1/*  This file is part of the program psim.
2
3    Copyright 1994, 1995, 2002 Andrew Cagney <cagney@highland.com.au>
4
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 2 of the License, or
8    (at your option) any later version.
9
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14
15    You should have received a copy of the GNU General Public License
16    along with this program; if not, write to the Free Software
17    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19    */
20
21
22#ifndef _PSIM_CONFIG_H_
23#define _PSIM_CONFIG_H_
24
25
26/* endianness of the host/target:
27
28   If the build process is aware (at compile time) of the endianness
29   of the host/target it is able to eliminate slower generic endian
30   handling code.
31
32   Possible values are 0 (unknown), LITTLE_ENDIAN, BIG_ENDIAN */
33
34#ifndef WITH_HOST_BYTE_ORDER
35#define WITH_HOST_BYTE_ORDER		0 /*unknown*/
36#endif
37
38#ifndef WITH_TARGET_BYTE_ORDER
39#define WITH_TARGET_BYTE_ORDER		0 /*unknown*/
40#endif
41
42extern int current_host_byte_order;
43#define CURRENT_HOST_BYTE_ORDER (WITH_HOST_BYTE_ORDER \
44				 ? WITH_HOST_BYTE_ORDER \
45				 : current_host_byte_order)
46extern int current_target_byte_order;
47#define CURRENT_TARGET_BYTE_ORDER (WITH_TARGET_BYTE_ORDER \
48				   ? WITH_TARGET_BYTE_ORDER \
49				   : current_target_byte_order)
50
51
52/* PowerPC XOR endian.
53
54   In addition to the above, the simulator can support the PowerPC's
55   horrible XOR endian mode.  This feature makes it possible to
56   control the endian mode of a processor using the MSR. */
57
58#ifndef WITH_XOR_ENDIAN
59#define WITH_XOR_ENDIAN		8
60#endif
61
62
63/* Intel host BSWAP support:
64
65   Whether to use bswap on the 486 and pentiums rather than the 386
66   sequence that uses xchgb/rorl/xchgb */
67#ifndef WITH_BSWAP
68#define	WITH_BSWAP 0
69#endif
70
71
72/* SMP support:
73
74   Sets a limit on the number of processors that can be simulated.  If
75   WITH_SMP is set to zero (0), the simulator is restricted to
76   suporting only on processor (and as a consequence leaves the SMP
77   code out of the build process).
78
79   The actual number of processors is taken from the device
80   /options/smp@<nr-cpu> */
81
82#ifndef WITH_SMP
83#define WITH_SMP                        5
84#endif
85#if WITH_SMP
86#define MAX_NR_PROCESSORS		WITH_SMP
87#else
88#define MAX_NR_PROCESSORS		1
89#endif
90
91
92/* Word size of host/target:
93
94   Set these according to your host and target requirements.  At this
95   point in time, I've only compiled (not run) for a 64bit and never
96   built for a 64bit host.  This will always remain a compile time
97   option */
98
99#ifndef WITH_TARGET_WORD_BITSIZE
100#define WITH_TARGET_WORD_BITSIZE        32 /* compiled only */
101#endif
102
103#ifndef WITH_HOST_WORD_BITSIZE
104#define WITH_HOST_WORD_BITSIZE		32 /* 64bit ready? */
105#endif
106
107
108/* Program environment:
109
110   Three environments are available - UEA (user), VEA (virtual) and
111   OEA (perating).  The former two are environment that users would
112   expect to see (VEA includes things like coherency and the time
113   base) while OEA is what an operating system expects to see.  By
114   setting these to specific values, the build process is able to
115   eliminate non relevent environment code
116
117   CURRENT_ENVIRONMENT specifies which of vea or oea is required for
118   the current runtime. */
119
120#define USER_ENVIRONMENT		1
121#define VIRTUAL_ENVIRONMENT		2
122#define OPERATING_ENVIRONMENT		3
123
124#ifndef WITH_ENVIRONMENT
125#define WITH_ENVIRONMENT		0
126#endif
127
128extern int current_environment;
129#define CURRENT_ENVIRONMENT (WITH_ENVIRONMENT \
130			     ? WITH_ENVIRONMENT \
131			     : current_environment)
132
133
134/* Optional VEA/OEA code:
135
136   The below, required for the OEA model may also be included in the
137   VEA model however, as far as I can tell only make things
138   slower... */
139
140
141/* Events.  Devices modeling real H/W need to be able to efficiently
142   schedule things to do at known times in the future.  The event
143   queue implements this.  Unfortunatly this adds the need to check
144   for any events once each full instruction cycle. */
145
146#define WITH_EVENTS                     (WITH_ENVIRONMENT != USER_ENVIRONMENT)
147
148
149/* Time base:
150
151   The PowerPC architecture includes the addition of both a time base
152   register and a decrement timer.  Like events adds to the overhead
153   of of some instruction cycles. */
154
155#ifndef WITH_TIME_BASE
156#define WITH_TIME_BASE			(WITH_ENVIRONMENT != USER_ENVIRONMENT)
157#endif
158
159
160/* Callback/Default Memory.
