Deleted Added
full compact
if_ti.c (49011) if_ti.c (49035)
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $Id: if_ti.c,v 1.114 1999/07/05 19:20:31 wpaul Exp $
32 * $Id: if_ti.c,v 1.10 1999/07/23 02:10:11 wpaul Exp $
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 * for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 * GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 * convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "bpf.h"
82#include "vlan.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/socket.h>
91#include <sys/queue.h>
92
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98
99#if NBPF > 0
100#include <net/bpf.h>
101#endif
102
103#if NVLAN > 0
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106#endif
107
108#include <netinet/in_systm.h>
109#include <netinet/in.h>
110#include <netinet/ip.h>
111
112#include <vm/vm.h> /* for vtophys */
113#include <vm/pmap.h> /* for vtophys */
114#include <machine/clock.h> /* for DELAY */
115#include <machine/bus_memio.h>
116#include <machine/bus.h>
117#include <machine/resource.h>
118#include <sys/bus.h>
119#include <sys/rman.h>
120
121#include <pci/pcireg.h>
122#include <pci/pcivar.h>
123
124#include <pci/if_tireg.h>
125#include <pci/ti_fw.h>
126#include <pci/ti_fw2.h>
127
128#ifdef M_HWCKSUM
129/*#define TI_CSUM_OFFLOAD*/
130#endif
131
132#if !defined(lint)
133static const char rcsid[] =
33 */
34
35/*
36 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
37 * Manuals, sample driver and firmware source kits are available
38 * from http://www.alteon.com/support/openkits.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
47 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
48 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
49 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
50 * filtering and jumbo (9014 byte) frames. The hardware is largely
51 * controlled by firmware, which must be loaded into the NIC during
52 * initialization.
53 *
54 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
55 * revision, which supports new features such as extended commands,
56 * extended jumbo receive ring desciptors and a mini receive ring.
57 *
58 * Alteon Networks is to be commended for releasing such a vast amount
59 * of development material for the Tigon NIC without requiring an NDA
60 * (although they really should have done it a long time ago). With
61 * any luck, the other vendors will finally wise up and follow Alteon's
62 * stellar example.
63 *
64 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
65 * this driver by #including it as a C header file. This bloats the
66 * driver somewhat, but it's the easiest method considering that the
67 * driver code and firmware code need to be kept in sync. The source
68 * for the firmware is not provided with the FreeBSD distribution since
69 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
70 *
71 * The following people deserve special thanks:
72 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
73 * for testing
74 * - Raymond Lee of Netgear, for providing a pair of Netgear
75 * GA620 Tigon 2 boards for testing
76 * - Ulf Zimmermann, for bringing the GA260 to my attention and
77 * convincing me to write this driver.
78 * - Andrew Gallatin for providing FreeBSD/Alpha support.
79 */
80
81#include "bpf.h"
82#include "vlan.h"
83
84#include <sys/param.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/kernel.h>
90#include <sys/socket.h>
91#include <sys/queue.h>
92
93#include <net/if.h>
94#include <net/if_arp.h>
95#include <net/ethernet.h>
96#include <net/if_dl.h>
97#include <net/if_media.h>
98
99#if NBPF > 0
100#include <net/bpf.h>
101#endif
102
103#if NVLAN > 0
104#include <net/if_types.h>
105#include <net/if_vlan_var.h>
106#endif
107
108#include <netinet/in_systm.h>
109#include <netinet/in.h>
110#include <netinet/ip.h>
111
112#include <vm/vm.h> /* for vtophys */
113#include <vm/pmap.h> /* for vtophys */
114#include <machine/clock.h> /* for DELAY */
115#include <machine/bus_memio.h>
116#include <machine/bus.h>
117#include <machine/resource.h>
118#include <sys/bus.h>
119#include <sys/rman.h>
120
121#include <pci/pcireg.h>
122#include <pci/pcivar.h>
123
124#include <pci/if_tireg.h>
125#include <pci/ti_fw.h>
126#include <pci/ti_fw2.h>
127
128#ifdef M_HWCKSUM
129/*#define TI_CSUM_OFFLOAD*/
130#endif
131
132#if !defined(lint)
133static const char rcsid[] =
134 "$Id: if_ti.c,v 1.114 1999/07/05 19:20:31 wpaul Exp $";
134 "$Id: if_ti.c,v 1.10 1999/07/23 02:10:11 wpaul Exp $";
135#endif
136
137/*
138 * Various supported device vendors/types and their names.
139 */
140
141static struct ti_type ti_devs[] = {
142 { ALT_VENDORID, ALT_DEVICEID_ACENIC,
143 "Alteon AceNIC Gigabit Ethernet" },
144 { TC_VENDORID, TC_DEVICEID_3C985,
145 "3Com 3c985-SX Gigabit Ethernet" },
146 { NG_VENDORID, NG_DEVICEID_GA620,
147 "Netgear GA620 Gigabit Ethernet" },
148 { SGI_VENDORID, SGI_DEVICEID_TIGON,
149 "Silicon Graphics Gigabit Ethernet" },
150 { 0, 0, NULL }
151};
152
153static int ti_probe __P((device_t));
154static int ti_attach __P((device_t));
155static int ti_detach __P((device_t));
156static void ti_txeof __P((struct ti_softc *));
157static void ti_rxeof __P((struct ti_softc *));
158
159static void ti_stats_update __P((struct ti_softc *));
160static int ti_encap __P((struct ti_softc *, struct mbuf *,
161 u_int32_t *));
162
163static void ti_intr __P((void *));
164static void ti_start __P((struct ifnet *));
165static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
166static void ti_init __P((void *));
167static void ti_init2 __P((struct ti_softc *));
168static void ti_stop __P((struct ti_softc *));
169static void ti_watchdog __P((struct ifnet *));
170static void ti_shutdown __P((device_t));
171static int ti_ifmedia_upd __P((struct ifnet *));
172static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
175static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
176 int, u_int8_t *));
177static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti __P((struct ti_softc *));
182
183static void ti_mem __P((struct ti_softc *, u_int32_t,
184 u_int32_t, caddr_t));
185static void ti_loadfw __P((struct ti_softc *));
186static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
188 caddr_t, int));
189static void ti_handle_events __P((struct ti_softc *));
190static int ti_alloc_jumbo_mem __P((struct ti_softc *));
191static void *ti_jalloc __P((struct ti_softc *));
192static void ti_jfree __P((caddr_t, u_int));
193static void ti_jref __P((caddr_t, u_int));
194static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *));
196static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
197static int ti_init_rx_ring_std __P((struct ti_softc *));
198static void ti_free_rx_ring_std __P((struct ti_softc *));
199static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
200static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
201static int ti_init_rx_ring_mini __P((struct ti_softc *));
202static void ti_free_rx_ring_mini __P((struct ti_softc *));
203static void ti_free_tx_ring __P((struct ti_softc *));
204static int ti_init_tx_ring __P((struct ti_softc *));
205
206static int ti_64bitslot_war __P((struct ti_softc *));
207static int ti_chipinit __P((struct ti_softc *));
208static int ti_gibinit __P((struct ti_softc *));
209
210static device_method_t ti_methods[] = {
211 /* Device interface */
212 DEVMETHOD(device_probe, ti_probe),
213 DEVMETHOD(device_attach, ti_attach),
214 DEVMETHOD(device_detach, ti_detach),
215 DEVMETHOD(device_shutdown, ti_shutdown),
216 { 0, 0 }
217};
218
219static driver_t ti_driver = {
220 "ti",
221 ti_methods,
222 sizeof(struct ti_softc)
223};
224
225static devclass_t ti_devclass;
226
227DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
228
229/*
230 * Send an instruction or address to the EEPROM, check for ACK.
231 */
232static u_int32_t ti_eeprom_putbyte(sc, byte)
233 struct ti_softc *sc;
234 int byte;
235{
236 register int i, ack = 0;
237
238 /*
239 * Make sure we're in TX mode.
240 */
241 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
242
243 /*
244 * Feed in each bit and stobe the clock.
245 */
246 for (i = 0x80; i; i >>= 1) {
247 if (byte & i) {
248 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
249 } else {
250 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
251 }
252 DELAY(1);
253 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 DELAY(1);
255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 }
257
258 /*
259 * Turn off TX mode.
260 */
261 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
262
263 /*
264 * Check for ack.
265 */
266 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
267 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
268 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
269
270 return(ack);
271}
272
273/*
274 * Read a byte of data stored in the EEPROM at address 'addr.'
275 * We have to send two address bytes since the EEPROM can hold
276 * more than 256 bytes of data.
