in6_mcast.c revision 199527
1/*
2 * Copyright (c) 2009 Bruce Simpson.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote
14 *    products derived from this software without specific prior written
15 *    permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/*
31 * IPv6 multicast socket, group, and socket option processing module.
32 * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/netinet6/in6_mcast.c 199527 2009-11-19 13:33:23Z bms $");
37
38#include "opt_inet6.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/protosw.h>
49#include <sys/sysctl.h>
50#include <sys/priv.h>
51#include <sys/ktr.h>
52#include <sys/tree.h>
53
54#include <net/if.h>
55#include <net/if_dl.h>
56#include <net/route.h>
57#include <net/vnet.h>
58
59#include <netinet/in.h>
60#include <netinet/in_var.h>
61#include <netinet6/in6_var.h>
62#include <netinet/ip6.h>
63#include <netinet/icmp6.h>
64#include <netinet6/ip6_var.h>
65#include <netinet/in_pcb.h>
66#include <netinet/tcp_var.h>
67#include <netinet6/nd6.h>
68#include <netinet6/mld6_var.h>
69#include <netinet6/scope6_var.h>
70
71#ifndef KTR_MLD
72#define KTR_MLD KTR_INET6
73#endif
74
75#ifndef __SOCKUNION_DECLARED
76union sockunion {
77	struct sockaddr_storage	ss;
78	struct sockaddr		sa;
79	struct sockaddr_dl	sdl;
80	struct sockaddr_in6	sin6;
81};
82typedef union sockunion sockunion_t;
83#define __SOCKUNION_DECLARED
84#endif /* __SOCKUNION_DECLARED */
85
86static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter",
87    "IPv6 multicast PCB-layer source filter");
88static MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group");
89static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options");
90static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource",
91    "IPv6 multicast MLD-layer source filter");
92
93RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp);
94
95/*
96 * Locking:
97 * - Lock order is: Giant, INP_WLOCK, IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
98 * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however
99 *   it can be taken by code in net/if.c also.
100 * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK.
101 *
102 * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly
103 * any need for in6_multi itself to be virtualized -- it is bound to an ifp
104 * anyway no matter what happens.
105 */
106struct mtx in6_multi_mtx;
107MTX_SYSINIT(in6_multi_mtx, &in6_multi_mtx, "in6_multi_mtx", MTX_DEF);
108
109static void	im6f_commit(struct in6_mfilter *);
110static int	im6f_get_source(struct in6_mfilter *imf,
111		    const struct sockaddr_in6 *psin,
112		    struct in6_msource **);
113static struct in6_msource *
114		im6f_graft(struct in6_mfilter *, const uint8_t,
115		    const struct sockaddr_in6 *);
116static void	im6f_leave(struct in6_mfilter *);
117static int	im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *);
118static void	im6f_purge(struct in6_mfilter *);
119static void	im6f_rollback(struct in6_mfilter *);
120static void	im6f_reap(struct in6_mfilter *);
121static int	im6o_grow(struct ip6_moptions *);
122static size_t	im6o_match_group(const struct ip6_moptions *,
123		    const struct ifnet *, const struct sockaddr *);
124static struct in6_msource *
125		im6o_match_source(const struct ip6_moptions *, const size_t,
126		    const struct sockaddr *);
127static void	im6s_merge(struct ip6_msource *ims,
128		    const struct in6_msource *lims, const int rollback);
129static int	in6_mc_get(struct ifnet *, const struct in6_addr *,
130		    struct in6_multi **);
131static int	in6m_get_source(struct in6_multi *inm,
132		    const struct in6_addr *addr, const int noalloc,
133		    struct ip6_msource **pims);
134static int	in6m_is_ifp_detached(const struct in6_multi *);
135static int	in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *);
136static void	in6m_purge(struct in6_multi *);
137static void	in6m_reap(struct in6_multi *);
138static struct ip6_moptions *
139		in6p_findmoptions(struct inpcb *);
140static int	in6p_get_source_filters(struct inpcb *, struct sockopt *);
141static int	in6p_join_group(struct inpcb *, struct sockopt *);
142static int	in6p_leave_group(struct inpcb *, struct sockopt *);
143static struct ifnet *
144		in6p_lookup_mcast_ifp(const struct inpcb *,
145		    const struct sockaddr_in6 *);
146static int	in6p_block_unblock_source(struct inpcb *, struct sockopt *);
147static int	in6p_set_multicast_if(struct inpcb *, struct sockopt *);
148static int	in6p_set_source_filters(struct inpcb *, struct sockopt *);
149static int	sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS);
150
151SYSCTL_DECL(_net_inet6_ip6);	/* XXX Not in any common header. */
152
153SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW, 0, "IPv6 multicast");
154
155static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER;
156SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc,
157    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxgrpsrc, 0,
158    "Max source filters per group");
159TUNABLE_ULONG("net.inet6.ip6.mcast.maxgrpsrc", &in6_mcast_maxgrpsrc);
160
161static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER;
162SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc,
163    CTLFLAG_RW | CTLFLAG_TUN, &in6_mcast_maxsocksrc, 0,
164    "Max source filters per socket");
165TUNABLE_ULONG("net.inet6.ip6.mcast.maxsocksrc", &in6_mcast_maxsocksrc);
166
167/* TODO Virtualize this switch. */
168int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
169SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_TUN,
170    &in6_mcast_loop, 0, "Loopback multicast datagrams by default");
171TUNABLE_INT("net.inet6.ip6.mcast.loop", &in6_mcast_loop);
172
173SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters,
174    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters,
175    "Per-interface stack-wide source filters");
176
177/*
178 * Inline function which wraps assertions for a valid ifp.
179 * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp
180 * is detached.
181 */
182static int __inline
183in6m_is_ifp_detached(const struct in6_multi *inm)
184{
185	struct ifnet *ifp;
186
187	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
188	ifp = inm->in6m_ifma->ifma_ifp;
189	if (ifp != NULL) {
190		/*
191		 * Sanity check that network-layer notion of ifp is the
192		 * same as that of link-layer.
193		 */
194		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
195	}
196
197	return (ifp == NULL);
198}
199
200/*
201 * Initialize an in6_mfilter structure to a known state at t0, t1
202 * with an empty source filter list.
203 */
204static __inline void
205im6f_init(struct in6_mfilter *imf, const int st0, const int st1)
206{
207	memset(imf, 0, sizeof(struct in6_mfilter));
208	RB_INIT(&imf->im6f_sources);
209	imf->im6f_st[0] = st0;
210	imf->im6f_st[1] = st1;
211}
212
213/*
214 * Resize the ip6_moptions vector to the next power-of-two minus 1.
215 * May be called with locks held; do not sleep.
216 */
217static int
218im6o_grow(struct ip6_moptions *imo)
219{
220	struct in6_multi	**nmships;
221	struct in6_multi	**omships;
222	struct in6_mfilter	 *nmfilters;
223	struct in6_mfilter	 *omfilters;
224	size_t			  idx;
225	size_t			  newmax;
226	size_t			  oldmax;
227
228	nmships = NULL;
229	nmfilters = NULL;
230	omships = imo->im6o_membership;
231	omfilters = imo->im6o_mfilters;
232	oldmax = imo->im6o_max_memberships;
233	newmax = ((oldmax + 1) * 2) - 1;
234
235	if (newmax <= IPV6_MAX_MEMBERSHIPS) {
236		nmships = (struct in6_multi **)realloc(omships,
237		    sizeof(struct in6_multi *) * newmax, M_IP6MOPTS, M_NOWAIT);
238		nmfilters = (struct in6_mfilter *)realloc(omfilters,
239		    sizeof(struct in6_mfilter) * newmax, M_IN6MFILTER,
240		    M_NOWAIT);
241		if (nmships != NULL && nmfilters != NULL) {
242			/* Initialize newly allocated source filter heads. */
243			for (idx = oldmax; idx < newmax; idx++) {
244				im6f_init(&nmfilters[idx], MCAST_UNDEFINED,
245				    MCAST_EXCLUDE);
246			}
247			imo->im6o_max_memberships = newmax;
248			imo->im6o_membership = nmships;
249			imo->im6o_mfilters = nmfilters;
250		}
251	}
252
253	if (nmships == NULL || nmfilters == NULL) {
254		if (nmships != NULL)
255			free(nmships, M_IP6MOPTS);
256		if (nmfilters != NULL)
257			free(nmfilters, M_IN6MFILTER);
258		return (ETOOMANYREFS);
259	}
260
261	return (0);
262}
263
264/*
265 * Find an IPv6 multicast group entry for this ip6_moptions instance
266 * which matches the specified group, and optionally an interface.
267 * Return its index into the array, or -1 if not found.
268 */
269static size_t
270im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp,
271    const struct sockaddr *group)
272{
273	const struct sockaddr_in6 *gsin6;
274	struct in6_multi	**pinm;
275	int		  idx;
276	int		  nmships;
277
278	gsin6 = (const struct sockaddr_in6 *)group;
279
280	/* The im6o_membership array may be lazy allocated. */
281	if (imo->im6o_membership == NULL || imo->im6o_num_memberships == 0)
282		return (-1);
283
284	nmships = imo->im6o_num_memberships;
285	pinm = &imo->im6o_membership[0];
286	for (idx = 0; idx < nmships; idx++, pinm++) {
287		if (*pinm == NULL)
288			continue;
289		if ((ifp == NULL || ((*pinm)->in6m_ifp == ifp)) &&
290		    IN6_ARE_ADDR_EQUAL(&(*pinm)->in6m_addr,
291		    &gsin6->sin6_addr)) {
292			break;
293		}
294	}
295	if (idx >= nmships)
296		idx = -1;
297
298	return (idx);
299}
300
301/*
302 * Find an IPv6 multicast source entry for this imo which matches
303 * the given group index for this socket, and source address.
304 *
305 * XXX TODO: The scope ID, if present in src, is stripped before
306 * any comparison. We SHOULD enforce scope/zone checks where the source
307 * filter entry has a link scope.
308 *
309 * NOTE: This does not check if the entry is in-mode, merely if
310 * it exists, which may not be the desired behaviour.
311 */
312static struct in6_msource *
313im6o_match_source(const struct ip6_moptions *imo, const size_t gidx,
314    const struct sockaddr *src)
315{
316	struct ip6_msource	 find;
317	struct in6_mfilter	*imf;
318	struct ip6_msource	*ims;
319	const sockunion_t	*psa;
320
321	KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__));
322	KASSERT(gidx != -1 && gidx < imo->im6o_num_memberships,
323	    ("%s: invalid index %d\n", __func__, (int)gidx));
324
325	/* The im6o_mfilters array may be lazy allocated. */
326	if (imo->im6o_mfilters == NULL)
327		return (NULL);
328	imf = &imo->im6o_mfilters[gidx];
329
330	psa = (const sockunion_t *)src;
331	find.im6s_addr = psa->sin6.sin6_addr;
332	in6_clearscope(&find.im6s_addr);		/* XXX */
333	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
334
335	return ((struct in6_msource *)ims);
336}
337
338/*
339 * Perform filtering for multicast datagrams on a socket by group and source.
340 *
341 * Returns 0 if a datagram should be allowed through, or various error codes
342 * if the socket was not a member of the group, or the source was muted, etc.
