT);
2708	}
2709	/*
2710	 * Internal MLD lookups require that scope/zone ID is set.
2711	 */
2712	(void)in6_setscope(&mcaddr, ifp, NULL);
2713
2714	retval = sysctl_wire_old_buffer(req,
2715	    sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr)));
2716	if (retval)
2717		return (retval);
2718
2719	IN6_MULTI_LOCK();
2720
2721	IF_ADDR_RLOCK(ifp);
2722	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2723		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2724		    ifma->ifma_protospec == NULL)
2725			continue;
2726		inm = (struct in6_multi *)ifma->ifma_protospec;
2727		if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr))
2728			continue;
2729		fmode = inm->in6m_st[1].iss_fmode;
2730		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2731		if (retval != 0)
2732			break;
2733		RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
2734			CTR2(KTR_MLD, "%s: visit node %p", __func__, ims);
2735			/*
2736			 * Only copy-out sources which are in-mode.
2737			 */
2738			if (fmode != im6s_get_mode(inm, ims, 1)) {
2739				CTR1(KTR_MLD, "%s: skip non-in-mode",
2740				    __func__);
2741				continue;
2742			}
2743			src = ims->im6s_addr;
2744			retval = SYSCTL_OUT(req, &src,
2745			    sizeof(struct in6_addr));
2746			if (retval != 0)
2747				break;
2748		}
2749	}
2750	IF_ADDR_RUNLOCK(ifp);
2751
2752	IN6_MULTI_UNLOCK();
2753
2754	return (retval);
2755}
2756
2757#ifdef KTR
2758
2759static const char *in6m_modestrs[] = { "un", "in", "ex" };
2760
2761static const char *
2762in6m_mode_str(const int mode)
2763{
2764
2765	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2766		return (in6m_modestrs[mode]);
2767	return ("??");
2768}
2769
2770static const char *in6m_statestrs[] = {
2771	"not-member",
2772	"silent",
2773	"idle",
2774	"lazy",
2775	"sleeping",
2776	"awakening",
2777	"query-pending",
2778	"sg-query-pending",
2779	"leaving"
2780};
2781
2782static const char *
2783in6m_state_str(const int state)
2784{
2785
2786	if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER)
2787		return (in6m_statestrs[state]);
2788	return ("??");
2789}
2790
2791/*
2792 * Dump an in6_multi structure to the console.
2793 */
2794void
2795in6m_print(const struct in6_multi *inm)
2796{
2797	int t;
2798	char ip6tbuf[INET6_ADDRSTRLEN];
2799
2800	if ((ktr_mask & KTR_MLD) == 0)
2801		return;
2802
2803	printf("%s: --- begin in6m %p ---\n", __func__, inm);
2804	printf("addr %s ifp %p(%s) ifma %p\n",
2805	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2806	    inm->in6m_ifp,
2807	    inm->in6m_ifp->if_xname,
2808	    inm->in6m_ifma);
2809	printf("timer %u state %s refcount %u scq.len %u\n",
2810	    inm->in6m_timer,
2811	    in6m_state_str(inm->in6m_state),
2812	    inm->in6m_refcount,
2813	    inm->in6m_scq.ifq_len);
2814	printf("mli %p nsrc %lu sctimer %u scrv %u\n",
2815	    inm->in6m_mli,
2816	    inm->in6m_nsrc,
2817	    inm->in6m_sctimer,
2818	    inm->in6m_scrv);
2819	for (t = 0; t < 2; t++) {
2820		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2821		    in6m_mode_str(inm->in6m_st[t].iss_fmode),
2822		    inm->in6m_st[t].iss_asm,
2823		    inm->in6m_st[t].iss_ex,
2824		    inm->in6m_st[t].iss_in,
2825		    inm->in6m_st[t].iss_rec);
2826	}
2827	printf("%s: --- end in6m %p ---\n", __func__, inm);
2828}
2829
2830#else /* !KTR */
2831
2832void
2833in6m_print(const struct in6_multi *inm)
2834{
2835
2836}
2837
2838#endif /* KTR */
2839