277 */
278static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
279 struct ti_softc *sc;
280 int addr;
281 u_int8_t *dest;
282{
283 register int i;
284 u_int8_t byte = 0;
285
286 EEPROM_START;
287
288 /*
289 * Send write control code to EEPROM.
290 */
291 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
292 printf("ti%d: failed to send write command, status: %x\n",
293 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296
297 /*
298 * Send first byte of address of byte we want to read.
299 */
300 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
301 printf("ti%d: failed to send address, status: %x\n",
302 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305 /*
306 * Send second byte address of byte we want to read.
307 */
308 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
309 printf("ti%d: failed to send address, status: %x\n",
310 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311 return(1);
312 }
313
314 EEPROM_STOP;
315 EEPROM_START;
316 /*
317 * Send read control code to EEPROM.
318 */
319 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
320 printf("ti%d: failed to send read command, status: %x\n",
321 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
322 return(1);
323 }
324
325 /*
326 * Start reading bits from EEPROM.
327 */
328 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
329 for (i = 0x80; i; i >>= 1) {
330 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
331 DELAY(1);
332 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
333 byte |= i;
334 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335 DELAY(1);
336 }
337
338 EEPROM_STOP;
339
340 /*
341 * No ACK generated for read, so just return byte.
342 */
343
344 *dest = byte;
345
346 return(0);
347}
348
349/*
350 * Read a sequence of bytes from the EEPROM.
351 */
352static int ti_read_eeprom(sc, dest, off, cnt)
353 struct ti_softc *sc;
354 caddr_t dest;
355 int off;
356 int cnt;
357{
358 int err = 0, i;
359 u_int8_t byte = 0;
360
361 for (i = 0; i < cnt; i++) {
362 err = ti_eeprom_getbyte(sc, off + i, &byte);
363 if (err)
364 break;
365 *(dest + i) = byte;
366 }
367
368 return(err ? 1 : 0);
369}
370
371/*
372 * NIC memory access function. Can be used to either clear a section
373 * of NIC local memory or (if buf is non-NULL) copy data into it.
374 */
375static void ti_mem(sc, addr, len, buf)
376 struct ti_softc *sc;
377 u_int32_t addr, len;
378 caddr_t buf;
379{
380 int segptr, segsize, cnt;
381 caddr_t ti_winbase, ptr;
382
383 segptr = addr;
384 cnt = len;
385#ifdef __i386__
386 ti_winbase = (caddr_t)(sc->ti_bhandle + TI_WINDOW);
387#endif
388#ifdef __alpha__
389 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
390#endif
391 ptr = buf;
392
393 while(cnt) {
394 if (cnt < TI_WINLEN)
395 segsize = cnt;
396 else
397 segsize = TI_WINLEN - (segptr % TI_WINLEN);
398 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
399 if (buf == NULL)
400 bzero((char *)ti_winbase + (segptr &
401 (TI_WINLEN - 1)), segsize);
402 else {
403 bcopy((char *)ptr, (char *)ti_winbase +
404 (segptr & (TI_WINLEN - 1)), segsize);
405 ptr += segsize;
406 }
407 segptr += segsize;
408 cnt -= segsize;
409 }
410
411 return;
412}
413
414/*
415 * Load firmware image into the NIC. Check that the firmware revision
416 * is acceptable and see if we want the firmware for the Tigon 1 or
417 * Tigon 2.
418 */
419static void ti_loadfw(sc)
420 struct ti_softc *sc;
421{
422 switch(sc->ti_hwrev) {
423 case TI_HWREV_TIGON:
424 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
425 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
426 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
427 printf("ti%d: firmware revision mismatch; want "
428 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
429 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
430 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
431 tigonFwReleaseMinor, tigonFwReleaseFix);
432 return;
433 }
434 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
435 (caddr_t)tigonFwText);
436 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
437 (caddr_t)tigonFwData);
438 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
439 (caddr_t)tigonFwRodata);
440 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
441 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
442 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
443 break;
444 case TI_HWREV_TIGON_II:
445 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
446 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
447 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
448 printf("ti%d: firmware revision mismatch; want "
449 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
450 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
451 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
452 tigon2FwReleaseMinor, tigon2FwReleaseFix);
453 return;
454 }
455 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
456 (caddr_t)tigon2FwText);
457 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
458 (caddr_t)tigon2FwData);
459 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
460 (caddr_t)tigon2FwRodata);
461 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
462 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
463 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
464 break;
465 default:
466 printf("ti%d: can't load firmware: unknown hardware rev\n",
467 sc->ti_unit);
468 break;
469 }
470
471 return;
472}
473
474/*
475 * Send the NIC a command via the command ring.
476 */
477static void ti_cmd(sc, cmd)
478 struct ti_softc *sc;
479 struct ti_cmd_desc *cmd;
480{
481 u_int32_t index;
482
483 if (sc->ti_rdata->ti_cmd_ring == NULL)
484 return;
485
486 index = sc->ti_cmd_saved_prodidx;
487 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
488 TI_INC(index, TI_CMD_RING_CNT);
489 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
490 sc->ti_cmd_saved_prodidx = index;
491
492 return;
493}
494
495/*
496 * Send the NIC an extended command. The 'len' parameter specifies the
497 * number of command slots to include after the initial command.
498 */
499static void ti_cmd_ext(sc, cmd, arg, len)
500 struct ti_softc *sc;
501 struct ti_cmd_desc *cmd;
502 caddr_t arg;
503 int len;
504{
505 u_int32_t index;
506 register int i;
507
508 if (sc->ti_rdata->ti_cmd_ring == NULL)
509 return;
510
511 index = sc->ti_cmd_saved_prodidx;
512 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
513 TI_INC(index, TI_CMD_RING_CNT);
514 for (i = 0; i < len; i++) {
515 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
516 *(u_int32_t *)(&arg[i * 4]));
517 TI_INC(index, TI_CMD_RING_CNT);
518 }
519 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
520 sc->ti_cmd_saved_prodidx = index;
521
522 return;
523}
524
525/*
526 * Handle events that have triggered interrupts.
527 */
528static void ti_handle_events(sc)
529 struct ti_softc *sc;
530{
531 struct ti_event_desc *e;
532
533 if (sc->ti_rdata->ti_event_ring == NULL)
534 return;
535
536 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
537 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
538 switch(e->ti_event) {
539 case TI_EV_LINKSTAT_CHANGED:
540 sc->ti_linkstat = e->ti_code;
541 if (e->ti_code == TI_EV_CODE_LINK_UP)
542 printf("ti%d: 10/100 link up\n", sc->ti_unit);
543 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
544 printf("ti%d: gigabit link up\n", sc->ti_unit);
545 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
546 printf("ti%d: link down\n", sc->ti_unit);
547 break;
548 case TI_EV_ERROR:
549 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
550 printf("ti%d: invalid command\n", sc->ti_unit);
551 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
552 printf("ti%d: unknown command\n", sc->ti_unit);
553 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
554 printf("ti%d: bad config data\n", sc->ti_unit);
555 break;
556 case TI_EV_FIRMWARE_UP:
557 ti_init2(sc);
558 break;
559 case TI_EV_STATS_UPDATED:
560 ti_stats_update(sc);
561 break;
562 case TI_EV_RESET_JUMBO_RING:
563 case TI_EV_MCAST_UPDATED:
564 /* Who cares. */
565 break;
566 default:
567 printf("ti%d: unknown event: %d\n",
568 sc->ti_unit, e->ti_event);
569 break;
570 }
571 /* Advance the consumer index. */
572 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
573 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
574 }
575
576 return;
577}
578
579/*
580 * Memory management for the jumbo receive ring is a pain in the
581 * butt. We need to allocate at least 9018 bytes of space per frame,
582 * _and_ it has to be contiguous (unless you use the extended
583 * jumbo descriptor format). Using malloc() all the time won't
584 * work: malloc() allocates memory in powers of two, which means we
585 * would end up wasting a considerable amount of space by allocating
586 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
587 * to do our own memory management.
588 *
589 * The driver needs to allocate a contiguous chunk of memory at boot
590 * time. We then chop this up ourselves into 9K pieces and use them
591 * as external mbuf storage.
592 *
593 * One issue here is how much memory to allocate. The jumbo ring has
594 * 256 slots in it, but at 9K per slot than can consume over 2MB of
595 * RAM. This is a bit much, especially considering we also need
596 * RAM for the standard ring and mini ring (on the Tigon 2). To
597 * save space, we only actually allocate enough memory for 64 slots
598 * by default, which works out to between 500 and 600K. This can
599 * be tuned by changing a #define in if_tireg.h.