343 */
344int
345im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp,
346    const struct sockaddr *group, const struct sockaddr *src)
347{
348	size_t gidx;
349	struct in6_msource *ims;
350	int mode;
351
352	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
353
354	gidx = im6o_match_group(imo, ifp, group);
355	if (gidx == -1)
356		return (MCAST_NOTGMEMBER);
357
358	/*
359	 * Check if the source was included in an (S,G) join.
360	 * Allow reception on exclusive memberships by default,
361	 * reject reception on inclusive memberships by default.
362	 * Exclude source only if an in-mode exclude filter exists.
363	 * Include source only if an in-mode include filter exists.
364	 * NOTE: We are comparing group state here at MLD t1 (now)
365	 * with socket-layer t0 (since last downcall).
366	 */
367	mode = imo->im6o_mfilters[gidx].im6f_st[1];
368	ims = im6o_match_source(imo, gidx, src);
369
370	if ((ims == NULL && mode == MCAST_INCLUDE) ||
371	    (ims != NULL && ims->im6sl_st[0] != mode))
372		return (MCAST_NOTSMEMBER);
373
374	return (MCAST_PASS);
375}
376
377/*
378 * Find and return a reference to an in6_multi record for (ifp, group),
379 * and bump its reference count.
380 * If one does not exist, try to allocate it, and update link-layer multicast
381 * filters on ifp to listen for group.
382 * Assumes the IN6_MULTI lock is held across the call.
383 * Return 0 if successful, otherwise return an appropriate error code.
384 */
385static int
386in6_mc_get(struct ifnet *ifp, const struct in6_addr *group,
387    struct in6_multi **pinm)
388{
389	struct sockaddr_in6	 gsin6;
390	struct ifmultiaddr	*ifma;
391	struct in6_multi	*inm;
392	int			 error;
393
394	error = 0;
395
396	/*
397	 * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK;
398	 * if_addmulti() takes this mutex itself, so we must drop and
399	 * re-acquire around the call.
400	 */
401	IN6_MULTI_LOCK_ASSERT();
402	IF_ADDR_LOCK(ifp);
403
404	inm = in6m_lookup_locked(ifp, group);
405	if (inm != NULL) {
406		/*
407		 * If we already joined this group, just bump the
408		 * refcount and return it.
409		 */
410		KASSERT(inm->in6m_refcount >= 1,
411		    ("%s: bad refcount %d", __func__, inm->in6m_refcount));
412		++inm->in6m_refcount;
413		*pinm = inm;
414		goto out_locked;
415	}
416
417	memset(&gsin6, 0, sizeof(gsin6));
418	gsin6.sin6_family = AF_INET6;
419	gsin6.sin6_len = sizeof(struct sockaddr_in6);
420	gsin6.sin6_addr = *group;
421
422	/*
423	 * Check if a link-layer group is already associated
424	 * with this network-layer group on the given ifnet.
425	 */
426	IF_ADDR_UNLOCK(ifp);
427	error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma);
428	if (error != 0)
429		return (error);
430	IF_ADDR_LOCK(ifp);
431
432	/*
433	 * If something other than netinet6 is occupying the link-layer
434	 * group, print a meaningful error message and back out of
435	 * the allocation.
436	 * Otherwise, bump the refcount on the existing network-layer
437	 * group association and return it.
438	 */
439	if (ifma->ifma_protospec != NULL) {
440		inm = (struct in6_multi *)ifma->ifma_protospec;
441#ifdef INVARIANTS
442		KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr",
443		    __func__));
444		KASSERT(ifma->ifma_addr->sa_family == AF_INET6,
445		    ("%s: ifma not AF_INET6", __func__));
446		KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__));
447		if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp ||
448		    !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group))
449			panic("%s: ifma %p is inconsistent with %p (%p)",
450			    __func__, ifma, inm, group);
451#endif
452		++inm->in6m_refcount;
453		*pinm = inm;
454		goto out_locked;
455	}
456
457	IF_ADDR_LOCK_ASSERT(ifp);
458
459	/*
460	 * A new in6_multi record is needed; allocate and initialize it.
461	 * We DO NOT perform an MLD join as the in6_ layer may need to
462	 * push an initial source list down to MLD to support SSM.
463	 *
464	 * The initial source filter state is INCLUDE, {} as per the RFC.
465	 * Pending state-changes per group are subject to a bounds check.
466	 */
467	inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO);
468	if (inm == NULL) {
469		if_delmulti_ifma(ifma);
470		error = ENOMEM;
471		goto out_locked;
472	}
473	inm->in6m_addr = *group;
474	inm->in6m_ifp = ifp;
475	inm->in6m_mli = MLD_IFINFO(ifp);
476	inm->in6m_ifma = ifma;
477	inm->in6m_refcount = 1;
478	inm->in6m_state = MLD_NOT_MEMBER;
479	IFQ_SET_MAXLEN(&inm->in6m_scq, MLD_MAX_STATE_CHANGES);
480
481	inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED;
482	inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
483	RB_INIT(&inm->in6m_srcs);
484
485	ifma->ifma_protospec = inm;
486	*pinm = inm;
487
488out_locked:
489	IF_ADDR_UNLOCK(ifp);
490	return (error);
491}
492
493/*
494 * Drop a reference to an in6_multi record.
495 *
496 * If the refcount drops to 0, free the in6_multi record and
497 * delete the underlying link-layer membership.
498 */
499void
500in6m_release_locked(struct in6_multi *inm)
501{
502	struct ifmultiaddr *ifma;
503
504	IN6_MULTI_LOCK_ASSERT();
505
506	CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount);
507
508	if (--inm->in6m_refcount > 0) {
509		CTR2(KTR_MLD, "%s: refcount is now %d", __func__,
510		    inm->in6m_refcount);
511		return;
512	}
513
514	CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm);
515
516	ifma = inm->in6m_ifma;
517
518	/* XXX this access is not covered by IF_ADDR_LOCK */
519	CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma);
520	KASSERT(ifma->ifma_protospec == inm,
521	    ("%s: ifma_protospec != inm", __func__));
522	ifma->ifma_protospec = NULL;
523
524	in6m_purge(inm);
525
526	free(inm, M_IP6MADDR);
527
528	if_delmulti_ifma(ifma);
529}
530
531/*
532 * Clear recorded source entries for a group.
533 * Used by the MLD code. Caller must hold the IN6_MULTI lock.
534 * FIXME: Should reap.
535 */
536void
537in6m_clear_recorded(struct in6_multi *inm)
538{
539	struct ip6_msource	*ims;
540
541	IN6_MULTI_LOCK_ASSERT();
542
543	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
544		if (ims->im6s_stp) {
545			ims->im6s_stp = 0;
546			--inm->in6m_st[1].iss_rec;
547		}
548	}
549	KASSERT(inm->in6m_st[1].iss_rec == 0,
550	    ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec));
551}
552
553/*
554 * Record a source as pending for a Source-Group MLDv2 query.
555 * This lives here as it modifies the shared tree.
556 *
557 * inm is the group descriptor.
558 * naddr is the address of the source to record in network-byte order.
559 *
560 * If the net.inet6.mld.sgalloc sysctl is non-zero, we will
561 * lazy-allocate a source node in response to an SG query.
562 * Otherwise, no allocation is performed. This saves some memory
563 * with the trade-off that the source will not be reported to the
564 * router if joined in the window between the query response and
565 * the group actually being joined on the local host.
566 *
567 * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed.
568 * This turns off the allocation of a recorded source entry if
569 * the group has not been joined.
570 *
571 * Return 0 if the source didn't exist or was already marked as recorded.
572 * Return 1 if the source was marked as recorded by this function.
573 * Return <0 if any error occured (negated errno code).
574 */
575int
576in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr)
577{
578	struct ip6_msource	 find;
579	struct ip6_msource	*ims, *nims;
580
581	IN6_MULTI_LOCK_ASSERT();
582
583	find.im6s_addr = *addr;
584	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
585	if (ims && ims->im6s_stp)
586		return (0);
587	if (ims == NULL) {
588		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
589			return (-ENOSPC);
590		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
591		    M_NOWAIT | M_ZERO);
592		if (nims == NULL)
593			return (-ENOMEM);
594		nims->im6s_addr = find.im6s_addr;
595		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
596		++inm->in6m_nsrc;
597		ims = nims;
598	}
599
600	/*
601	 * Mark the source as recorded and update the recorded
602	 * source count.
603	 */
604	++ims->im6s_stp;
605	++inm->in6m_st[1].iss_rec;
606
607	return (1);
608}
609
610/*
611 * Return a pointer to an in6_msource owned by an in6_mfilter,
612 * given its source address.
613 * Lazy-allocate if needed. If this is a new entry its filter state is
614 * undefined at t0.
615 *
616 * imf is the filter set being modified.
617 * addr is the source address.
618 *
619 * SMPng: May be called with locks held; malloc must not block.
620 */
621static int
622im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin,
623    struct in6_msource **plims)
624{
625	struct ip6_msource	 find;
626	struct ip6_msource	*ims, *nims;
627	struct in6_msource	*lims;
628	int			 error;
629
630	error = 0;
631	ims = NULL;
632	lims = NULL;
633
634	find.im6s_addr = psin->sin6_addr;
635	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
636	lims = (struct in6_msource *)ims;
637	if (lims == NULL) {
638		if (imf->im6f_nsrc == in6_mcast_maxsocksrc)
639			return (ENOSPC);
640		nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
641		    M_NOWAIT | M_ZERO);
642		if (nims == NULL)
643			return (ENOMEM);
644		lims = (struct in6_msource *)nims;
645		lims->im6s_addr = find.im6s_addr;
646		lims->im6sl_st[0] = MCAST_UNDEFINED;
647		RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
648		++imf->im6f_nsrc;
649	}
650
651	*plims = lims;
652
653	return (error);
654}
655
656/*
657 * Graft a source entry into an existing socket-layer filter set,
658 * maintaining any required invariants and checking allocations.
659 *
660 * The source is marked as being in the new filter mode at t1.
661 *
662 * Return the pointer to the new node, otherwise return NULL.
663 */
664static struct in6_msource *
665im6f_graft(struct in6_mfilter *imf, const uint8_t st1,
666    const struct sockaddr_in6 *psin)
667{
668	struct ip6_msource	*nims;
669	struct in6_msource	*lims;
670
671	nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER,
672	    M_NOWAIT | M_ZERO);
673	if (nims == NULL)
674		return (NULL);
675	lims = (struct in6_msource *)nims;
676	lims->im6s_addr = psin->sin6_addr;
677	lims->im6sl_st[0] = MCAST_UNDEFINED;
678	lims->im6sl_st[1] = st1;
679	RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims);
680	++imf->im6f_nsrc;
681
682	return (lims);
683}
684
685/*
686 * Prune a source entry from an existing socket-layer filter set,
687 * maintaining any required invariants and checking allocations.
688 *
689 * The source is marked as being left at t1, it is not freed.
690 *
691 * Return 0 if no error occurred, otherwise return an errno value.
692 */
693static int
694im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin)
695{
696	struct ip6_msource	 find;
697	struct ip6_msource	*ims;
698	struct in6_msource	*lims;
699
700	find.im6s_addr = psin->sin6_addr;
701	ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find);
702	if (ims == NULL)
703		return (ENOENT);
704	lims = (struct in6_msource *)ims;
705	lims->im6sl_st[1] = MCAST_UNDEFINED;
706	return (0);
707}
708
709/*
710 * Revert socket-layer filter set deltas at t1 to t0 state.