161
162   Core includes a builtin memory type (raw_memory) that is
163   implemented using an array.  raw_memory does not require any
164   additional functions etc.
165
166   Callback memory is where the core calls a core device for the data
167   it requires.
168
169   Default memory is an extenstion of this where for addresses that do
170   not map into either a callback or core memory range a default map
171   can be used.
172
173   The OEA model uses callback memory for devices and default memory
174   for buses.
175
176   The VEA model uses callback memory to capture `page faults'.
177
178   While it may be possible to eliminate callback/default memory (and
179   hence also eliminate an additional test per memory fetch) it
180   probably is not worth the effort.
181
182   BTW, while raw_memory could have been implemented as a callback,
183   profiling has shown that there is a biger win (at least for the
184   x86) in eliminating a function call for the most common
185   (raw_memory) case. */
186
187#define WITH_CALLBACK_MEMORY		1
188
189
190/* Alignment:
191
192   The PowerPC may or may not handle miss aligned transfers.  An
193   implementation normally handles miss aligned transfers in big
194   endian mode but generates an exception in little endian mode.
195
196   This model.  Instead allows both little and big endian modes to
197   either take exceptions or handle miss aligned transfers.
198
199   If 0 is specified then for big-endian mode miss alligned accesses
200   are permitted (NONSTRICT_ALIGNMENT) while in little-endian mode the
201   processor will fault on them (STRICT_ALIGNMENT). */
202
203#define NONSTRICT_ALIGNMENT    		1
204#define STRICT_ALIGNMENT	       	2
205
206#ifndef WITH_ALIGNMENT
207#define WITH_ALIGNMENT     		0
208#endif
209
210extern int current_alignment;
211#define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
212			   ? WITH_ALIGNMENT \
213			   : current_alignment)
214
215
216/* Floating point suport:
217
218   Still under development. */
219
220#define SOFT_FLOATING_POINT		1
221#define HARD_FLOATING_POINT		2
222
223#ifndef WITH_FLOATING_POINT
224#define WITH_FLOATING_POINT		HARD_FLOATING_POINT
225#endif
226extern int current_floating_point;
227#define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
228				? WITH_FLOATING_POINT \
229				: current_floating_point)
230
231
232/* Debugging:
233
234   Control the inclusion of debugging code. */
235
236/* Include the tracing code.  Disabling this eliminates all tracing
237   code */
238
239#ifndef WITH_TRACE
240#define WITH_TRACE                      1
241#endif
242
243/* include code that checks assertions scattered through out the
244   program */
245
246#ifndef WITH_ASSERT
247#define WITH_ASSERT			1
248#endif
249
250/* Whether to check instructions for reserved bits being set */
251
252#ifndef WITH_RESERVED_BITS
253#define WITH_RESERVED_BITS		1
254#endif
255
256/* include monitoring code */
257
258#define MONITOR_INSTRUCTION_ISSUE	1
259#define MONITOR_LOAD_STORE_UNIT		2
260#ifndef WITH_MON
261#define WITH_MON			(MONITOR_LOAD_STORE_UNIT \
262					 | MONITOR_INSTRUCTION_ISSUE)
263#endif
264
265/* Current CPU model (models are in the generated models.h include file)  */
266#ifndef WITH_MODEL
267#define WITH_MODEL			0
268#endif
269
270#define CURRENT_MODEL (WITH_MODEL	\
271		       ? WITH_MODEL	\
272		       : current_model)
273
274#ifndef WITH_DEFAULT_MODEL
275#define WITH_DEFAULT_MODEL		DEFAULT_MODEL
276#endif
277
278#define MODEL_ISSUE_IGNORE		(-1)
279#define MODEL_ISSUE_PROCESS		1
280
281#ifndef WITH_MODEL_ISSUE
282#define WITH_MODEL_ISSUE		0
283#endif
284
285extern int current_model_issue;
286#define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE	\
287			     ? WITH_MODEL_ISSUE	\
288			     : current_model_issue)
289
290/* Whether or not input/output just uses stdio, or uses printf_filtered for