600 */
601
602static int ti_alloc_jumbo_mem(sc)
603 struct ti_softc *sc;
604{
605 caddr_t ptr;
606 register int i;
607 struct ti_jpool_entry *entry;
608
609 /* Grab a big chunk o' storage. */
610 sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
611 M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
612
613 if (sc->ti_cdata.ti_jumbo_buf == NULL) {
614 printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
615 return(ENOBUFS);
616 }
617
618 SLIST_INIT(&sc->ti_jfree_listhead);
619 SLIST_INIT(&sc->ti_jinuse_listhead);
620
621 /*
622 * Now divide it up into 9K pieces and save the addresses
623 * in an array. Note that we play an evil trick here by using
624 * the first few bytes in the buffer to hold the the address
625 * of the softc structure for this interface. This is because
626 * ti_jfree() needs it, but it is called by the mbuf management
627 * code which will not pass it to us explicitly.
628 */
629 ptr = sc->ti_cdata.ti_jumbo_buf;
630 for (i = 0; i < TI_JSLOTS; i++) {
631 u_int64_t **aptr;
632 aptr = (u_int64_t **)ptr;
633 aptr[0] = (u_int64_t *)sc;
634 ptr += sizeof(u_int64_t);
635 sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
636 sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
637 ptr += (TI_JLEN - sizeof(u_int64_t));
638 entry = malloc(sizeof(struct ti_jpool_entry),
639 M_DEVBUF, M_NOWAIT);
640 if (entry == NULL) {
641 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
642 sc->ti_cdata.ti_jumbo_buf = NULL;
643 printf("ti%d: no memory for jumbo "
644 "buffer queue!\n", sc->ti_unit);
645 return(ENOBUFS);
646 }
647 entry->slot = i;
648 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
649 }
650
651 return(0);
652}
653
654/*
655 * Allocate a jumbo buffer.
656 */
657static void *ti_jalloc(sc)
658 struct ti_softc *sc;
659{
660 struct ti_jpool_entry *entry;
661
662 entry = SLIST_FIRST(&sc->ti_jfree_listhead);
663
664 if (entry == NULL) {
665 printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
666 return(NULL);
667 }
668
669 SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
670 SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
671 sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
672 return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
673}
674
675/*
676 * Adjust usage count on a jumbo buffer. In general this doesn't
677 * get used much because our jumbo buffers don't get passed around
678 * too much, but it's implemented for correctness.
679 */
680static void ti_jref(buf, size)
681 caddr_t buf;
682 u_int size;
683{
684 struct ti_softc *sc;
685 u_int64_t **aptr;
686 register int i;
687
688 /* Extract the softc struct pointer. */
689 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
690 sc = (struct ti_softc *)(aptr[0]);
691
692 if (sc == NULL)
693 panic("ti_jref: can't find softc pointer!");
694
695 if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
696 panic("ti_jref: adjusting refcount of buf of wrong size!");
697
698 /* calculate the slot this buffer belongs to */
699
700 i = ((vm_offset_t)aptr
701 - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
702
703 if ((i < 0) || (i >= TI_JSLOTS))
704 panic("ti_jref: asked to reference buffer "
705 "that we don't manage!");
706 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
707 panic("ti_jref: buffer already free!");
708 else
709 sc->ti_cdata.ti_jslots[i].ti_inuse++;
710
711 return;
712}
713
714/*
715 * Release a jumbo buffer.
716 */
717static void ti_jfree(buf, size)
718 caddr_t buf;
719 u_int size;
720{
721 struct ti_softc *sc;
722 u_int64_t **aptr;
723 int i;
724 struct ti_jpool_entry *entry;
725
726 /* Extract the softc struct pointer. */
727 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
728 sc = (struct ti_softc *)(aptr[0]);
729
730 if (sc == NULL)
731 panic("ti_jfree: can't find softc pointer!");
732
733 if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
734 panic("ti_jfree: freeing buffer of wrong size!");
735
736 /* calculate the slot this buffer belongs to */
737
738 i = ((vm_offset_t)aptr
739 - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
740
741 if ((i < 0) || (i >= TI_JSLOTS))
742 panic("ti_jfree: asked to free buffer that we don't manage!");
743 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
744 panic("ti_jfree: buffer already free!");
745 else {
746 sc->ti_cdata.ti_jslots[i].ti_inuse--;
747 if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
748 entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
749 if (entry == NULL)
750 panic("ti_jfree: buffer not in use!");
751 entry->slot = i;
752 SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
753 jpool_entries);
754 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
755 entry, jpool_entries);
756 }
757 }
758
759 return;
760}
761
762
763/*
764 * Intialize a standard receive ring descriptor.
765 */
766static int ti_newbuf_std(sc, i, m)
767 struct ti_softc *sc;
768 int i;
769 struct mbuf *m;
770{
771 struct mbuf *m_new = NULL;
772 struct ti_rx_desc *r;
773
774 if (m != NULL) {
775 m_new = m;
776 } else {
777 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
778 if (m_new == NULL) {
779 printf("ti%d: mbuf allocation failed "
780 "-- packet dropped!\n", sc->ti_unit);
781 return(ENOBUFS);
782 }
783
784 MCLGET(m_new, M_DONTWAIT);
785 if (!(m_new->m_flags & M_EXT)) {
786 printf("ti%d: cluster allocation failed "
787 "-- packet dropped!\n", sc->ti_unit);
788 m_freem(m_new);
789 return(ENOBUFS);
790 }
791 }
792
793 m_adj(m_new, ETHER_ALIGN);
794 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
795 r = &sc->ti_rdata->ti_rx_std_ring[i];
796 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
797 r->ti_type = TI_BDTYPE_RECV_BD;
798#ifdef TI_CSUM_OFFLOAD
799 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
800#else
801 r->ti_flags = 0;
802#endif
803 r->ti_len = MCLBYTES - ETHER_ALIGN;
804 r->ti_idx = i;
805
806 return(0);
807}
808
809/*
810 * Intialize a mini receive ring descriptor. This only applies to
811 * the Tigon 2.
812 */
813static int ti_newbuf_mini(sc, i, m)
814 struct ti_softc *sc;
815 int i;
816 struct mbuf *m;
817{
818 struct mbuf *m_new = NULL;
819 struct ti_rx_desc *r;
820
821 if (m != NULL) {
822 m_new = m;
823 } else {
824 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
825 if (m_new == NULL) {
826 printf("ti%d: mbuf allocation failed "
827 "-- packet dropped!\n", sc->ti_unit);
828 return(ENOBUFS);
829 }
830 }
831 m_adj(m_new, ETHER_ALIGN);
832 r = &sc->ti_rdata->ti_rx_mini_ring[i];
833 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
834 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
835 r->ti_type = TI_BDTYPE_RECV_BD;
836 r->ti_flags = TI_BDFLAG_MINI_RING;
837#ifdef TI_CSUM_OFFLOAD
838 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
839#endif
840 r->ti_len = MHLEN - ETHER_ALIGN;
841 r->ti_idx = i;
842
843 return(0);
844}
845
846/*
847 * Initialize a jumbo receive ring descriptor. This allocates
848 * a jumbo buffer from the pool managed internally by the driver.
849 */
850static int ti_newbuf_jumbo(sc, i, m)
851 struct ti_softc *sc;
852 int i;
853 struct mbuf *m;
854{
855 struct mbuf *m_new = NULL;
856 struct ti_rx_desc *r;
857
858 if (m != NULL) {
859 m_new = m;
860 } else {
861 caddr_t *buf = NULL;
862
863 /* Allocate the mbuf. */
864 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
865 if (m_new == NULL) {
866 printf("ti%d: mbuf allocation failed "
867 "-- packet dropped!\n", sc->ti_unit);
868 return(ENOBUFS);
869 }
870
871 /* Allocate the jumbo buffer */
872 buf = ti_jalloc(sc);
873 if (buf == NULL) {
874 m_freem(m_new);
875 printf("ti%d: jumbo allocation failed "
876 "-- packet dropped!\n", sc->ti_unit);
877 return(ENOBUFS);
878 }
879
880 /* Attach the buffer to the mbuf. */
881 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
882 m_new->m_data += ETHER_ALIGN;
883 m_new->m_flags |= M_EXT;
884 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
885 m_new->m_ext.ext_free = ti_jfree;
886 m_new->m_ext.ext_ref = ti_jref;
887 }
888
889 /* Set up the descriptor. */
890 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
891 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
892 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
893 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
894 r->ti_flags = TI_BDFLAG_JUMBO_RING;
895#ifdef TI_CSUM_OFFLOAD
896 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
897#endif
898 r->ti_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
899 r->ti_idx = i;
900
901 return(0);
902}
903
904/*
905 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
906 * that's 1MB or memory, which is a lot. For now, we fill only the first
907 * 256 ring entries and hope that our CPU is fast enough to keep up with
908 * the NIC.