711 */
712static void
713im6f_rollback(struct in6_mfilter *imf)
714{
715	struct ip6_msource	*ims, *tims;
716	struct in6_msource	*lims;
717
718	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
719		lims = (struct in6_msource *)ims;
720		if (lims->im6sl_st[0] == lims->im6sl_st[1]) {
721			/* no change at t1 */
722			continue;
723		} else if (lims->im6sl_st[0] != MCAST_UNDEFINED) {
724			/* revert change to existing source at t1 */
725			lims->im6sl_st[1] = lims->im6sl_st[0];
726		} else {
727			/* revert source added t1 */
728			CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
729			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
730			free(ims, M_IN6MFILTER);
731			imf->im6f_nsrc--;
732		}
733	}
734	imf->im6f_st[1] = imf->im6f_st[0];
735}
736
737/*
738 * Mark socket-layer filter set as INCLUDE {} at t1.
739 */
740static void
741im6f_leave(struct in6_mfilter *imf)
742{
743	struct ip6_msource	*ims;
744	struct in6_msource	*lims;
745
746	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
747		lims = (struct in6_msource *)ims;
748		lims->im6sl_st[1] = MCAST_UNDEFINED;
749	}
750	imf->im6f_st[1] = MCAST_INCLUDE;
751}
752
753/*
754 * Mark socket-layer filter set deltas as committed.
755 */
756static void
757im6f_commit(struct in6_mfilter *imf)
758{
759	struct ip6_msource	*ims;
760	struct in6_msource	*lims;
761
762	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
763		lims = (struct in6_msource *)ims;
764		lims->im6sl_st[0] = lims->im6sl_st[1];
765	}
766	imf->im6f_st[0] = imf->im6f_st[1];
767}
768
769/*
770 * Reap unreferenced sources from socket-layer filter set.
771 */
772static void
773im6f_reap(struct in6_mfilter *imf)
774{
775	struct ip6_msource	*ims, *tims;
776	struct in6_msource	*lims;
777
778	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
779		lims = (struct in6_msource *)ims;
780		if ((lims->im6sl_st[0] == MCAST_UNDEFINED) &&
781		    (lims->im6sl_st[1] == MCAST_UNDEFINED)) {
782			CTR2(KTR_MLD, "%s: free lims %p", __func__, ims);
783			RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
784			free(ims, M_IN6MFILTER);
785			imf->im6f_nsrc--;
786		}
787	}
788}
789
790/*
791 * Purge socket-layer filter set.
792 */
793static void
794im6f_purge(struct in6_mfilter *imf)
795{
796	struct ip6_msource	*ims, *tims;
797
798	RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) {
799		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
800		RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims);
801		free(ims, M_IN6MFILTER);
802		imf->im6f_nsrc--;
803	}
804	imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED;
805	KASSERT(RB_EMPTY(&imf->im6f_sources),
806	    ("%s: im6f_sources not empty", __func__));
807}
808
809/*
810 * Look up a source filter entry for a multicast group.
811 *
812 * inm is the group descriptor to work with.
813 * addr is the IPv6 address to look up.
814 * noalloc may be non-zero to suppress allocation of sources.
815 * *pims will be set to the address of the retrieved or allocated source.
816 *
817 * SMPng: NOTE: may be called with locks held.
818 * Return 0 if successful, otherwise return a non-zero error code.
819 */
820static int
821in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr,
822    const int noalloc, struct ip6_msource **pims)
823{
824	struct ip6_msource	 find;
825	struct ip6_msource	*ims, *nims;
826#ifdef KTR
827	char			 ip6tbuf[INET6_ADDRSTRLEN];
828#endif
829
830	find.im6s_addr = *addr;
831	ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find);
832	if (ims == NULL && !noalloc) {
833		if (inm->in6m_nsrc == in6_mcast_maxgrpsrc)
834			return (ENOSPC);
835		nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE,
836		    M_NOWAIT | M_ZERO);
837		if (nims == NULL)
838			return (ENOMEM);
839		nims->im6s_addr = *addr;
840		RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims);
841		++inm->in6m_nsrc;
842		ims = nims;
843		CTR3(KTR_MLD, "%s: allocated %s as %p", __func__,
844		    ip6_sprintf(ip6tbuf, addr), ims);
845	}
846
847	*pims = ims;
848	return (0);
849}
850
851/*
852 * Merge socket-layer source into MLD-layer source.
853 * If rollback is non-zero, perform the inverse of the merge.
854 */
855static void
856im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims,
857    const int rollback)
858{
859	int n = rollback ? -1 : 1;
860#ifdef KTR
861	char ip6tbuf[INET6_ADDRSTRLEN];
862
863	ip6_sprintf(ip6tbuf, &lims->im6s_addr);
864#endif
865
866	if (lims->im6sl_st[0] == MCAST_EXCLUDE) {
867		CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf);
868		ims->im6s_st[1].ex -= n;
869	} else if (lims->im6sl_st[0] == MCAST_INCLUDE) {
870		CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf);
871		ims->im6s_st[1].in -= n;
872	}
873
874	if (lims->im6sl_st[1] == MCAST_EXCLUDE) {
875		CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf);
876		ims->im6s_st[1].ex += n;
877	} else if (lims->im6sl_st[1] == MCAST_INCLUDE) {
878		CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf);
879		ims->im6s_st[1].in += n;
880	}
881}
882
883/*
884 * Atomically update the global in6_multi state, when a membership's
885 * filter list is being updated in any way.
886 *
887 * imf is the per-inpcb-membership group filter pointer.
888 * A fake imf may be passed for in-kernel consumers.
889 *
890 * XXX This is a candidate for a set-symmetric-difference style loop
891 * which would eliminate the repeated lookup from root of ims nodes,
892 * as they share the same key space.
893 *
894 * If any error occurred this function will back out of refcounts
895 * and return a non-zero value.
896 */
897static int
898in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
899{
900	struct ip6_msource	*ims, *nims;
901	struct in6_msource	*lims;
902	int			 schanged, error;
903	int			 nsrc0, nsrc1;
904
905	schanged = 0;
906	error = 0;
907	nsrc1 = nsrc0 = 0;
908
909	/*
910	 * Update the source filters first, as this may fail.
911	 * Maintain count of in-mode filters at t0, t1. These are
912	 * used to work out if we transition into ASM mode or not.
913	 * Maintain a count of source filters whose state was
914	 * actually modified by this operation.
915	 */
916	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
917		lims = (struct in6_msource *)ims;
918		if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++;
919		if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++;
920		if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue;
921		error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims);
922		++schanged;
923		if (error)
924			break;
925		im6s_merge(nims, lims, 0);
926	}
927	if (error) {
928		struct ip6_msource *bims;
929
930		RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) {
931			lims = (struct in6_msource *)ims;
932			if (lims->im6sl_st[0] == lims->im6sl_st[1])
933				continue;
934			(void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims);
935			if (bims == NULL)
936				continue;
937			im6s_merge(bims, lims, 1);
938		}
939		goto out_reap;
940	}
941
942	CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1",
943	    __func__, nsrc0, nsrc1);
944
945	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
946	if (imf->im6f_st[0] == imf->im6f_st[1] &&
947	    imf->im6f_st[1] == MCAST_INCLUDE) {
948		if (nsrc1 == 0) {
949			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
950			--inm->in6m_st[1].iss_in;
951		}
952	}
953
954	/* Handle filter mode transition on socket. */
955	if (imf->im6f_st[0] != imf->im6f_st[1]) {
956		CTR3(KTR_MLD, "%s: imf transition %d to %d",
957		    __func__, imf->im6f_st[0], imf->im6f_st[1]);
958
959		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
960			CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__);
961			--inm->in6m_st[1].iss_ex;
962		} else if (imf->im6f_st[0] == MCAST_INCLUDE) {
963			CTR1(KTR_MLD, "%s: --in on inm at t1", __func__);
964			--inm->in6m_st[1].iss_in;
965		}
966
967		if (imf->im6f_st[1] == MCAST_EXCLUDE) {
968			CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__);
969			inm->in6m_st[1].iss_ex++;
970		} else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
971			CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__);
972			inm->in6m_st[1].iss_in++;
973		}
974	}
975
976	/*
977	 * Track inm filter state in terms of listener counts.
978	 * If there are any exclusive listeners, stack-wide
979	 * membership is exclusive.
980	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
981	 * If no listeners remain, state is undefined at t1,
982	 * and the MLD lifecycle for this group should finish.
983	 */
984	if (inm->in6m_st[1].iss_ex > 0) {
985		CTR1(KTR_MLD, "%s: transition to EX", __func__);
986		inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE;
987	} else if (inm->in6m_st[1].iss_in > 0) {
988		CTR1(KTR_MLD, "%s: transition to IN", __func__);
989		inm->in6m_st[1].iss_fmode = MCAST_INCLUDE;
990	} else {
991		CTR1(KTR_MLD, "%s: transition to UNDEF", __func__);
992		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
993	}
994
995	/* Decrement ASM listener count on transition out of ASM mode. */
996	if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
997		if ((imf->im6f_st[1] != MCAST_EXCLUDE) ||
998		    (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0))
999			CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__);
1000			--inm->in6m_st[1].iss_asm;
1001	}
1002
1003	/* Increment ASM listener count on transition to ASM mode. */
1004	if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1005		CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__);
1006		inm->in6m_st[1].iss_asm++;
1007	}
1008
1009	CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm);
1010	in6m_print(inm);
1011
1012out_reap:
1013	if (schanged > 0) {
1014		CTR1(KTR_MLD, "%s: sources changed; reaping", __func__);
1015		in6m_reap(inm);
1016	}
1017	return (error);
1018}
1019
1020/*
1021 * Mark an in6_multi's filter set deltas as committed.
1022 * Called by MLD after a state change has been enqueued.
1023 */
1024void
1025in6m_commit(struct in6_multi *inm)
1026{
1027	struct ip6_msource	*ims;
1028
1029	CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm);
1030	CTR1(KTR_MLD, "%s: pre commit:", __func__);
1031	in6m_print(inm);
1032
1033	RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
1034		ims->im6s_st[0] = ims->im6s_st[1];
1035	}
1036	inm->in6m_st[0] = inm->in6m_st[1];
1037}
1038
1039/*
1040 * Reap unreferenced nodes from an in6_multi's filter set.
1041 */
1042static void
1043in6m_reap(struct in6_multi *inm)
1044{
1045	struct ip6_msource	*ims, *tims;
1046
1047	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1048		if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 ||
1049		    ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 ||
1050		    ims->im6s_stp != 0)
1051			continue;
1052		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1053		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1054		free(ims, M_IP6MSOURCE);
1055		inm->in6m_nsrc--;
1056	}
1057}
1058
1059/*
1060 * Purge all source nodes from an in6_multi's filter set.
1061 */
1062static void
1063in6m_purge(struct in6_multi *inm)
1064{
1065	struct ip6_msource	*ims, *tims;
1066
1067	RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) {
1068		CTR2(KTR_MLD, "%s: free ims %p", __func__, ims);
1069		RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims);
1070		free(ims, M_IP6MSOURCE);
1071		inm->in6m_nsrc--;
1072	}
1073}
1074
1075/*
1076 * Join a multicast address w/o sources.
1077 * KAME compatibility entry point.
1078 *
1079 * SMPng: Assume no mc locks held by caller.