291   output, and polling input for input.  */
292
293#define DONT_USE_STDIO			2
294#define DO_USE_STDIO			1
295
296#ifndef WITH_STDIO
297#define WITH_STDIO			0
298#endif
299
300extern int current_stdio;
301#define CURRENT_STDIO (WITH_STDIO	\
302		       ? WITH_STDIO     \
303		       : current_stdio)
304
305
306
307/* INLINE CODE SELECTION:
308
309   GCC -O3 attempts to inline any function or procedure in scope.  The
310   options below facilitate fine grained control over what is and what
311   isn't made inline.  For instance it can control things down to a
312   specific modules static routines.  Doing this allows the compiler
313   to both eliminate the overhead of function calls and (as a
314   consequence) also eliminate further dead code.
315
316   On a CISC (x86) I've found that I can achieve an order of magintude
317   speed improvement (x3-x5).  In the case of RISC (sparc) while the
318   performance gain isn't as great it is still significant.
319
320   Each module is controled by the macro <module>_INLINE which can
321   have the values described below
322
323       0  Do not inline any thing for the given module
324
325   The following additional values are `bit fields' and can be
326   combined.
327
328      REVEAL_MODULE:
329
330         Include the C file for the module into the file being compiled
331         but do not make the functions within the module inline.
332
333	 While of no apparent benefit, this makes it possible for the
334	 included module, when compiled to inline its calls to what
335	 would otherwize be external functions.
336
337      INLINE_MODULE:
338
339         Make external functions within the module `inline'.  Thus if
340         the module is included into a file being compiled, calls to
341	 its funtions can be eliminated. 2 implies 1.
342
343      PSIM_INLINE_LOCALS:
344
345         Make internal (static) functions within the module `inline'.
346
347   The following abreviations are available:
348
349      INCLUDE_MODULE == (REVEAL_MODULE | INLINE_MODULE)
350
351      ALL_INLINE == (REVEAL_MODULE | INLINE_MODULE | PSIM_INLINE_LOCALS)
352
353   In addition to this, modules have been put into two categories.
354
355         Simple modules - eg sim-endian.h bits.h
356
357	 Because these modules are small and simple and do not have
358	 any complex interpendencies they are configured, if
359	 <module>_INLINE is so enabled, to inline themselves in all
360	 modules that include those files.
361
362	 For the default build, this is a real win as all byte
363	 conversion and bit manipulation functions are inlined.
364
365	 Complex modules - the rest
366
367	 These are all handled using the files inline.h and inline.c.
368	 psim.c includes the above which in turn include any remaining
369	 code.
370
371   IMPLEMENTATION:
372
373   The inline ability is enabled by prefixing every data / function
374   declaration and definition with one of the following:
375
376
377       INLINE_<module>
378
379       Prefix to any global function that is a candidate for being
380       inline.
381
382       values - `', `static', `static INLINE'
383
384
385       EXTERN_<module>
386
387       Prefix to any global data structures for the module.  Global
388       functions that are not to be inlined shall also be prefixed
389       with this.
390
391       values - `', `static', `static'
392
393
394       STATIC_INLINE_<module>
395
396       Prefix to any local (static) function that is a candidate for
397       being made inline.
398
399       values - `static', `static INLINE'
400
401
402       static
403
404       Prefix all local data structures.  Local functions that are not
405       to be inlined shall also be prefixed with this.
406
407       values - `static', `static'
408
409       nb: will not work for modules that are being inlined for every
410       use (white lie).