909 */
910static int ti_init_rx_ring_std(sc)
911 struct ti_softc *sc;
912{
913 register int i;
914 struct ti_cmd_desc cmd;
915
916 for (i = 0; i < TI_SSLOTS; i++) {
917 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
918 return(ENOBUFS);
919 };
920
921 TI_UPDATE_STDPROD(sc, i - 1);
922 sc->ti_std = i - 1;
923
924 return(0);
925}
926
927static void ti_free_rx_ring_std(sc)
928 struct ti_softc *sc;
929{
930 register int i;
931
932 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
933 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
934 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
935 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
936 }
937 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
938 sizeof(struct ti_rx_desc));
939 }
940
941 return;
942}
943
944static int ti_init_rx_ring_jumbo(sc)
945 struct ti_softc *sc;
946{
947 register int i;
948 struct ti_cmd_desc cmd;
949
950 for (i = 0; i < (TI_JSLOTS - 20); i++) {
951 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
952 return(ENOBUFS);
953 };
954
955 TI_UPDATE_JUMBOPROD(sc, i - 1);
956 sc->ti_jumbo = i - 1;
957
958 return(0);
959}
960
961static void ti_free_rx_ring_jumbo(sc)
962 struct ti_softc *sc;
963{
964 register int i;
965
966 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
967 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
968 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
969 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
970 }
971 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
972 sizeof(struct ti_rx_desc));
973 }
974
975 return;
976}
977
978static int ti_init_rx_ring_mini(sc)
979 struct ti_softc *sc;
980{
981 register int i;
982
983 for (i = 0; i < TI_MSLOTS; i++) {
984 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
985 return(ENOBUFS);
986 };
987
988 TI_UPDATE_MINIPROD(sc, i - 1);
989 sc->ti_mini = i - 1;
990
991 return(0);
992}
993
994static void ti_free_rx_ring_mini(sc)
995 struct ti_softc *sc;
996{
997 register int i;
998
999 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1000 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1001 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1002 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1003 }
1004 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1005 sizeof(struct ti_rx_desc));
1006 }
1007
1008 return;
1009}
1010
1011static void ti_free_tx_ring(sc)
1012 struct ti_softc *sc;
1013{
1014 register int i;
1015
1016 if (sc->ti_rdata->ti_tx_ring == NULL)
1017 return;
1018
1019 for (i = 0; i < TI_TX_RING_CNT; i++) {
1020 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1021 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1022 sc->ti_cdata.ti_tx_chain[i] = NULL;
1023 }
1024 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1025 sizeof(struct ti_tx_desc));
1026 }
1027
1028 return;
1029}
1030
1031static int ti_init_tx_ring(sc)
1032 struct ti_softc *sc;
1033{
1034 sc->ti_txcnt = 0;
1035 sc->ti_tx_saved_considx = 0;
1036 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1037 return(0);
1038}
1039
1040/*
1041 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1042 * but we have to support the old way too so that Tigon 1 cards will
1043 * work.
1044 */
1045void ti_add_mcast(sc, addr)
1046 struct ti_softc *sc;
1047 struct ether_addr *addr;
1048{
1049 struct ti_cmd_desc cmd;
1050 u_int16_t *m;
1051 u_int32_t ext[2] = {0, 0};
1052
1053 m = (u_int16_t *)&addr->octet[0];
1054
1055 switch(sc->ti_hwrev) {
1056 case TI_HWREV_TIGON:
1057 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1058 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1059 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1060 break;
1061 case TI_HWREV_TIGON_II:
1062 ext[0] = htons(m[0]);
1063 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1064 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1065 break;
1066 default:
1067 printf("ti%d: unknown hwrev\n", sc->ti_unit);
1068 break;
1069 }
1070
1071 return;
1072}
1073
1074void ti_del_mcast(sc, addr)
1075 struct ti_softc *sc;
1076 struct ether_addr *addr;
1077{
1078 struct ti_cmd_desc cmd;
1079 u_int16_t *m;
1080 u_int32_t ext[2] = {0, 0};
1081
1082 m = (u_int16_t *)&addr->octet[0];
1083
1084 switch(sc->ti_hwrev) {
1085 case TI_HWREV_TIGON:
1086 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1089 break;
1090 case TI_HWREV_TIGON_II:
1091 ext[0] = htons(m[0]);
1092 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1094 break;
1095 default:
1096 printf("ti%d: unknown hwrev\n", sc->ti_unit);
1097 break;
1098 }
1099
1100 return;
1101}
1102
1103/*
1104 * Configure the Tigon's multicast address filter.
1105 *
1106 * The actual multicast table management is a bit of a pain, thanks to
1107 * slight brain damage on the part of both Alteon and us. With our
1108 * multicast code, we are only alerted when the multicast address table
1109 * changes and at that point we only have the current list of addresses:
1110 * we only know the current state, not the previous state, so we don't
1111 * actually know what addresses were removed or added. The firmware has
1112 * state, but we can't get our grubby mits on it, and there is no 'delete
1113 * all multicast addresses' command. Hence, we have to maintain our own
1114 * state so we know what addresses have been programmed into the NIC at
1115 * any given time.
1116 */
1117static void ti_setmulti(sc)
1118 struct ti_softc *sc;
1119{
1120 struct ifnet *ifp;
1121 struct ifmultiaddr *ifma;
1122 struct ti_cmd_desc cmd;
1123 struct ti_mc_entry *mc;
1124 u_int32_t intrs;
1125
1126 ifp = &sc->arpcom.ac_if;
1127
1128 if (ifp->if_flags & IFF_ALLMULTI) {
1129 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1130 return;
1131 } else {
1132 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1133 }
1134
1135 /* Disable interrupts. */
1136 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1137 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1138
1139 /* First, zot all the existing filters. */
1140 while (sc->ti_mc_listhead.slh_first != NULL) {
1141 mc = sc->ti_mc_listhead.slh_first;
1142 ti_del_mcast(sc, &mc->mc_addr);
1143 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1144 free(mc, M_DEVBUF);
1145 }
1146
1147 /* Now program new ones. */
1148 for (ifma = ifp->if_multiaddrs.lh_first;
1149 ifma != NULL; ifma = ifma->ifma_link.le_next) {
1150 if (ifma->ifma_addr->sa_family != AF_LINK)
1151 continue;
1152 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1153 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1155 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1156 ti_add_mcast(sc, &mc->mc_addr);
1157 }
1158
1159 /* Re-enable interrupts. */
1160 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1161
1162 return;
1163}
1164
1165/*
1166 * Check to see if the BIOS has configured us for a 64 bit slot when
1167 * we aren't actually in one. If we detect this condition, we can work
1168 * around it on the Tigon 2 by setting a bit in the PCI state register,
1169 * but for the Tigon 1 we must give up and abort the interface attach.
1170 */
1171static int ti_64bitslot_war(sc)
1172 struct ti_softc *sc;
1173{
1174 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1175 CSR_WRITE_4(sc, 0x600, 0);
1176 CSR_WRITE_4(sc, 0x604, 0);
1177 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1178 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1179 if (sc->ti_hwrev == TI_HWREV_TIGON)
1180 return(EINVAL);
1181 else {
1182 TI_SETBIT(sc, TI_PCI_STATE,
1183 TI_PCISTATE_32BIT_BUS);
1184 return(0);
1185 }
1186 }
1187 }
1188
1189 return(0);
1190}
1191
1192/*
1193 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1194 * self-test results.