1080 */
1081struct in6_multi_mship *
1082in6_joingroup(struct ifnet *ifp, struct in6_addr *mcaddr,
1083    int *errorp, int delay)
1084{
1085	struct in6_multi_mship *imm;
1086	int error;
1087
1088	imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT);
1089	if (imm == NULL) {
1090		*errorp = ENOBUFS;
1091		return (NULL);
1092	}
1093
1094	delay = (delay * PR_FASTHZ) / hz;
1095
1096	error = in6_mc_join(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay);
1097	if (error) {
1098		*errorp = error;
1099		free(imm, M_IP6MADDR);
1100		return (NULL);
1101	}
1102
1103	return (imm);
1104}
1105
1106/*
1107 * Leave a multicast address w/o sources.
1108 * KAME compatibility entry point.
1109 *
1110 * SMPng: Assume no mc locks held by caller.
1111 */
1112int
1113in6_leavegroup(struct in6_multi_mship *imm)
1114{
1115
1116	if (imm->i6mm_maddr != NULL)
1117		in6_mc_leave(imm->i6mm_maddr, NULL);
1118	free(imm,  M_IP6MADDR);
1119	return 0;
1120}
1121
1122/*
1123 * Join a multicast group; unlocked entry point.
1124 *
1125 * SMPng: XXX: in6_mc_join() is called from in6_control() when upper
1126 * locks are not held. Fortunately, ifp is unlikely to have been detached
1127 * at this point, so we assume it's OK to recurse.
1128 */
1129int
1130in6_mc_join(struct ifnet *ifp, const struct in6_addr *mcaddr,
1131    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1132    const int delay)
1133{
1134	int error;
1135
1136	IN6_MULTI_LOCK();
1137	error = in6_mc_join_locked(ifp, mcaddr, imf, pinm, delay);
1138	IN6_MULTI_UNLOCK();
1139
1140	return (error);
1141}
1142
1143/*
1144 * Join a multicast group; real entry point.
1145 *
1146 * Only preserves atomicity at inm level.
1147 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1148 *
1149 * If the MLD downcall fails, the group is not joined, and an error
1150 * code is returned.
1151 */
1152int
1153in6_mc_join_locked(struct ifnet *ifp, const struct in6_addr *mcaddr,
1154    /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm,
1155    const int delay)
1156{
1157	struct in6_mfilter	 timf;
1158	struct in6_multi	*inm;
1159	int			 error;
1160#ifdef KTR
1161	char			 ip6tbuf[INET6_ADDRSTRLEN];
1162#endif
1163
1164#ifdef INVARIANTS
1165	/*
1166	 * Sanity: Check scope zone ID was set for ifp, if and
1167	 * only if group is scoped to an interface.
1168	 */
1169	KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr),
1170	    ("%s: not a multicast address", __func__));
1171	if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) ||
1172	    IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) {
1173		KASSERT(mcaddr->s6_addr16[1] != 0,
1174		    ("%s: scope zone ID not set", __func__));
1175	}
1176#endif
1177
1178	IN6_MULTI_LOCK_ASSERT();
1179
1180	CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__,
1181	    ip6_sprintf(ip6tbuf, mcaddr), ifp, ifp->if_xname);
1182
1183	error = 0;
1184	inm = NULL;
1185
1186	/*
1187	 * If no imf was specified (i.e. kernel consumer),
1188	 * fake one up and assume it is an ASM join.
1189	 */
1190	if (imf == NULL) {
1191		im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1192		imf = &timf;
1193	}
1194
1195	error = in6_mc_get(ifp, mcaddr, &inm);
1196	if (error) {
1197		CTR1(KTR_MLD, "%s: in6_mc_get() failure", __func__);
1198		return (error);
1199	}
1200
1201	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1202	error = in6m_merge(inm, imf);
1203	if (error) {
1204		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1205		goto out_in6m_release;
1206	}
1207
1208	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1209	error = mld_change_state(inm, delay);
1210	if (error) {
1211		CTR1(KTR_MLD, "%s: failed to update source", __func__);
1212		goto out_in6m_release;
1213	}
1214
1215out_in6m_release:
1216	if (error) {
1217		CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1218		in6m_release_locked(inm);
1219	} else {
1220		*pinm = inm;
1221	}
1222
1223	return (error);
1224}
1225
1226/*
1227 * Leave a multicast group; unlocked entry point.
1228 */
1229int
1230in6_mc_leave(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1231{
1232	struct ifnet *ifp;
1233	int error;
1234
1235	ifp = inm->in6m_ifp;
1236
1237	IN6_MULTI_LOCK();
1238	error = in6_mc_leave_locked(inm, imf);
1239	IN6_MULTI_UNLOCK();
1240
1241	return (error);
1242}
1243
1244/*
1245 * Leave a multicast group; real entry point.
1246 * All source filters will be expunged.
1247 *
1248 * Only preserves atomicity at inm level.
1249 *
1250 * Holding the write lock for the INP which contains imf
1251 * is highly advisable. We can't assert for it as imf does not
1252 * contain a back-pointer to the owning inp.
1253 *
1254 * Note: This is not the same as in6m_release(*) as this function also
1255 * makes a state change downcall into MLD.
1256 */
1257int
1258in6_mc_leave_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf)
1259{
1260	struct in6_mfilter	 timf;
1261	int			 error;
1262#ifdef KTR
1263	char			 ip6tbuf[INET6_ADDRSTRLEN];
1264#endif
1265
1266	error = 0;
1267
1268	IN6_MULTI_LOCK_ASSERT();
1269
1270	CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__,
1271	    inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1272	    (in6m_is_ifp_detached(inm) ? "null" : inm->in6m_ifp->if_xname),
1273	    imf);
1274
1275	/*
1276	 * If no imf was specified (i.e. kernel consumer),
1277	 * fake one up and assume it is an ASM join.
1278	 */
1279	if (imf == NULL) {
1280		im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1281		imf = &timf;
1282	}
1283
1284	/*
1285	 * Begin state merge transaction at MLD layer.
1286	 *
1287	 * As this particular invocation should not cause any memory
1288	 * to be allocated, and there is no opportunity to roll back
1289	 * the transaction, it MUST NOT fail.
1290	 */
1291	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1292	error = in6m_merge(inm, imf);
1293	KASSERT(error == 0, ("%s: failed to merge inm state", __func__));
1294
1295	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1296	error = mld_change_state(inm, 0);
1297	if (error)
1298		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1299
1300	CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm);
1301	in6m_release_locked(inm);
1302
1303	return (error);
1304}
1305
1306/*
1307 * Block or unblock an ASM multicast source on an inpcb.
1308 * This implements the delta-based API described in RFC 3678.
1309 *
1310 * The delta-based API applies only to exclusive-mode memberships.
1311 * An MLD downcall will be performed.
1312 *
1313 * SMPng: NOTE: Must take Giant as a join may create a new ifma.
1314 *
1315 * Return 0 if successful, otherwise return an appropriate error code.
1316 */
1317static int
1318in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1319{
1320	struct group_source_req		 gsr;
1321	sockunion_t			*gsa, *ssa;
1322	struct ifnet			*ifp;
1323	struct in6_mfilter		*imf;
1324	struct ip6_moptions		*imo;
1325	struct in6_msource		*ims;
1326	struct in6_multi			*inm;
1327	size_t				 idx;
1328	uint16_t			 fmode;
1329	int				 error, doblock;
1330#ifdef KTR
1331	char				 ip6tbuf[INET6_ADDRSTRLEN];
1332#endif
1333
1334	ifp = NULL;
1335	error = 0;
1336	doblock = 0;
1337
1338	memset(&gsr, 0, sizeof(struct group_source_req));
1339	gsa = (sockunion_t *)&gsr.gsr_group;
1340	ssa = (sockunion_t *)&gsr.gsr_source;
1341
1342	switch (sopt->sopt_name) {
1343	case MCAST_BLOCK_SOURCE:
1344	case MCAST_UNBLOCK_SOURCE:
1345		error = sooptcopyin(sopt, &gsr,
1346		    sizeof(struct group_source_req),
1347		    sizeof(struct group_source_req));
1348		if (error)
1349			return (error);
1350
1351		if (gsa->sin6.sin6_family != AF_INET6 ||
1352		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1353			return (EINVAL);
1354
1355		if (ssa->sin6.sin6_family != AF_INET6 ||
1356		    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1357			return (EINVAL);
1358
1359		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1360			return (EADDRNOTAVAIL);
1361
1362		ifp = ifnet_byindex(gsr.gsr_interface);
1363
1364		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1365			doblock = 1;
1366		break;
1367
1368	default:
1369		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1370		    __func__, sopt->sopt_name);
1371		return (EOPNOTSUPP);
1372		break;
1373	}
1374
1375	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1376		return (EINVAL);
1377
1378	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1379
1380	/*
1381	 * Check if we are actually a member of this group.
1382	 */
1383	imo = in6p_findmoptions(inp);
1384	idx = im6o_match_group(imo, ifp, &gsa->sa);
1385	if (idx == -1 || imo->im6o_mfilters == NULL) {
1386		error = EADDRNOTAVAIL;
1387		goto out_in6p_locked;
1388	}
1389
1390	KASSERT(imo->im6o_mfilters != NULL,
1391	    ("%s: im6o_mfilters not allocated", __func__));
1392	imf = &imo->im6o_mfilters[idx];
1393	inm = imo->im6o_membership[idx];
1394
1395	/*
1396	 * Attempting to use the delta-based API on an
1397	 * non exclusive-mode membership is an error.
1398	 */
1399	fmode = imf->im6f_st[0];
1400	if (fmode != MCAST_EXCLUDE) {
1401		error = EINVAL;
1402		goto out_in6p_locked;
1403	}
1404
1405	/*
1406	 * Deal with error cases up-front:
1407	 *  Asked to block, but already blocked; or
1408	 *  Asked to unblock, but nothing to unblock.
1409	 * If adding a new block entry, allocate it.
1410	 */
1411	ims = im6o_match_source(imo, idx, &ssa->sa);
1412	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1413		CTR3(KTR_MLD, "%s: source %s %spresent", __func__,
1414		    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
1415		    doblock ? "" : "not ");
1416		error = EADDRNOTAVAIL;
1417		goto out_in6p_locked;
1418	}
1419
1420	INP_WLOCK_ASSERT(inp);
1421
1422	/*
1423	 * Begin state merge transaction at socket layer.
1424	 */
1425	if (doblock) {
1426		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
1427		ims = im6f_graft(imf, fmode, &ssa->sin6);
1428		if (ims == NULL)
1429			error = ENOMEM;
1430	} else {
1431		CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
1432		error = im6f_prune(imf, &ssa->sin6);
1433	}
1434
1435	if (error) {
1436		CTR1(KTR_MLD, "%s: merge imf state failed", __func__);
1437		goto out_im6f_rollback;
1438	}
1439
1440	/*
1441	 * Begin state merge transaction at MLD layer.
1442	 */
1443	IN6_MULTI_LOCK();
1444
1445	CTR1(KTR_MLD, "%s: merge inm state", __func__);
1446	error = in6m_merge(inm, imf);
1447	if (error) {
1448		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
1449		goto out_im6f_rollback;
1450	}
1451
1452	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
1453	error = mld_change_state(inm, 0);
1454	if (error)
1455		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
1456
1457	IN6_MULTI_UNLOCK();
1458
1459out_im6f_rollback:
1460	if (error)
1461		im6f_rollback(imf);
1462	else
1463		im6f_commit(imf);
1464
1465	im6f_reap(imf);
1466
1467out_in6p_locked:
1468	INP_WUNLOCK(inp);
1469	return (error);
1470}
1471
1472/*
1473 * Given an inpcb, return its multicast options structure pointer.  Accepts
1474 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1475 *
1476 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
1477 * SMPng: NOTE: Returns with the INP write lock held.