411
412
413       extern
414       #ifndef _INLINE_C_
415       #endif
416
417       Prefix to any declaration of a global object (function or
418       variable) that should not be inlined and should have only one
419       definition.  The #ifndef wrapper goes around the definition
420       propper to ensure that only one copy is generated.
421
422       nb: this will not work when a module is being inlined for every
423       use.
424
425
426       STATIC_<module>
427
428       Replaced by either `static' or `EXTERN_MODULE'.
429
430
431   REALITY CHECK:
432
433   This is not for the faint hearted.  I've seen GCC get up to 500mb
434   trying to compile what this can create.
435
436   Some of the modules do not yet implement the WITH_INLINE_STATIC
437   option.  Instead they use the macro STATIC_INLINE to control their
438   local function.
439
440   Because of the way that GCC parses __attribute__(), the macro's
441   need to be adjacent to the function name rather than at the start
442   of the line vis:
443
444   	int STATIC_INLINE_MODULE f(void);
445	void INLINE_MODULE *g(void);
446
447   */
448
449#define REVEAL_MODULE			1
450#define INLINE_MODULE			2
451#define INCLUDE_MODULE			(INLINE_MODULE | REVEAL_MODULE)
452#define PSIM_INLINE_LOCALS			4
453#define ALL_INLINE			7
454
455/* Your compilers inline reserved word */
456
457#ifndef INLINE
458#if defined(__GNUC__) && defined(__OPTIMIZE__)
459#define INLINE __inline__
460#else
461#define INLINE /*inline*/
462#endif
463#endif
464
465
466/* Your compilers pass parameters in registers reserved word */
467
468#ifndef WITH_REGPARM
469#define WITH_REGPARM                   0
470#endif
471
472/* Your compilers use an alternative calling sequence reserved word */
473
474#ifndef WITH_STDCALL
475#define WITH_STDCALL                   0
476#endif
477
478#if !defined REGPARM
479#if defined(__GNUC__) && (defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__))
480#if (WITH_REGPARM && WITH_STDCALL)
481#define REGPARM __attribute__((__regparm__(WITH_REGPARM),__stdcall__))
482#else
483#if (WITH_REGPARM && !WITH_STDCALL)
484#define REGPARM __attribute__((__regparm__(WITH_REGPARM)))
485#else
486#if (!WITH_REGPARM && WITH_STDCALL)
487#define REGPARM __attribute__((__stdcall__))
488#endif
489#endif
490#endif
491#endif
492#endif
493
494#if !defined REGPARM
495#define REGPARM
496#endif
497
498
499
500/* Default prefix for static functions */
501
502#ifndef STATIC_INLINE
503#define STATIC_INLINE static INLINE
504#endif
505
506/* Default macro to simplify control several of key the inlines */
507
508#ifndef DEFAULT_INLINE
509#define	DEFAULT_INLINE			PSIM_INLINE_LOCALS
510#endif
511
512/* Code that converts between hosts and target byte order.  Used on
513   every memory access (instruction and data).  See sim-endian.h for
514   additional byte swapping configuration information.  This module
515   can inline for all callers */
516
517#ifndef SIM_ENDIAN_INLINE
518#define SIM_ENDIAN_INLINE		(DEFAULT_INLINE ? ALL_INLINE : 0)
519#endif
520
521/* Low level bit manipulation routines. This module can inline for all
522   callers */
523
524#ifndef BITS_INLINE
525#define BITS_INLINE			(DEFAULT_INLINE ? ALL_INLINE : 0)
526#endif
527
528/* Code that gives access to various CPU internals such as registers.
529   Used every time an instruction is executed */
530
531#ifndef CPU_INLINE
532#define CPU_INLINE			(DEFAULT_INLINE ? ALL_INLINE : 0)
533#endif
534
535/* Code that translates between an effective and real address.  Used
536   by every load or store. */
537
538#ifndef VM_INLINE
539#define VM_INLINE			DEFAULT_INLINE
540#endif
541
542/* Code that loads/stores data to/from the memory data structure.
543   Used by every load or store */
544
545#ifndef CORE_INLINE
546#define CORE_INLINE			DEFAULT_INLINE
547#endif
548
549/* Code to check for and process any events scheduled in the future.