1195 */
1196static int ti_chipinit(sc)
1197 struct ti_softc *sc;
1198{
1199 u_int32_t cacheline;
1200 u_int32_t pci_writemax = 0;
1201
1202 /* Initialize link to down state. */
1203 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1204
1205 /* Set endianness before we access any non-PCI registers. */
1206#if BYTE_ORDER == BIG_ENDIAN
1207 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1208 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1209#else
1210 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1211 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1212#endif
1213
1214 /* Check the ROM failed bit to see if self-tests passed. */
1215 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1216 printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1217 return(ENODEV);
1218 }
1219
1220 /* Halt the CPU. */
1221 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1222
1223 /* Figure out the hardware revision. */
1224 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1225 case TI_REV_TIGON_I:
1226 sc->ti_hwrev = TI_HWREV_TIGON;
1227 break;
1228 case TI_REV_TIGON_II:
1229 sc->ti_hwrev = TI_HWREV_TIGON_II;
1230 break;
1231 default:
1232 printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1233 return(ENODEV);
1234 }
1235
1236 /* Do special setup for Tigon 2. */
1237 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1238 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1240 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1241 }
1242
1243 /* Set up the PCI state register. */
1244 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1245 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1246 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1247 }
1248
1249 /* Clear the read/write max DMA parameters. */
1250 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1251 TI_PCISTATE_READ_MAXDMA));
1252
1253 /* Get cache line size. */
1254 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1255
1256 /*
1257 * If the system has set enabled the PCI memory write
1258 * and invalidate command in the command register, set
1259 * the write max parameter accordingly. This is necessary
1260 * to use MWI with the Tigon 2.
1261 */
1262 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1263 switch(cacheline) {
1264 case 1:
1265 case 4:
1266 case 8:
1267 case 16:
1268 case 32:
1269 case 64:
1270 break;
1271 default:
1272 /* Disable PCI memory write and invalidate. */
1273 if (bootverbose)
1274 printf("ti%d: cache line size %d not "
1275 "supported; disabling PCI MWI\n",
1276 sc->ti_unit, cacheline);
1277 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1278 TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1279 break;
1280 }
1281 }
1282
1283#ifdef __brokenalpha__
1284 /*
1285 * From the Alteon sample driver:
1286 * Must insure that we do not cross an 8K (bytes) boundary
1287 * for DMA reads. Our highest limit is 1K bytes. This is a
1288 * restriction on some ALPHA platforms with early revision
1289 * 21174 PCI chipsets, such as the AlphaPC 164lx
1290 */
1291 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1292#else
1293 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1294#endif
1295
1296 /* This sets the min dma param all the way up (0xff). */
1297 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1298
1299 /* Configure DMA variables. */
1300#if BYTE_ORDER == BIG_ENDIAN
1301 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1302 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1303 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1304 TI_OPMODE_DONT_FRAG_JUMBO);
1305#else
1306 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1307 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1308 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1309#endif
1310
1311 /*
1312 * Only allow 1 DMA channel to be active at a time.
1313 * I don't think this is a good idea, but without it
1314 * the firmware racks up lots of nicDmaReadRingFull
1315 * errors.
1316 */
1317#ifndef TI_CSUM_OFFLOAD
1318 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1319#endif
1320
1321 /* Recommended settings from Tigon manual. */
1322 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1323 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1324
1325 if (ti_64bitslot_war(sc)) {
1326 printf("ti%d: bios thinks we're in a 64 bit slot, "
1327 "but we aren't", sc->ti_unit);
1328 return(EINVAL);
1329 }
1330
1331 return(0);
1332}
1333
1334/*
1335 * Initialize the general information block and firmware, and
1336 * start the CPU(s) running.
1337 */
1338static int ti_gibinit(sc)
1339 struct ti_softc *sc;
1340{
1341 struct ti_rcb *rcb;
1342 int i;
1343 struct ifnet *ifp;
1344
1345 ifp = &sc->arpcom.ac_if;
1346
1347 /* Disable interrupts for now. */
1348 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1349
1350 /* Tell the chip where to find the general information block. */
1351 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1352 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1353
1354 /* Load the firmware into SRAM. */
1355 ti_loadfw(sc);
1356
1357 /* Set up the contents of the general info and ring control blocks. */
1358
1359 /* Set up the event ring and producer pointer. */
1360 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1361
1362 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1363 rcb->ti_flags = 0;
1364 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1365 vtophys(&sc->ti_ev_prodidx);
1366 sc->ti_ev_prodidx.ti_idx = 0;
1367 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1368 sc->ti_ev_saved_considx = 0;
1369
1370 /* Set up the command ring and producer mailbox. */
1371 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1372
1373#ifdef __i386__
1374 sc->ti_rdata->ti_cmd_ring =
1375 (struct ti_cmd_desc *)(sc->ti_bhandle + TI_GCR_CMDRING);
1376#endif
1377#ifdef __alpha__
1378 sc->ti_rdata->ti_cmd_ring =
1379 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1380#endif
1381 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1382 rcb->ti_flags = 0;
1383 rcb->ti_max_len = 0;
1384 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1385 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1386 }
1387 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1388 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1389 sc->ti_cmd_saved_prodidx = 0;
1390
1391 /*
1392 * Assign the address of the stats refresh buffer.
1393 * We re-use the current stats buffer for this to
1394 * conserve memory.
1395 */
1396 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1397 vtophys(&sc->ti_rdata->ti_info.ti_stats);
1398
1399 /* Set up the standard receive ring. */
1400 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1401 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1402 rcb->ti_max_len = TI_FRAMELEN;
1403 rcb->ti_flags = 0;
1404#ifdef TI_CSUM_OFFLOAD
1405 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1406#endif
1407#if NVLAN > 0
1408 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1409#endif
1410
1411 /* Set up the jumbo receive ring. */
1412 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1413 TI_HOSTADDR(rcb->ti_hostaddr) =
1414 vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1415 rcb->ti_max_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
1416 rcb->ti_flags = 0;
1417#ifdef TI_CSUM_OFFLOAD
1418 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1419#endif
1420#if NVLAN > 0
1421 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1422#endif
1423
1424 /*
1425 * Set up the mini ring. Only activated on the
1426 * Tigon 2 but the slot in the config block is
1427 * still there on the Tigon 1.
1428 */
1429 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1430 TI_HOSTADDR(rcb->ti_hostaddr) =
1431 vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1432 rcb->ti_max_len = MHLEN;
1433 if (sc->ti_hwrev == TI_HWREV_TIGON)
1434 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1435 else
1436 rcb->ti_flags = 0;
1437#ifdef TI_CSUM_OFFLOAD
1438 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1439#endif
1440#if NVLAN > 0
1441 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1442#endif
1443
1444 /*
1445 * Set up the receive return ring.
1446 */
1447 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1448 TI_HOSTADDR(rcb->ti_hostaddr) =
1449 vtophys(&sc->ti_rdata->ti_rx_return_ring);
1450 rcb->ti_flags = 0;
1451 rcb->ti_max_len = TI_RETURN_RING_CNT;
1452 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1453 vtophys(&sc->ti_return_prodidx);
1454
1455 /*
1456 * Set up the tx ring. Note: for the Tigon 2, we have the option
1457 * of putting the transmit ring in the host's address space and
1458 * letting the chip DMA it instead of leaving the ring in the NIC's
1459 * memory and accessing it through the shared memory region. We
1460 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1461 * so we have to revert to the shared memory scheme if we detect
1462 * a Tigon 1 chip.
1463 */
1464 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1465 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1466#ifdef __i386__
1467 sc->ti_rdata->ti_tx_ring_nic =
1468 (struct ti_tx_desc *)(sc->ti_bhandle + TI_WINDOW);
1469#endif
1470#ifdef __alpha__
1471 sc->ti_rdata->ti_tx_ring_nic =
1472 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1473#endif
1474 }
1475 bzero((char *)sc->ti_rdata->ti_tx_ring,
1476 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1477 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1478 if (sc->ti_hwrev == TI_HWREV_TIGON)
1479 rcb->ti_flags = 0;
1480 else
1481 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1482#if NVLAN > 0
1483 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1484#endif
1485 rcb->ti_max_len = TI_TX_RING_CNT;
1486 if (sc->ti_hwrev == TI_HWREV_TIGON)
1487 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1488 else
1489 TI_HOSTADDR(rcb->ti_hostaddr) =
1490 vtophys(&sc->ti_rdata->ti_tx_ring);
1491 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1492 vtophys(&sc->ti_tx_considx);
1493
1494 /* Set up tuneables */
1495 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1496 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1497 (sc->ti_rx_coal_ticks / 10));
1498 else
1499 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1500 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1501 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1502 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1503 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1504 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1505
1506 /* Turn interrupts on. */
1507 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1508 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1509
1510 /* Start CPU. */
1511 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1512
1513 return(0);
1514}
1515
1516/*
1517 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1518 * against our list and return its name if we find a match.