1478 */
1479static struct ip6_moptions *
1480in6p_findmoptions(struct inpcb *inp)
1481{
1482	struct ip6_moptions	 *imo;
1483	struct in6_multi		**immp;
1484	struct in6_mfilter	 *imfp;
1485	size_t			  idx;
1486
1487	INP_WLOCK(inp);
1488	if (inp->in6p_moptions != NULL)
1489		return (inp->in6p_moptions);
1490
1491	INP_WUNLOCK(inp);
1492
1493	imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK);
1494	immp = malloc(sizeof(*immp) * IPV6_MIN_MEMBERSHIPS, M_IP6MOPTS,
1495	    M_WAITOK | M_ZERO);
1496	imfp = malloc(sizeof(struct in6_mfilter) * IPV6_MIN_MEMBERSHIPS,
1497	    M_IN6MFILTER, M_WAITOK);
1498
1499	imo->im6o_multicast_ifp = NULL;
1500	imo->im6o_multicast_hlim = V_ip6_defmcasthlim;
1501	imo->im6o_multicast_loop = in6_mcast_loop;
1502	imo->im6o_num_memberships = 0;
1503	imo->im6o_max_memberships = IPV6_MIN_MEMBERSHIPS;
1504	imo->im6o_membership = immp;
1505
1506	/* Initialize per-group source filters. */
1507	for (idx = 0; idx < IPV6_MIN_MEMBERSHIPS; idx++)
1508		im6f_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1509	imo->im6o_mfilters = imfp;
1510
1511	INP_WLOCK(inp);
1512	if (inp->in6p_moptions != NULL) {
1513		free(imfp, M_IN6MFILTER);
1514		free(immp, M_IP6MOPTS);
1515		free(imo, M_IP6MOPTS);
1516		return (inp->in6p_moptions);
1517	}
1518	inp->in6p_moptions = imo;
1519	return (imo);
1520}
1521
1522/*
1523 * Discard the IPv6 multicast options (and source filters).
1524 *
1525 * SMPng: NOTE: assumes INP write lock is held.
1526 */
1527void
1528ip6_freemoptions(struct ip6_moptions *imo)
1529{
1530	struct in6_mfilter	*imf;
1531	size_t			 idx, nmships;
1532
1533	KASSERT(imo != NULL, ("%s: ip6_moptions is NULL", __func__));
1534
1535	nmships = imo->im6o_num_memberships;
1536	for (idx = 0; idx < nmships; ++idx) {
1537		imf = imo->im6o_mfilters ? &imo->im6o_mfilters[idx] : NULL;
1538		if (imf)
1539			im6f_leave(imf);
1540		/* XXX this will thrash the lock(s) */
1541		(void)in6_mc_leave(imo->im6o_membership[idx], imf);
1542		if (imf)
1543			im6f_purge(imf);
1544	}
1545
1546	if (imo->im6o_mfilters)
1547		free(imo->im6o_mfilters, M_IN6MFILTER);
1548	free(imo->im6o_membership, M_IP6MOPTS);
1549	free(imo, M_IP6MOPTS);
1550}
1551
1552/*
1553 * Atomically get source filters on a socket for an IPv6 multicast group.
1554 * Called with INP lock held; returns with lock released.
1555 */
1556static int
1557in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1558{
1559	struct __msfilterreq	 msfr;
1560	sockunion_t		*gsa;
1561	struct ifnet		*ifp;
1562	struct ip6_moptions	*imo;
1563	struct in6_mfilter	*imf;
1564	struct ip6_msource	*ims;
1565	struct in6_msource	*lims;
1566	struct sockaddr_in6	*psin;
1567	struct sockaddr_storage	*ptss;
1568	struct sockaddr_storage	*tss;
1569	int			 error;
1570	size_t			 idx, nsrcs, ncsrcs;
1571
1572	INP_WLOCK_ASSERT(inp);
1573
1574	imo = inp->in6p_moptions;
1575	KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__));
1576
1577	INP_WUNLOCK(inp);
1578
1579	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
1580	    sizeof(struct __msfilterreq));
1581	if (error)
1582		return (error);
1583
1584	if (msfr.msfr_group.ss_family != AF_INET6 ||
1585	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
1586		return (EINVAL);
1587
1588	gsa = (sockunion_t *)&msfr.msfr_group;
1589	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1590		return (EINVAL);
1591
1592	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
1593		return (EADDRNOTAVAIL);
1594	ifp = ifnet_byindex(msfr.msfr_ifindex);
1595	if (ifp == NULL)
1596		return (EADDRNOTAVAIL);
1597	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1598
1599	INP_WLOCK(inp);
1600
1601	/*
1602	 * Lookup group on the socket.
1603	 */
1604	idx = im6o_match_group(imo, ifp, &gsa->sa);
1605	if (idx == -1 || imo->im6o_mfilters == NULL) {
1606		INP_WUNLOCK(inp);
1607		return (EADDRNOTAVAIL);
1608	}
1609	imf = &imo->im6o_mfilters[idx];
1610
1611	/*
1612	 * Ignore memberships which are in limbo.
1613	 */
1614	if (imf->im6f_st[1] == MCAST_UNDEFINED) {
1615		INP_WUNLOCK(inp);
1616		return (EAGAIN);
1617	}
1618	msfr.msfr_fmode = imf->im6f_st[1];
1619
1620	/*
1621	 * If the user specified a buffer, copy out the source filter
1622	 * entries to userland gracefully.
1623	 * We only copy out the number of entries which userland
1624	 * has asked for, but we always tell userland how big the
1625	 * buffer really needs to be.
1626	 */
1627	tss = NULL;
1628	if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) {
1629		tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
1630		    M_TEMP, M_NOWAIT | M_ZERO);
1631		if (tss == NULL) {
1632			INP_WUNLOCK(inp);
1633			return (ENOBUFS);
1634		}
1635	}
1636
1637	/*
1638	 * Count number of sources in-mode at t0.
1639	 * If buffer space exists and remains, copy out source entries.
1640	 */
1641	nsrcs = msfr.msfr_nsrcs;
1642	ncsrcs = 0;
1643	ptss = tss;
1644	RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) {
1645		lims = (struct in6_msource *)ims;
1646		if (lims->im6sl_st[0] == MCAST_UNDEFINED ||
1647		    lims->im6sl_st[0] != imf->im6f_st[0])
1648			continue;
1649		++ncsrcs;
1650		if (tss != NULL && nsrcs > 0) {
1651			psin = (struct sockaddr_in6 *)ptss;
1652			psin->sin6_family = AF_INET6;
1653			psin->sin6_len = sizeof(struct sockaddr_in6);
1654			psin->sin6_addr = lims->im6s_addr;
1655			psin->sin6_port = 0;
1656			--nsrcs;
1657			++ptss;
1658		}
1659	}
1660
1661	INP_WUNLOCK(inp);
1662
1663	if (tss != NULL) {
1664		error = copyout(tss, msfr.msfr_srcs,
1665		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
1666		free(tss, M_TEMP);
1667		if (error)
1668			return (error);
1669	}
1670
1671	msfr.msfr_nsrcs = ncsrcs;
1672	error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq));
1673
1674	return (error);
1675}
1676
1677/*
1678 * Return the IP multicast options in response to user getsockopt().
1679 */
1680int
1681ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1682{
1683	struct ip6_moptions	*im6o;
1684	int			 error;
1685	u_int			 optval;
1686
1687	INP_WLOCK(inp);
1688	im6o = inp->in6p_moptions;
1689	/*
1690	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1691	 * or is a divert socket, reject it.
1692	 */
1693	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
1694	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
1695	    inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) {
1696		INP_WUNLOCK(inp);
1697		return (EOPNOTSUPP);
1698	}
1699
1700	error = 0;
1701	switch (sopt->sopt_name) {
1702	case IPV6_MULTICAST_IF:
1703		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) {
1704			optval = 0;
1705		} else {
1706			optval = im6o->im6o_multicast_ifp->if_index;
1707		}
1708		INP_WUNLOCK(inp);
1709		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1710		break;
1711
1712	case IPV6_MULTICAST_HOPS:
1713		if (im6o == NULL)
1714			optval = V_ip6_defmcasthlim;
1715		else
1716			optval = im6o->im6o_multicast_loop;
1717		INP_WUNLOCK(inp);
1718		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1719		break;
1720
1721	case IPV6_MULTICAST_LOOP:
1722		if (im6o == NULL)
1723			optval = in6_mcast_loop; /* XXX VIMAGE */
1724		else
1725			optval = im6o->im6o_multicast_loop;
1726		INP_WUNLOCK(inp);
1727		error = sooptcopyout(sopt, &optval, sizeof(u_int));
1728		break;
1729
1730	case IPV6_MSFILTER:
1731		if (im6o == NULL) {
1732			error = EADDRNOTAVAIL;
1733			INP_WUNLOCK(inp);
1734		} else {
1735			error = in6p_get_source_filters(inp, sopt);
1736		}
1737		break;
1738
1739	default:
1740		INP_WUNLOCK(inp);
1741		error = ENOPROTOOPT;
1742		break;
1743	}
1744
1745	INP_UNLOCK_ASSERT(inp);
1746
1747	return (error);
1748}
1749
1750/*
1751 * Look up the ifnet to use for a multicast group membership,
1752 * given the address of an IPv6 group.
1753 *
1754 * This routine exists to support legacy IPv6 multicast applications.
1755 *
1756 * If inp is non-NULL, use this socket's current FIB number for any
1757 * required FIB lookup. Look up the group address in the unicast FIB,
1758 * and use its ifp; usually, this points to the default next-hop.
1759 * If the FIB lookup fails, return NULL.
1760 *
1761 * FUTURE: Support multiple forwarding tables for IPv6.
1762 *
1763 * Returns NULL if no ifp could be found.
1764 */
1765static struct ifnet *
1766in6p_lookup_mcast_ifp(const struct inpcb *in6p __unused,
1767    const struct sockaddr_in6 *gsin6)
1768{
1769	struct route_in6	 ro6;
1770	struct ifnet		*ifp;
1771
1772	KASSERT(in6p->inp_vflag & INP_IPV6,
1773	    ("%s: not INP_IPV6 inpcb", __func__));
1774	KASSERT(gsin6->sin6_family == AF_INET6,
1775	    ("%s: not AF_INET6 group", __func__));
1776	KASSERT(IN6_IS_ADDR_MULTICAST(&gsin6->sin6_addr),
1777	    ("%s: not multicast", __func__));
1778
1779	ifp = NULL;
1780	memset(&ro6, 0, sizeof(struct route_in6));
1781	memcpy(&ro6.ro_dst, gsin6, sizeof(struct sockaddr_in6));
1782#ifdef notyet
1783	rtalloc_ign_fib(&ro6, 0, inp ? inp->inp_inc.inc_fibnum : 0);
1784#else
1785	rtalloc_ign((struct route *)&ro6, 0);
1786#endif
1787	if (ro6.ro_rt != NULL) {
1788		ifp = ro6.ro_rt->rt_ifp;
1789		KASSERT(ifp != NULL, ("%s: null ifp", __func__));
1790		RTFREE(ro6.ro_rt);
1791	}
1792
1793	return (ifp);
1794}
1795
1796/*
1797 * Join an IPv6 multicast group, possibly with a source.