550   Called once per instruction cycle */
551
552#ifndef EVENTS_INLINE
553#define EVENTS_INLINE			(DEFAULT_INLINE ? ALL_INLINE : 0)
554#endif
555
556/* Code monotoring the processors performance.  It counts events on
557   every instruction cycle */
558
559#ifndef MON_INLINE
560#define MON_INLINE			(DEFAULT_INLINE ? ALL_INLINE : 0)
561#endif
562
563/* Code called on the rare occasions that an interrupt occures. */
564
565#ifndef INTERRUPTS_INLINE
566#define INTERRUPTS_INLINE		DEFAULT_INLINE
567#endif
568
569/* Code called on the rare occasion that either gdb or the device tree
570   need to manipulate a register within a processor */
571
572#ifndef REGISTERS_INLINE
573#define REGISTERS_INLINE		DEFAULT_INLINE
574#endif
575
576/* Code called on the rare occasion that a processor is manipulating
577   real hardware instead of RAM.
578
579   Also, most of the functions in devices.c are always called through
580   a jump table. */
581
582#ifndef DEVICE_INLINE
583#define DEVICE_INLINE			(DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
584#endif
585
586/* Code called used while the device tree is being built.
587
588   Inlining this is of no benefit */
589
590#ifndef TREE_INLINE
591#define TREE_INLINE			(DEFAULT_INLINE ? PSIM_INLINE_LOCALS : 0)
592#endif
593
594/* Code called whenever information on a Special Purpose Register is
595   required.  Called by the mflr/mtlr pseudo instructions */
596
597#ifndef SPREG_INLINE
598#define SPREG_INLINE			DEFAULT_INLINE
599#endif
600
601/* Functions modeling the semantics of each instruction.  Two cases to
602   consider, firstly of idecode is implemented with a switch then this
603   allows the idecode function to inline each semantic function
604   (avoiding a call).  The second case is when idecode is using a
605   table, even then while the semantic functions can't be inlined,
606   setting it to one still enables each semantic function to inline
607   anything they call (if that code is marked for being inlined).
608
609   WARNING: you need lots (like 200mb of swap) of swap.  Setting this
610   to 1 is useful when using a table as it enables the sematic code to
611   inline all of their called functions */
612
613#ifndef SEMANTICS_INLINE
614#define SEMANTICS_INLINE		(DEFAULT_INLINE & ~INLINE_MODULE)
615#endif
616
617/* When using the instruction cache, code to decode an instruction and
618   install it into the cache.  Normally called when ever there is a
619   miss in the instruction cache. */
620
621#ifndef ICACHE_INLINE
622#define ICACHE_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
623#endif
624
625/* General functions called by semantics functions but part of the
626   instruction table.  Although called by the semantic functions the
627   frequency of calls is low.  Consequently the need to inline this
628   code is reduced. */
629
630#ifndef SUPPORT_INLINE
631#define SUPPORT_INLINE			PSIM_INLINE_LOCALS
632#endif
633
634/* Model specific code used in simulating functional units.  Note, it actaully
635   pays NOT to inline the PowerPC model functions (at least on the x86).  This
636   is because if it is inlined, each PowerPC instruction gets a separate copy
637   of the code, which is not friendly to the cache.  */
638
639#ifndef MODEL_INLINE
640#define	MODEL_INLINE			(DEFAULT_INLINE & ~INLINE_MODULE)
641#endif
642
643/* Code to print out what options we were compiled with.  Because this
644   is called at process startup, it doesn't have to be inlined, but
645   if it isn't brought in and the model routines are inline, the model
646   routines will be pulled in twice.  */
647
648#ifndef OPTIONS_INLINE
649#define OPTIONS_INLINE			MODEL_INLINE
650#endif
651
652/* idecode acts as the hub of the system, everything else is imported
653   into this file */
654
655#ifndef IDECOCE_INLINE
656#define IDECODE_INLINE			PSIM_INLINE_LOCALS
657#endif
658
659/* psim, isn't actually inlined */
660
661#ifndef PSIM_INLINE
662#define PSIM_INLINE			PSIM_INLINE_LOCALS
663#endif
664
665/* Code to emulate os or rom compatibility.  This code is called via a
666   table and hence there is little benefit in making it inline */
667
668#ifndef OS_EMUL_INLINE
669#define OS_EMUL_INLINE			0
670#endif
671
672#endif /* _PSIM_CONFIG_H */
673