1519 */
1520static int ti_probe(dev)
1521 device_t dev;
1522{
1523 struct ti_type *t;
1524
1525 t = ti_devs;
1526
1527 while(t->ti_name != NULL) {
1528 if ((pci_get_vendor(dev) == t->ti_vid) &&
1529 (pci_get_device(dev) == t->ti_did)) {
1530 device_set_desc(dev, t->ti_name);
1531 return(0);
1532 }
1533 t++;
1534 }
1535
1536 return(ENXIO);
1537}
1538
1539static int ti_attach(dev)
1540 device_t dev;
1541{
1542 int s;
1543 u_int32_t command;
1544 struct ifnet *ifp;
1545 struct ti_softc *sc;
1546 int unit, error = 0, rid;
1547
1548 s = splimp();
1549
1550 sc = device_get_softc(dev);
1551 unit = device_get_unit(dev);
1552 bzero(sc, sizeof(struct ti_softc));
1553
1554 /*
1555 * Map control/status registers.
1556 */
1557 command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1558 command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1559 pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1560 command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1561
1562 if (!(command & PCIM_CMD_MEMEN)) {
1563 printf("ti%d: failed to enable memory mapping!\n", unit);
1564 error = ENXIO;
1565 goto fail;
1566 }
1567
1568 rid = TI_PCI_LOMEM;
1569 sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1570 0, ~0, 1, RF_ACTIVE);
1571
1572 if (sc->ti_res == NULL) {
1573 printf ("ti%d: couldn't map memory\n", unit);
1574 error = ENXIO;
1575 goto fail;
1576 }
1577
135#endif
136
137/*
138 * Various supported device vendors/types and their names.
139 */
140
141static struct ti_type ti_devs[] = {
142 { ALT_VENDORID, ALT_DEVICEID_ACENIC,
143 "Alteon AceNIC Gigabit Ethernet" },
144 { TC_VENDORID, TC_DEVICEID_3C985,
145 "3Com 3c985-SX Gigabit Ethernet" },
146 { NG_VENDORID, NG_DEVICEID_GA620,
147 "Netgear GA620 Gigabit Ethernet" },
148 { SGI_VENDORID, SGI_DEVICEID_TIGON,
149 "Silicon Graphics Gigabit Ethernet" },
150 { 0, 0, NULL }
151};
152
153static int ti_probe __P((device_t));
154static int ti_attach __P((device_t));
155static int ti_detach __P((device_t));
156static void ti_txeof __P((struct ti_softc *));
157static void ti_rxeof __P((struct ti_softc *));
158
159static void ti_stats_update __P((struct ti_softc *));
160static int ti_encap __P((struct ti_softc *, struct mbuf *,
161 u_int32_t *));
162
163static void ti_intr __P((void *));
164static void ti_start __P((struct ifnet *));
165static int ti_ioctl __P((struct ifnet *, u_long, caddr_t));
166static void ti_init __P((void *));
167static void ti_init2 __P((struct ti_softc *));
168static void ti_stop __P((struct ti_softc *));
169static void ti_watchdog __P((struct ifnet *));
170static void ti_shutdown __P((device_t));
171static int ti_ifmedia_upd __P((struct ifnet *));
172static void ti_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
173
174static u_int32_t ti_eeprom_putbyte __P((struct ti_softc *, int));
175static u_int8_t ti_eeprom_getbyte __P((struct ti_softc *,
176 int, u_int8_t *));
177static int ti_read_eeprom __P((struct ti_softc *, caddr_t, int, int));
178
179static void ti_add_mcast __P((struct ti_softc *, struct ether_addr *));
180static void ti_del_mcast __P((struct ti_softc *, struct ether_addr *));
181static void ti_setmulti __P((struct ti_softc *));
182
183static void ti_mem __P((struct ti_softc *, u_int32_t,
184 u_int32_t, caddr_t));
185static void ti_loadfw __P((struct ti_softc *));
186static void ti_cmd __P((struct ti_softc *, struct ti_cmd_desc *));
187static void ti_cmd_ext __P((struct ti_softc *, struct ti_cmd_desc *,
188 caddr_t, int));
189static void ti_handle_events __P((struct ti_softc *));
190static int ti_alloc_jumbo_mem __P((struct ti_softc *));
191static void *ti_jalloc __P((struct ti_softc *));
192static void ti_jfree __P((caddr_t, u_int));
193static void ti_jref __P((caddr_t, u_int));
194static int ti_newbuf_std __P((struct ti_softc *, int, struct mbuf *));
195static int ti_newbuf_mini __P((struct ti_softc *, int, struct mbuf *));
196static int ti_newbuf_jumbo __P((struct ti_softc *, int, struct mbuf *));
197static int ti_init_rx_ring_std __P((struct ti_softc *));
198static void ti_free_rx_ring_std __P((struct ti_softc *));
199static int ti_init_rx_ring_jumbo __P((struct ti_softc *));
200static void ti_free_rx_ring_jumbo __P((struct ti_softc *));
201static int ti_init_rx_ring_mini __P((struct ti_softc *));
202static void ti_free_rx_ring_mini __P((struct ti_softc *));
203static void ti_free_tx_ring __P((struct ti_softc *));
204static int ti_init_tx_ring __P((struct ti_softc *));
205
206static int ti_64bitslot_war __P((struct ti_softc *));
207static int ti_chipinit __P((struct ti_softc *));
208static int ti_gibinit __P((struct ti_softc *));
209
210static device_method_t ti_methods[] = {
211 /* Device interface */
212 DEVMETHOD(device_probe, ti_probe),
213 DEVMETHOD(device_attach, ti_attach),
214 DEVMETHOD(device_detach, ti_detach),
215 DEVMETHOD(device_shutdown, ti_shutdown),
216 { 0, 0 }
217};
218
219static driver_t ti_driver = {
220 "ti",
221 ti_methods,
222 sizeof(struct ti_softc)
223};
224
225static devclass_t ti_devclass;
226
227DRIVER_MODULE(ti, pci, ti_driver, ti_devclass, 0, 0);
228
229/*
230 * Send an instruction or address to the EEPROM, check for ACK.
231 */
232static u_int32_t ti_eeprom_putbyte(sc, byte)
233 struct ti_softc *sc;
234 int byte;
235{
236 register int i, ack = 0;
237
238 /*
239 * Make sure we're in TX mode.
240 */
241 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
242
243 /*
244 * Feed in each bit and stobe the clock.
245 */
246 for (i = 0x80; i; i >>= 1) {
247 if (byte & i) {
248 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
249 } else {
250 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
251 }
252 DELAY(1);
253 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
254 DELAY(1);
255 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
256 }
257
258 /*
259 * Turn off TX mode.
260 */
261 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
262
263 /*
264 * Check for ack.
265 */
266 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
267 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
268 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
269
270 return(ack);
271}
272
273/*
274 * Read a byte of data stored in the EEPROM at address 'addr.'
275 * We have to send two address bytes since the EEPROM can hold
276 * more than 256 bytes of data.
277 */
278static u_int8_t ti_eeprom_getbyte(sc, addr, dest)
279 struct ti_softc *sc;
280 int addr;
281 u_int8_t *dest;
282{
283 register int i;
284 u_int8_t byte = 0;
285
286 EEPROM_START;
287
288 /*
289 * Send write control code to EEPROM.
290 */
291 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
292 printf("ti%d: failed to send write command, status: %x\n",
293 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
294 return(1);
295 }
296
297 /*
298 * Send first byte of address of byte we want to read.
299 */
300 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
301 printf("ti%d: failed to send address, status: %x\n",
302 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
303 return(1);
304 }
305 /*
306 * Send second byte address of byte we want to read.
307 */
308 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
309 printf("ti%d: failed to send address, status: %x\n",
310 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
311 return(1);
312 }
313
314 EEPROM_STOP;
315 EEPROM_START;
316 /*
317 * Send read control code to EEPROM.
318 */
319 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
320 printf("ti%d: failed to send read command, status: %x\n",
321 sc->ti_unit, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
322 return(1);
323 }
324
325 /*
326 * Start reading bits from EEPROM.
327 */
328 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
329 for (i = 0x80; i; i >>= 1) {
330 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
331 DELAY(1);
332 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
333 byte |= i;
334 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
335 DELAY(1);
336 }
337
338 EEPROM_STOP;
339
340 /*
341 * No ACK generated for read, so just return byte.
342 */
343
344 *dest = byte;
345
346 return(0);
347}
348
349/*
350 * Read a sequence of bytes from the EEPROM.
351 */
352static int ti_read_eeprom(sc, dest, off, cnt)
353 struct ti_softc *sc;
354 caddr_t dest;
355 int off;
356 int cnt;
357{
358 int err = 0, i;
359 u_int8_t byte = 0;
360
361 for (i = 0; i < cnt; i++) {
362 err = ti_eeprom_getbyte(sc, off + i, &byte);
363 if (err)
364 break;
365 *(dest + i) = byte;
366 }
367
368 return(err ? 1 : 0);
369}
370
371/*
372 * NIC memory access function. Can be used to either clear a section
373 * of NIC local memory or (if buf is non-NULL) copy data into it.