1798 *
1799 * FIXME: The KAME use of the unspecified address (::)
1800 * to join *all* multicast groups is currently unsupported.
1801 */
1802static int
1803in6p_join_group(struct inpcb *inp, struct sockopt *sopt)
1804{
1805	struct group_source_req		 gsr;
1806	sockunion_t			*gsa, *ssa;
1807	struct ifnet			*ifp;
1808	struct in6_mfilter		*imf;
1809	struct ip6_moptions		*imo;
1810	struct in6_multi		*inm;
1811	struct in6_msource		*lims;
1812	size_t				 idx;
1813	int				 error, is_new;
1814
1815	ifp = NULL;
1816	imf = NULL;
1817	error = 0;
1818	is_new = 0;
1819
1820	memset(&gsr, 0, sizeof(struct group_source_req));
1821	gsa = (sockunion_t *)&gsr.gsr_group;
1822	gsa->ss.ss_family = AF_UNSPEC;
1823	ssa = (sockunion_t *)&gsr.gsr_source;
1824	ssa->ss.ss_family = AF_UNSPEC;
1825
1826	/*
1827	 * Chew everything into struct group_source_req.
1828	 * Overwrite the port field if present, as the sockaddr
1829	 * being copied in may be matched with a binary comparison.
1830	 * Ignore passed-in scope ID.
1831	 */
1832	switch (sopt->sopt_name) {
1833	case IPV6_JOIN_GROUP: {
1834		struct ipv6_mreq mreq;
1835
1836		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
1837		    sizeof(struct ipv6_mreq));
1838		if (error)
1839			return (error);
1840
1841		gsa->sin6.sin6_family = AF_INET6;
1842		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
1843		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
1844
1845		if (mreq.ipv6mr_interface == 0) {
1846			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
1847		} else {
1848			if (mreq.ipv6mr_interface < 0 ||
1849			    V_if_index < mreq.ipv6mr_interface)
1850				return (EADDRNOTAVAIL);
1851			ifp = ifnet_byindex(mreq.ipv6mr_interface);
1852		}
1853		CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p",
1854		    __func__, mreq.ipv6mr_interface, ifp);
1855	} break;
1856
1857	case MCAST_JOIN_GROUP:
1858	case MCAST_JOIN_SOURCE_GROUP:
1859		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
1860			error = sooptcopyin(sopt, &gsr,
1861			    sizeof(struct group_req),
1862			    sizeof(struct group_req));
1863		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1864			error = sooptcopyin(sopt, &gsr,
1865			    sizeof(struct group_source_req),
1866			    sizeof(struct group_source_req));
1867		}
1868		if (error)
1869			return (error);
1870
1871		if (gsa->sin6.sin6_family != AF_INET6 ||
1872		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1873			return (EINVAL);
1874
1875		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
1876			if (ssa->sin6.sin6_family != AF_INET6 ||
1877			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
1878				return (EINVAL);
1879			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
1880				return (EINVAL);
1881			/*
1882			 * TODO: Validate embedded scope ID in source
1883			 * list entry against passed-in ifp, if and only
1884			 * if source list filter entry is iface or node local.
1885			 */
1886			in6_clearscope(&ssa->sin6.sin6_addr);
1887			ssa->sin6.sin6_port = 0;
1888			ssa->sin6.sin6_scope_id = 0;
1889		}
1890
1891		if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface)
1892			return (EADDRNOTAVAIL);
1893		ifp = ifnet_byindex(gsr.gsr_interface);
1894		break;
1895
1896	default:
1897		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
1898		    __func__, sopt->sopt_name);
1899		return (EOPNOTSUPP);
1900		break;
1901	}
1902
1903	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
1904		return (EINVAL);
1905
1906	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1907		return (EADDRNOTAVAIL);
1908
1909	gsa->sin6.sin6_port = 0;
1910	gsa->sin6.sin6_scope_id = 0;
1911
1912	/*
1913	 * Always set the scope zone ID on memberships created from userland.
1914	 * Use the passed-in ifp to do this.
1915	 * XXX The in6_setscope() return value is meaningless.
1916	 * XXX SCOPE6_LOCK() is taken by in6_setscope().
1917	 */
1918	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
1919
1920	imo = in6p_findmoptions(inp);
1921	idx = im6o_match_group(imo, ifp, &gsa->sa);
1922	if (idx == -1) {
1923		is_new = 1;
1924	} else {
1925		inm = imo->im6o_membership[idx];
1926		imf = &imo->im6o_mfilters[idx];
1927		if (ssa->ss.ss_family != AF_UNSPEC) {
1928			/*
1929			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
1930			 * is an error. On an existing inclusive membership,
1931			 * it just adds the source to the filter list.
1932			 */
1933			if (imf->im6f_st[1] != MCAST_INCLUDE) {
1934				error = EINVAL;
1935				goto out_in6p_locked;
1936			}
1937			/* Throw out duplicates. */
1938			lims = im6o_match_source(imo, idx, &ssa->sa);
1939			if (lims != NULL) {
1940				error = EADDRNOTAVAIL;
1941				goto out_in6p_locked;
1942			}
1943		} else {
1944			/*
1945			 * MCAST_JOIN_GROUP alone, on any existing membership,
1946			 * is rejected, to stop the same inpcb tying up
1947			 * multiple refs to the in_multi.
1948			 * On an existing inclusive membership, this is also
1949			 * an error; if you want to change filter mode,
1950			 * you must use the userland API setsourcefilter().
1951			 * XXX We don't reject this for imf in UNDEFINED
1952			 * state at t1, because allocation of a filter
1953			 * is atomic with allocation of a membership.
1954			 */
1955			error = EINVAL;
1956			goto out_in6p_locked;
1957		}
1958	}
1959
1960	/*
1961	 * Begin state merge transaction at socket layer.
1962	 */
1963	INP_WLOCK_ASSERT(inp);
1964
1965	if (is_new) {
1966		if (imo->im6o_num_memberships == imo->im6o_max_memberships) {
1967			error = im6o_grow(imo);
1968			if (error)
1969				goto out_in6p_locked;
1970		}
1971		/*
1972		 * Allocate the new slot upfront so we can deal with
1973		 * grafting the new source filter in same code path
1974		 * as for join-source on existing membership.
1975		 */
1976		idx = imo->im6o_num_memberships;
1977		imo->im6o_membership[idx] = NULL;
1978		imo->im6o_num_memberships++;
1979		KASSERT(imo->im6o_mfilters != NULL,
1980		    ("%s: im6f_mfilters vector was not allocated", __func__));
1981		imf = &imo->im6o_mfilters[idx];
1982		KASSERT(RB_EMPTY(&imf->im6f_sources),
1983		    ("%s: im6f_sources not empty", __func__));
1984	}
1985
1986	/*
1987	 * Graft new source into filter list for this inpcb's
1988	 * membership of the group. The in6_multi may not have
1989	 * been allocated yet if this is a new membership, however,
1990	 * the in_mfilter slot will be allocated and must be initialized.
1991	 *
1992	 * Note: Grafting of exclusive mode filters doesn't happen
1993	 * in this path.
1994	 */
1995	if (ssa->ss.ss_family != AF_UNSPEC) {
1996		/* Membership starts in IN mode */
1997		if (is_new) {
1998			CTR1(KTR_MLD, "%s: new join w/source", __func__);
1999			im6f_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2000		} else {
2001			CTR2(KTR_MLD, "%s: %s source", __func__, "allow");
2002		}
2003		lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6);
2004		if (lims == NULL) {
2005			CTR1(KTR_MLD, "%s: merge imf state failed",
2006			    __func__);
2007			error = ENOMEM;
2008			goto out_im6o_free;
2009		}
2010	} else {
2011		/* No address specified; Membership starts in EX mode */
2012		if (is_new) {
2013			CTR1(KTR_MLD, "%s: new join w/o source", __func__);
2014			im6f_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2015		}
2016	}
2017
2018	/*
2019	 * Begin state merge transaction at MLD layer.
2020	 */
2021	IN6_MULTI_LOCK();
2022
2023	if (is_new) {
2024		error = in6_mc_join_locked(ifp, &gsa->sin6.sin6_addr, imf,
2025		    &inm, 0);
2026		if (error)
2027			goto out_im6o_free;
2028		imo->im6o_membership[idx] = inm;
2029	} else {
2030		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2031		error = in6m_merge(inm, imf);
2032		if (error) {
2033			CTR1(KTR_MLD, "%s: failed to merge inm state",
2034			    __func__);
2035			goto out_im6f_rollback;
2036		}
2037		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2038		error = mld_change_state(inm, 0);
2039		if (error) {
2040			CTR1(KTR_MLD, "%s: failed mld downcall",
2041			    __func__);
2042			goto out_im6f_rollback;
2043		}
2044	}
2045
2046	IN6_MULTI_UNLOCK();
2047
2048out_im6f_rollback:
2049	INP_WLOCK_ASSERT(inp);
2050	if (error) {
2051		im6f_rollback(imf);
2052		if (is_new)
2053			im6f_purge(imf);
2054		else
2055			im6f_reap(imf);
2056	} else {
2057		im6f_commit(imf);
2058	}
2059
2060out_im6o_free:
2061	if (error && is_new) {
2062		imo->im6o_membership[idx] = NULL;
2063		--imo->im6o_num_memberships;
2064	}
2065
2066out_in6p_locked:
2067	INP_WUNLOCK(inp);
2068	return (error);
2069}
2070
2071/*
2072 * Leave an IPv6 multicast group on an inpcb, possibly with a source.
2073 */
2074static int
2075in6p_leave_group(struct inpcb *inp, struct sockopt *sopt)
2076{
2077	struct ipv6_mreq		 mreq;
2078	struct group_source_req		 gsr;
2079	sockunion_t			*gsa, *ssa;
2080	struct ifnet			*ifp;
2081	struct in6_mfilter		*imf;
2082	struct ip6_moptions		*imo;
2083	struct in6_msource		*ims;
2084	struct in6_multi		*inm;
2085	uint32_t			 ifindex;
2086	size_t				 idx;
2087	int				 error, is_final;
2088#ifdef KTR
2089	char				 ip6tbuf[INET6_ADDRSTRLEN];
2090#endif
2091
2092	ifp = NULL;
2093	ifindex = 0;
2094	error = 0;
2095	is_final = 1;
2096
2097	memset(&gsr, 0, sizeof(struct group_source_req));
2098	gsa = (sockunion_t *)&gsr.gsr_group;
2099	gsa->ss.ss_family = AF_UNSPEC;
2100	ssa = (sockunion_t *)&gsr.gsr_source;
2101	ssa->ss.ss_family = AF_UNSPEC;
2102
2103	/*
2104	 * Chew everything passed in up into a struct group_source_req
2105	 * as that is easier to process.
2106	 * Note: Any embedded scope ID in the multicast group passed
2107	 * in by userland is ignored, the interface index is the recommended
2108	 * mechanism to specify an interface; see below.