374 */
375static void ti_mem(sc, addr, len, buf)
376 struct ti_softc *sc;
377 u_int32_t addr, len;
378 caddr_t buf;
379{
380 int segptr, segsize, cnt;
381 caddr_t ti_winbase, ptr;
382
383 segptr = addr;
384 cnt = len;
385#ifdef __i386__
386 ti_winbase = (caddr_t)(sc->ti_bhandle + TI_WINDOW);
387#endif
388#ifdef __alpha__
389 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
390#endif
391 ptr = buf;
392
393 while(cnt) {
394 if (cnt < TI_WINLEN)
395 segsize = cnt;
396 else
397 segsize = TI_WINLEN - (segptr % TI_WINLEN);
398 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
399 if (buf == NULL)
400 bzero((char *)ti_winbase + (segptr &
401 (TI_WINLEN - 1)), segsize);
402 else {
403 bcopy((char *)ptr, (char *)ti_winbase +
404 (segptr & (TI_WINLEN - 1)), segsize);
405 ptr += segsize;
406 }
407 segptr += segsize;
408 cnt -= segsize;
409 }
410
411 return;
412}
413
414/*
415 * Load firmware image into the NIC. Check that the firmware revision
416 * is acceptable and see if we want the firmware for the Tigon 1 or
417 * Tigon 2.
418 */
419static void ti_loadfw(sc)
420 struct ti_softc *sc;
421{
422 switch(sc->ti_hwrev) {
423 case TI_HWREV_TIGON:
424 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
425 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
426 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
427 printf("ti%d: firmware revision mismatch; want "
428 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
429 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
430 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
431 tigonFwReleaseMinor, tigonFwReleaseFix);
432 return;
433 }
434 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
435 (caddr_t)tigonFwText);
436 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
437 (caddr_t)tigonFwData);
438 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
439 (caddr_t)tigonFwRodata);
440 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
441 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
442 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
443 break;
444 case TI_HWREV_TIGON_II:
445 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
446 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
447 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
448 printf("ti%d: firmware revision mismatch; want "
449 "%d.%d.%d, got %d.%d.%d\n", sc->ti_unit,
450 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
451 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
452 tigon2FwReleaseMinor, tigon2FwReleaseFix);
453 return;
454 }
455 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
456 (caddr_t)tigon2FwText);
457 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
458 (caddr_t)tigon2FwData);
459 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
460 (caddr_t)tigon2FwRodata);
461 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
462 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
463 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
464 break;
465 default:
466 printf("ti%d: can't load firmware: unknown hardware rev\n",
467 sc->ti_unit);
468 break;
469 }
470
471 return;
472}
473
474/*
475 * Send the NIC a command via the command ring.
476 */
477static void ti_cmd(sc, cmd)
478 struct ti_softc *sc;
479 struct ti_cmd_desc *cmd;
480{
481 u_int32_t index;
482
483 if (sc->ti_rdata->ti_cmd_ring == NULL)
484 return;
485
486 index = sc->ti_cmd_saved_prodidx;
487 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
488 TI_INC(index, TI_CMD_RING_CNT);
489 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
490 sc->ti_cmd_saved_prodidx = index;
491
492 return;
493}
494
495/*
496 * Send the NIC an extended command. The 'len' parameter specifies the
497 * number of command slots to include after the initial command.
498 */
499static void ti_cmd_ext(sc, cmd, arg, len)
500 struct ti_softc *sc;
501 struct ti_cmd_desc *cmd;
502 caddr_t arg;
503 int len;
504{
505 u_int32_t index;
506 register int i;
507
508 if (sc->ti_rdata->ti_cmd_ring == NULL)
509 return;
510
511 index = sc->ti_cmd_saved_prodidx;
512 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
513 TI_INC(index, TI_CMD_RING_CNT);
514 for (i = 0; i < len; i++) {
515 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
516 *(u_int32_t *)(&arg[i * 4]));
517 TI_INC(index, TI_CMD_RING_CNT);
518 }
519 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
520 sc->ti_cmd_saved_prodidx = index;
521
522 return;
523}
524
525/*
526 * Handle events that have triggered interrupts.
527 */
528static void ti_handle_events(sc)
529 struct ti_softc *sc;
530{
531 struct ti_event_desc *e;
532
533 if (sc->ti_rdata->ti_event_ring == NULL)
534 return;
535
536 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
537 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
538 switch(e->ti_event) {
539 case TI_EV_LINKSTAT_CHANGED:
540 sc->ti_linkstat = e->ti_code;
541 if (e->ti_code == TI_EV_CODE_LINK_UP)
542 printf("ti%d: 10/100 link up\n", sc->ti_unit);
543 else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP)
544 printf("ti%d: gigabit link up\n", sc->ti_unit);
545 else if (e->ti_code == TI_EV_CODE_LINK_DOWN)
546 printf("ti%d: link down\n", sc->ti_unit);
547 break;
548 case TI_EV_ERROR:
549 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD)
550 printf("ti%d: invalid command\n", sc->ti_unit);
551 else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD)
552 printf("ti%d: unknown command\n", sc->ti_unit);
553 else if (e->ti_code == TI_EV_CODE_ERR_BADCFG)
554 printf("ti%d: bad config data\n", sc->ti_unit);
555 break;
556 case TI_EV_FIRMWARE_UP:
557 ti_init2(sc);
558 break;
559 case TI_EV_STATS_UPDATED:
560 ti_stats_update(sc);
561 break;
562 case TI_EV_RESET_JUMBO_RING:
563 case TI_EV_MCAST_UPDATED:
564 /* Who cares. */
565 break;
566 default:
567 printf("ti%d: unknown event: %d\n",
568 sc->ti_unit, e->ti_event);
569 break;
570 }
571 /* Advance the consumer index. */
572 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
573 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
574 }
575
576 return;
577}
578
579/*
580 * Memory management for the jumbo receive ring is a pain in the
581 * butt. We need to allocate at least 9018 bytes of space per frame,
582 * _and_ it has to be contiguous (unless you use the extended
583 * jumbo descriptor format). Using malloc() all the time won't
584 * work: malloc() allocates memory in powers of two, which means we
585 * would end up wasting a considerable amount of space by allocating
586 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
587 * to do our own memory management.
588 *
589 * The driver needs to allocate a contiguous chunk of memory at boot
590 * time. We then chop this up ourselves into 9K pieces and use them
591 * as external mbuf storage.
592 *
593 * One issue here is how much memory to allocate. The jumbo ring has
594 * 256 slots in it, but at 9K per slot than can consume over 2MB of
595 * RAM. This is a bit much, especially considering we also need
596 * RAM for the standard ring and mini ring (on the Tigon 2). To
597 * save space, we only actually allocate enough memory for 64 slots
598 * by default, which works out to between 500 and 600K. This can
599 * be tuned by changing a #define in if_tireg.h.
600 */
601
602static int ti_alloc_jumbo_mem(sc)
603 struct ti_softc *sc;
604{
605 caddr_t ptr;
606 register int i;
607 struct ti_jpool_entry *entry;
608
609 /* Grab a big chunk o' storage. */
610 sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
611 M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
612
613 if (sc->ti_cdata.ti_jumbo_buf == NULL) {
614 printf("ti%d: no memory for jumbo buffers!\n", sc->ti_unit);
615 return(ENOBUFS);
616 }
617
618 SLIST_INIT(&sc->ti_jfree_listhead);
619 SLIST_INIT(&sc->ti_jinuse_listhead);
620
621 /*
622 * Now divide it up into 9K pieces and save the addresses
623 * in an array. Note that we play an evil trick here by using
624 * the first few bytes in the buffer to hold the the address
625 * of the softc structure for this interface. This is because
626 * ti_jfree() needs it, but it is called by the mbuf management
627 * code which will not pass it to us explicitly.
628 */
629 ptr = sc->ti_cdata.ti_jumbo_buf;
630 for (i = 0; i < TI_JSLOTS; i++) {
631 u_int64_t **aptr;
632 aptr = (u_int64_t **)ptr;
633 aptr[0] = (u_int64_t *)sc;
634 ptr += sizeof(u_int64_t);
635 sc->ti_cdata.ti_jslots[i].ti_buf = ptr;
636 sc->ti_cdata.ti_jslots[i].ti_inuse = 0;
637 ptr += (TI_JLEN - sizeof(u_int64_t));
638 entry = malloc(sizeof(struct ti_jpool_entry),
639 M_DEVBUF, M_NOWAIT);
640 if (entry == NULL) {
641 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
642 sc->ti_cdata.ti_jumbo_buf = NULL;
643 printf("ti%d: no memory for jumbo "
644 "buffer queue!\n", sc->ti_unit);
645 return(ENOBUFS);
646 }
647 entry->slot = i;
648 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
649 }
650
651 return(0);
652}
653
654/*
655 * Allocate a jumbo buffer.