2109	 */
2110	switch (sopt->sopt_name) {
2111	case IPV6_LEAVE_GROUP:
2112		error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq),
2113		    sizeof(struct ipv6_mreq));
2114		if (error)
2115			return (error);
2116		gsa->sin6.sin6_family = AF_INET6;
2117		gsa->sin6.sin6_len = sizeof(struct sockaddr_in6);
2118		gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr;
2119		gsa->sin6.sin6_port = 0;
2120		gsa->sin6.sin6_scope_id = 0;
2121		ifindex = mreq.ipv6mr_interface;
2122		break;
2123
2124	case MCAST_LEAVE_GROUP:
2125	case MCAST_LEAVE_SOURCE_GROUP:
2126		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2127			error = sooptcopyin(sopt, &gsr,
2128			    sizeof(struct group_req),
2129			    sizeof(struct group_req));
2130		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2131			error = sooptcopyin(sopt, &gsr,
2132			    sizeof(struct group_source_req),
2133			    sizeof(struct group_source_req));
2134		}
2135		if (error)
2136			return (error);
2137
2138		if (gsa->sin6.sin6_family != AF_INET6 ||
2139		    gsa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2140			return (EINVAL);
2141		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2142			if (ssa->sin6.sin6_family != AF_INET6 ||
2143			    ssa->sin6.sin6_len != sizeof(struct sockaddr_in6))
2144				return (EINVAL);
2145			if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr))
2146				return (EINVAL);
2147			/*
2148			 * TODO: Validate embedded scope ID in source
2149			 * list entry against passed-in ifp, if and only
2150			 * if source list filter entry is iface or node local.
2151			 */
2152			in6_clearscope(&ssa->sin6.sin6_addr);
2153		}
2154		gsa->sin6.sin6_port = 0;
2155		gsa->sin6.sin6_scope_id = 0;
2156		ifindex = gsr.gsr_interface;
2157		break;
2158
2159	default:
2160		CTR2(KTR_MLD, "%s: unknown sopt_name %d",
2161		    __func__, sopt->sopt_name);
2162		return (EOPNOTSUPP);
2163		break;
2164	}
2165
2166	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2167		return (EINVAL);
2168
2169	/*
2170	 * Validate interface index if provided. If no interface index
2171	 * was provided separately, attempt to look the membership up
2172	 * from the default scope as a last resort to disambiguate
2173	 * the membership we are being asked to leave.
2174	 * XXX SCOPE6 lock potentially taken here.
2175	 */
2176	if (ifindex != 0) {
2177		if (ifindex < 0 || V_if_index < ifindex)
2178			return (EADDRNOTAVAIL);
2179		ifp = ifnet_byindex(ifindex);
2180		if (ifp == NULL)
2181			return (EADDRNOTAVAIL);
2182		(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2183	} else {
2184		error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone);
2185		if (error)
2186			return (EADDRNOTAVAIL);
2187		/*
2188		 * Some badly behaved applications don't pass an ifindex
2189		 * or a scope ID, which is an API violation. In this case,
2190		 * perform a lookup as per a v6 join.
2191		 *
2192		 * XXX For now, stomp on zone ID for the corner case.
2193		 * This is not the 'KAME way', but we need to see the ifp
2194		 * directly until such time as this implementation is
2195		 * refactored, assuming the scope IDs are the way to go.
2196		 */
2197		ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]);
2198		if (ifindex == 0) {
2199			CTR2(KTR_MLD, "%s: warning: no ifindex, looking up "
2200			    "ifp for group %s.", __func__,
2201			    ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr));
2202			ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6);
2203		} else {
2204			ifp = ifnet_byindex(ifindex);
2205		}
2206		if (ifp == NULL)
2207			return (EADDRNOTAVAIL);
2208	}
2209
2210	CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp);
2211	KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__));
2212
2213	/*
2214	 * Find the membership in the membership array.
2215	 */
2216	imo = in6p_findmoptions(inp);
2217	idx = im6o_match_group(imo, ifp, &gsa->sa);
2218	if (idx == -1) {
2219		error = EADDRNOTAVAIL;
2220		goto out_in6p_locked;
2221	}
2222	inm = imo->im6o_membership[idx];
2223	imf = &imo->im6o_mfilters[idx];
2224
2225	if (ssa->ss.ss_family != AF_UNSPEC)
2226		is_final = 0;
2227
2228	/*
2229	 * Begin state merge transaction at socket layer.
2230	 */
2231	INP_WLOCK_ASSERT(inp);
2232
2233	/*
2234	 * If we were instructed only to leave a given source, do so.
2235	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2236	 */
2237	if (is_final) {
2238		im6f_leave(imf);
2239	} else {
2240		if (imf->im6f_st[0] == MCAST_EXCLUDE) {
2241			error = EADDRNOTAVAIL;
2242			goto out_in6p_locked;
2243		}
2244		ims = im6o_match_source(imo, idx, &ssa->sa);
2245		if (ims == NULL) {
2246			CTR3(KTR_MLD, "%s: source %p %spresent", __func__,
2247			    ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr),
2248			    "not ");
2249			error = EADDRNOTAVAIL;
2250			goto out_in6p_locked;
2251		}
2252		CTR2(KTR_MLD, "%s: %s source", __func__, "block");
2253		error = im6f_prune(imf, &ssa->sin6);
2254		if (error) {
2255			CTR1(KTR_MLD, "%s: merge imf state failed",
2256			    __func__);
2257			goto out_in6p_locked;
2258		}
2259	}
2260
2261	/*
2262	 * Begin state merge transaction at MLD layer.
2263	 */
2264	IN6_MULTI_LOCK();
2265
2266	if (is_final) {
2267		/*
2268		 * Give up the multicast address record to which
2269		 * the membership points.
2270		 */
2271		(void)in6_mc_leave_locked(inm, imf);
2272	} else {
2273		CTR1(KTR_MLD, "%s: merge inm state", __func__);
2274		error = in6m_merge(inm, imf);
2275		if (error) {
2276			CTR1(KTR_MLD, "%s: failed to merge inm state",
2277			    __func__);
2278			goto out_im6f_rollback;
2279		}
2280
2281		CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2282		error = mld_change_state(inm, 0);
2283		if (error) {
2284			CTR1(KTR_MLD, "%s: failed mld downcall",
2285			    __func__);
2286		}
2287	}
2288
2289	IN6_MULTI_UNLOCK();
2290
2291out_im6f_rollback:
2292	if (error)
2293		im6f_rollback(imf);
2294	else
2295		im6f_commit(imf);
2296
2297	im6f_reap(imf);
2298
2299	if (is_final) {
2300		/* Remove the gap in the membership array. */
2301		for (++idx; idx < imo->im6o_num_memberships; ++idx) {
2302			imo->im6o_membership[idx-1] = imo->im6o_membership[idx];
2303			imo->im6o_mfilters[idx-1] = imo->im6o_mfilters[idx];
2304		}
2305		imo->im6o_num_memberships--;
2306	}
2307
2308out_in6p_locked:
2309	INP_WUNLOCK(inp);
2310	return (error);
2311}
2312
2313/*
2314 * Select the interface for transmitting IPv6 multicast datagrams.
2315 *
2316 * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn
2317 * may be passed to this socket option. An address of in6addr_any or an
2318 * interface index of 0 is used to remove a previous selection.
2319 * When no interface is selected, one is chosen for every send.
2320 */
2321static int
2322in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2323{
2324	struct ifnet		*ifp;
2325	struct ip6_moptions	*imo;
2326	u_int			 ifindex;
2327	int			 error;
2328
2329	if (sopt->sopt_valsize != sizeof(u_int))
2330		return (EINVAL);
2331
2332	error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int));
2333	if (error)
2334		return (error);
2335	if (ifindex < 0 || V_if_index < ifindex)
2336		return (EINVAL);
2337
2338	ifp = ifnet_byindex(ifindex);
2339	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2340		return (EADDRNOTAVAIL);
2341
2342	imo = in6p_findmoptions(inp);
2343	imo->im6o_multicast_ifp = ifp;
2344	INP_WUNLOCK(inp);
2345
2346	return (0);
2347}
2348
2349/*
2350 * Atomically set source filters on a socket for an IPv6 multicast group.
2351 *
2352 * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held.
2353 */
2354static int
2355in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2356{
2357	struct __msfilterreq	 msfr;
2358	sockunion_t		*gsa;
2359	struct ifnet		*ifp;
2360	struct in6_mfilter	*imf;
2361	struct ip6_moptions	*imo;
2362	struct in6_multi		*inm;
2363	size_t			 idx;
2364	int			 error;
2365
2366	error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq),
2367	    sizeof(struct __msfilterreq));
2368	if (error)
2369		return (error);
2370
2371	if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc)
2372		return (ENOBUFS);
2373
2374	if (msfr.msfr_fmode != MCAST_EXCLUDE &&
2375	    msfr.msfr_fmode != MCAST_INCLUDE)
2376		return (EINVAL);
2377
2378	if (msfr.msfr_group.ss_family != AF_INET6 ||
2379	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6))
2380		return (EINVAL);
2381
2382	gsa = (sockunion_t *)&msfr.msfr_group;
2383	if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr))
2384		return (EINVAL);
2385
2386	gsa->sin6.sin6_port = 0;	/* ignore port */
2387
2388	if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex)
2389		return (EADDRNOTAVAIL);
2390	ifp = ifnet_byindex(msfr.msfr_ifindex);
2391	if (ifp == NULL)
2392		return (EADDRNOTAVAIL);
2393	(void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL);
2394
2395	/*
2396	 * Take the INP write lock.
2397	 * Check if this socket is a member of this group.
2398	 */
2399	imo = in6p_findmoptions(inp);
2400	idx = im6o_match_group(imo, ifp, &gsa->sa);
2401	if (idx == -1 || imo->im6o_mfilters == NULL) {
2402		error = EADDRNOTAVAIL;
2403		goto out_in6p_locked;
2404	}
2405	inm = imo->im6o_membership[idx];
2406	imf = &imo->im6o_mfilters[idx];
2407
2408	/*
2409	 * Begin state merge transaction at socket layer.
2410	 */
2411	INP_WLOCK_ASSERT(inp);
2412
2413	imf->im6f_st[1] = msfr.msfr_fmode;
2414
2415	/*
2416	 * Apply any new source filters, if present.
2417	 * Make a copy of the user-space source vector so
2418	 * that we may copy them with a single copyin. This
2419	 * allows us to deal with page faults up-front.
2420	 */
2421	if (msfr.msfr_nsrcs > 0) {
2422		struct in6_msource	*lims;
2423		struct sockaddr_in6	*psin;
2424		struct sockaddr_storage	*kss, *pkss;
2425		int			 i;
2426
2427		INP_WUNLOCK(inp);
2428
2429		CTR2(KTR_MLD, "%s: loading %lu source list entries",
2430		    __func__, (unsigned long)msfr.msfr_nsrcs);
2431		kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs,
2432		    M_TEMP, M_WAITOK);
2433		error = copyin(msfr.msfr_srcs, kss,
2434		    sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs);
2435		if (error) {
2436			free(kss, M_TEMP);
2437			return (error);
2438		}
2439
2440		INP_WLOCK(inp);
2441
2442		/*
2443		 * Mark all source filters as UNDEFINED at t1.
2444		 * Restore new group filter mode, as im6f_leave()
2445		 * will set it to INCLUDE.
2446		 */
2447		im6f_leave(imf);
2448		imf->im6f_st[1] = msfr.msfr_fmode;
2449
2450		/*
2451		 * Update socket layer filters at t1, lazy-allocating
2452		 * new entries. This saves a bunch of memory at the
2453		 * cost of one RB_FIND() per source entry; duplicate
2454		 * entries in the msfr_nsrcs vector are ignored.
2455		 * If we encounter an error, rollback transaction.
2456		 *
2457		 * XXX This too could be replaced with a set-symmetric
2458		 * difference like loop to avoid walking from root
2459		 * every time, as the key space is common.
2460		 */
2461		for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) {
2462			psin = (struct sockaddr_in6 *)pkss;
2463			if (psin->sin6_family != AF_INET6) {
2464				error = EAFNOSUPPORT;
2465				break;
2466			}
2467			if (psin->sin6_len != sizeof(struct sockaddr_in6)) {
2468				error = EINVAL;
2469				break;
2470			}
2471			if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) {
2472				error = EINVAL;
2473				break;
2474			}
2475			/*
2476			 * TODO: Validate embedded scope ID in source
2477			 * list entry against passed-in ifp, if and only
2478			 * if source list filter entry is iface or node local.
2479			 */
2480			in6_clearscope(&psin->sin6_addr);
2481			error = im6f_get_source(imf, psin, &lims);
2482			if (error)
2483				break;
2484			lims->im6sl_st[1] = imf->im6f_st[1];
2485		}
2486		free(kss, M_TEMP);
2487	}
2488
2489	if (error)
2490		goto out_im6f_rollback;
2491
2492	INP_WLOCK_ASSERT(inp);
2493	IN6_MULTI_LOCK();
2494
2495	/*
2496	 * Begin state merge transaction at MLD layer.
2497	 */
2498	CTR1(KTR_MLD, "%s: merge inm state", __func__);
2499	error = in6m_merge(inm, imf);
2500	if (error) {
2501		CTR1(KTR_MLD, "%s: failed to merge inm state", __func__);
2502		goto out_im6f_rollback;
2503	}
2504
2505	CTR1(KTR_MLD, "%s: doing mld downcall", __func__);
2506	error = mld_change_state(inm, 0);
2507	if (error)
2508		CTR1(KTR_MLD, "%s: failed mld downcall", __func__);
2509
2510	IN6_MULTI_UNLOCK();
2511
2512out_im6f_rollback:
2513	if (error)
2514		im6f_rollback(imf);
2515	else
2516		im6f_commit(imf);
2517
2518	im6f_reap(imf);
2519
2520out_in6p_locked:
2521	INP_WUNLOCK(inp);
2522	return (error);
2523}
2524
2525/*
2526 * Set the IP multicast options in response to user setsockopt().
2527 *
2528 * Many of the socket options handled in this function duplicate the
2529 * functionality of socket options in the regular unicast API. However,
2530 * it is not possible to merge the duplicate code, because the idempotence
2531 * of the IPv6 multicast part of the BSD Sockets API must be preserved;
2532 * the effects of these options must be treated as separate and distinct.
2533 *
2534 * SMPng: XXX: Unlocked read of inp_socket believed OK.
2535 */
2536int
2537ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2538{
2539	struct ip6_moptions	*im6o;
2540	int			 error;
2541
2542	error = 0;
2543
2544	/*
2545	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2546	 * or is a divert socket, reject it.
2547	 */
2548	if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT ||
2549	    (inp->inp_socket->so_proto->pr_type != SOCK_RAW &&
2550	     inp->inp_socket->so_proto->pr_type != SOCK_DGRAM))
2551		return (EOPNOTSUPP);
2552
2553	switch (sopt->sopt_name) {
2554	case IPV6_MULTICAST_IF:
2555		error = in6p_set_multicast_if(inp, sopt);
2556		break;
2557
2558	case IPV6_MULTICAST_HOPS: {
2559		int hlim;
2560
2561		if (sopt->sopt_valsize != sizeof(int)) {
2562			error = EINVAL;
2563			break;
2564		}
2565		error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int));
2566		if (error)
2567			break;
2568		if (hlim < -1 || hlim > 255) {
2569			error = EINVAL;
2570			break;
2571		} else if (hlim == -1) {
2572			hlim = V_ip6_defmcasthlim;
2573		}
2574		im6o = in6p_findmoptions(inp);
2575		im6o->im6o_multicast_hlim = hlim;
2576		INP_WUNLOCK(inp);
2577		break;
2578	}
2579
2580	case IPV6_MULTICAST_LOOP: {
2581		u_int loop;
2582
2583		/*
2584		 * Set the loopback flag for outgoing multicast packets.
2585		 * Must be zero or one.
2586		 */
2587		if (sopt->sopt_valsize != sizeof(u_int)) {
2588			error = EINVAL;
2589			break;
2590		}
2591		error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int));
2592		if (error)
2593			break;
2594		if (loop > 1) {
2595			error = EINVAL;
2596			break;
2597		}
2598		im6o = in6p_findmoptions(inp);
2599		im6o->im6o_multicast_loop = loop;
2600		INP_WUNLOCK(inp);
2601		break;
2602	}
2603
2604	case IPV6_JOIN_GROUP:
2605	case MCAST_JOIN_GROUP:
2606	case MCAST_JOIN_SOURCE_GROUP:
2607		error = in6p_join_group(inp, sopt);
2608		break;
2609
2610	case IPV6_LEAVE_GROUP:
2611	case MCAST_LEAVE_GROUP:
2612	case MCAST_LEAVE_SOURCE_GROUP:
2613		error = in6p_leave_group(inp, sopt);
2614		break;
2615
2616	case MCAST_BLOCK_SOURCE:
2617	case MCAST_UNBLOCK_SOURCE:
2618		error = in6p_block_unblock_source(inp, sopt);
2619		break;
2620
2621	case IPV6_MSFILTER:
2622		error = in6p_set_source_filters(inp, sopt);
2623		break;
2624
2625	default:
2626		error = EOPNOTSUPP;
2627		break;
2628	}
2629
2630	INP_UNLOCK_ASSERT(inp);
2631
2632	return (error);
2633}
2634
2635/*
2636 * Expose MLD's multicast filter mode and source list(s) to userland,
2637 * keyed by (ifindex, group).
2638 * The filter mode is written out as a uint32_t, followed by
2639 * 0..n of struct in6_addr.
2640 * For use by ifmcstat(8).
2641 * SMPng: NOTE: unlocked read of ifindex space.
2642 */
2643static int
2644sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS)
2645{
2646	struct in6_addr			 mcaddr;
2647	struct in6_addr			 src;
2648	struct ifnet			*ifp;
2649	struct ifmultiaddr		*ifma;
2650	struct in6_multi		*inm;
2651	struct ip6_msource		*ims;
2652	int				*name;
2653	int				 retval;
2654	u_int				 namelen;
2655	uint32_t			 fmode, ifindex;
2656#ifdef KTR
2657	char				 ip6tbuf[INET6_ADDRSTRLEN];
2658#endif
2659
2660	name = (int *)arg1;
2661	namelen = arg2;
2662
2663	if (req->newptr != NULL)
2664		return (EPERM);
2665
2666	/* int: ifindex + 4 * 32 bits of IPv6 address */
2667	if (namelen != 5)
2668		return (EINVAL);
2669
2670	ifindex = name[0];
2671	if (ifindex <= 0 || ifindex > V_if_index) {
2672		CTR2(KTR_MLD, "%s: ifindex %u out of range",
2673		    __func__, ifindex);
2674		return (ENOENT);
2675	}
2676
2677	memcpy(&mcaddr, &name[1], sizeof(struct in6_addr));
2678	if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) {
2679		CTR2(KTR_MLD, "%s: group %s is not multicast",
2680		    __func__, ip6_sprintf(ip6tbuf, &mcaddr));
2681		return (EINVAL);
2682	}
2683
2684	ifp = ifnet_byindex(ifindex);
2685	if (ifp == NULL) {
2686		CTR2(KTR_MLD, "%s: no ifp for ifindex %u",
2687		    __func__, ifindex);
2688		return (ENOENT);
2689	}
2690	/*
2691	 * Internal MLD lookups require that scope/zone ID is set.
2692	 */
2693	(void)in6_setscope(&mcaddr, ifp, NULL);
2694
2695	retval = sysctl_wire_old_buffer(req,
2696	    sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr)));
2697	if (retval)
2698		return (retval);
2699
2700	IN6_MULTI_LOCK();
2701
2702	IF_ADDR_LOCK(ifp);
2703	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2704		if (ifma->ifma_addr->sa_family != AF_INET6 ||
2705		    ifma->ifma_protospec == NULL)
2706			continue;
2707		inm = (struct in6_multi *)ifma->ifma_protospec;
2708		if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr))
2709			continue;
2710		fmode = inm->in6m_st[1].iss_fmode;
2711		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
2712		if (retval != 0)
2713			break;
2714		RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) {
2715			CTR2(KTR_MLD, "%s: visit node %p", __func__, ims);
2716			/*
2717			 * Only copy-out sources which are in-mode.
2718			 */
2719			if (fmode != im6s_get_mode(inm, ims, 1)) {
2720				CTR1(KTR_MLD, "%s: skip non-in-mode",
2721				    __func__);
2722				continue;
2723			}
2724			src = ims->im6s_addr;
2725			retval = SYSCTL_OUT(req, &src,
2726			    sizeof(struct in6_addr));
2727			if (retval != 0)
2728				break;
2729		}
2730	}
2731	IF_ADDR_UNLOCK(ifp);
2732
2733	IN6_MULTI_UNLOCK();
2734
2735	return (retval);
2736}
2737
2738#ifdef KTR
2739
2740static const char *in6m_modestrs[] = { "un", "in", "ex" };
2741
2742static const char *
2743in6m_mode_str(const int mode)
2744{
2745
2746	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
2747		return (in6m_modestrs[mode]);
2748	return ("??");
2749}
2750
2751static const char *in6m_statestrs[] = {
2752	"not-member",
2753	"silent",
2754	"idle",
2755	"lazy",
2756	"sleeping",
2757	"awakening",
2758	"query-pending",
2759	"sg-query-pending",
2760	"leaving"
2761};
2762
2763static const char *
2764in6m_state_str(const int state)
2765{
2766
2767	if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER)
2768		return (in6m_statestrs[state]);
2769	return ("??");
2770}
2771
2772/*
2773 * Dump an in6_multi structure to the console.
2774 */
2775void
2776in6m_print(const struct in6_multi *inm)
2777{
2778	int t;
2779	char ip6tbuf[INET6_ADDRSTRLEN];
2780
2781	if ((ktr_mask & KTR_MLD) == 0)
2782		return;
2783
2784	printf("%s: --- begin in6m %p ---\n", __func__, inm);
2785	printf("addr %s ifp %p(%s) ifma %p\n",
2786	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2787	    inm->in6m_ifp,
2788	    inm->in6m_ifp->if_xname,
2789	    inm->in6m_ifma);
2790	printf("timer %u state %s refcount %u scq.len %u\n",
2791	    inm->in6m_timer,
2792	    in6m_state_str(inm->in6m_state),
2793	    inm->in6m_refcount,
2794	    inm->in6m_scq.ifq_len);
2795	printf("mli %p nsrc %lu sctimer %u scrv %u\n",
2796	    inm->in6m_mli,
2797	    inm->in6m_nsrc,
2798	    inm->in6m_sctimer,
2799	    inm->in6m_scrv);
2800	for (t = 0; t < 2; t++) {
2801		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
2802		    in6m_mode_str(inm->in6m_st[t].iss_fmode),
2803		    inm->in6m_st[t].iss_asm,
2804		    inm->in6m_st[t].iss_ex,
2805		    inm->in6m_st[t].iss_in,
2806		    inm->in6m_st[t].iss_rec);
2807	}
2808	printf("%s: --- end in6m %p ---\n", __func__, inm);
2809}
2810
2811#else /* !KTR */
2812
2813void
2814in6m_print(const struct in6_multi *inm)
2815{
2816
2817}
2818
2819#endif /* KTR */
2820