656 */
657static void *ti_jalloc(sc)
658 struct ti_softc *sc;
659{
660 struct ti_jpool_entry *entry;
661
662 entry = SLIST_FIRST(&sc->ti_jfree_listhead);
663
664 if (entry == NULL) {
665 printf("ti%d: no free jumbo buffers\n", sc->ti_unit);
666 return(NULL);
667 }
668
669 SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
670 SLIST_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
671 sc->ti_cdata.ti_jslots[entry->slot].ti_inuse = 1;
672 return(sc->ti_cdata.ti_jslots[entry->slot].ti_buf);
673}
674
675/*
676 * Adjust usage count on a jumbo buffer. In general this doesn't
677 * get used much because our jumbo buffers don't get passed around
678 * too much, but it's implemented for correctness.
679 */
680static void ti_jref(buf, size)
681 caddr_t buf;
682 u_int size;
683{
684 struct ti_softc *sc;
685 u_int64_t **aptr;
686 register int i;
687
688 /* Extract the softc struct pointer. */
689 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
690 sc = (struct ti_softc *)(aptr[0]);
691
692 if (sc == NULL)
693 panic("ti_jref: can't find softc pointer!");
694
695 if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
696 panic("ti_jref: adjusting refcount of buf of wrong size!");
697
698 /* calculate the slot this buffer belongs to */
699
700 i = ((vm_offset_t)aptr
701 - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
702
703 if ((i < 0) || (i >= TI_JSLOTS))
704 panic("ti_jref: asked to reference buffer "
705 "that we don't manage!");
706 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
707 panic("ti_jref: buffer already free!");
708 else
709 sc->ti_cdata.ti_jslots[i].ti_inuse++;
710
711 return;
712}
713
714/*
715 * Release a jumbo buffer.
716 */
717static void ti_jfree(buf, size)
718 caddr_t buf;
719 u_int size;
720{
721 struct ti_softc *sc;
722 u_int64_t **aptr;
723 int i;
724 struct ti_jpool_entry *entry;
725
726 /* Extract the softc struct pointer. */
727 aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
728 sc = (struct ti_softc *)(aptr[0]);
729
730 if (sc == NULL)
731 panic("ti_jfree: can't find softc pointer!");
732
733 if (size != TI_JUMBO_FRAMELEN - ETHER_ALIGN)
734 panic("ti_jfree: freeing buffer of wrong size!");
735
736 /* calculate the slot this buffer belongs to */
737
738 i = ((vm_offset_t)aptr
739 - (vm_offset_t)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
740
741 if ((i < 0) || (i >= TI_JSLOTS))
742 panic("ti_jfree: asked to free buffer that we don't manage!");
743 else if (sc->ti_cdata.ti_jslots[i].ti_inuse == 0)
744 panic("ti_jfree: buffer already free!");
745 else {
746 sc->ti_cdata.ti_jslots[i].ti_inuse--;
747 if(sc->ti_cdata.ti_jslots[i].ti_inuse == 0) {
748 entry = SLIST_FIRST(&sc->ti_jinuse_listhead);
749 if (entry == NULL)
750 panic("ti_jfree: buffer not in use!");
751 entry->slot = i;
752 SLIST_REMOVE_HEAD(&sc->ti_jinuse_listhead,
753 jpool_entries);
754 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead,
755 entry, jpool_entries);
756 }
757 }
758
759 return;
760}
761
762
763/*
764 * Intialize a standard receive ring descriptor.
765 */
766static int ti_newbuf_std(sc, i, m)
767 struct ti_softc *sc;
768 int i;
769 struct mbuf *m;
770{
771 struct mbuf *m_new = NULL;
772 struct ti_rx_desc *r;
773
774 if (m != NULL) {
775 m_new = m;
776 } else {
777 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
778 if (m_new == NULL) {
779 printf("ti%d: mbuf allocation failed "
780 "-- packet dropped!\n", sc->ti_unit);
781 return(ENOBUFS);
782 }
783
784 MCLGET(m_new, M_DONTWAIT);
785 if (!(m_new->m_flags & M_EXT)) {
786 printf("ti%d: cluster allocation failed "
787 "-- packet dropped!\n", sc->ti_unit);
788 m_freem(m_new);
789 return(ENOBUFS);
790 }
791 }
792
793 m_adj(m_new, ETHER_ALIGN);
794 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
795 r = &sc->ti_rdata->ti_rx_std_ring[i];
796 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
797 r->ti_type = TI_BDTYPE_RECV_BD;
798#ifdef TI_CSUM_OFFLOAD
799 r->ti_flags = TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
800#else
801 r->ti_flags = 0;
802#endif
803 r->ti_len = MCLBYTES - ETHER_ALIGN;
804 r->ti_idx = i;
805
806 return(0);
807}
808
809/*
810 * Intialize a mini receive ring descriptor. This only applies to
811 * the Tigon 2.
812 */
813static int ti_newbuf_mini(sc, i, m)
814 struct ti_softc *sc;
815 int i;
816 struct mbuf *m;
817{
818 struct mbuf *m_new = NULL;
819 struct ti_rx_desc *r;
820
821 if (m != NULL) {
822 m_new = m;
823 } else {
824 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
825 if (m_new == NULL) {
826 printf("ti%d: mbuf allocation failed "
827 "-- packet dropped!\n", sc->ti_unit);
828 return(ENOBUFS);
829 }
830 }
831 m_adj(m_new, ETHER_ALIGN);
832 r = &sc->ti_rdata->ti_rx_mini_ring[i];
833 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
834 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
835 r->ti_type = TI_BDTYPE_RECV_BD;
836 r->ti_flags = TI_BDFLAG_MINI_RING;
837#ifdef TI_CSUM_OFFLOAD
838 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
839#endif
840 r->ti_len = MHLEN - ETHER_ALIGN;
841 r->ti_idx = i;
842
843 return(0);
844}
845
846/*
847 * Initialize a jumbo receive ring descriptor. This allocates
848 * a jumbo buffer from the pool managed internally by the driver.
849 */
850static int ti_newbuf_jumbo(sc, i, m)
851 struct ti_softc *sc;
852 int i;
853 struct mbuf *m;
854{
855 struct mbuf *m_new = NULL;
856 struct ti_rx_desc *r;
857
858 if (m != NULL) {
859 m_new = m;
860 } else {
861 caddr_t *buf = NULL;
862
863 /* Allocate the mbuf. */
864 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
865 if (m_new == NULL) {
866 printf("ti%d: mbuf allocation failed "
867 "-- packet dropped!\n", sc->ti_unit);
868 return(ENOBUFS);
869 }
870
871 /* Allocate the jumbo buffer */
872 buf = ti_jalloc(sc);
873 if (buf == NULL) {
874 m_freem(m_new);
875 printf("ti%d: jumbo allocation failed "
876 "-- packet dropped!\n", sc->ti_unit);
877 return(ENOBUFS);
878 }
879
880 /* Attach the buffer to the mbuf. */
881 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
882 m_new->m_data += ETHER_ALIGN;
883 m_new->m_flags |= M_EXT;
884 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
885 m_new->m_ext.ext_free = ti_jfree;
886 m_new->m_ext.ext_ref = ti_jref;
887 }
888
889 /* Set up the descriptor. */
890 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
891 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
892 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
893 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
894 r->ti_flags = TI_BDFLAG_JUMBO_RING;
895#ifdef TI_CSUM_OFFLOAD
896 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM|TI_BDFLAG_IP_CKSUM;
897#endif
898 r->ti_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
899 r->ti_idx = i;
900
901 return(0);
902}
903
904/*
905 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
906 * that's 1MB or memory, which is a lot. For now, we fill only the first
907 * 256 ring entries and hope that our CPU is fast enough to keep up with
908 * the NIC.
909 */
910static int ti_init_rx_ring_std(sc)
911 struct ti_softc *sc;
912{
913 register int i;
914 struct ti_cmd_desc cmd;
915
916 for (i = 0; i < TI_SSLOTS; i++) {
917 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
918 return(ENOBUFS);
919 };
920
921 TI_UPDATE_STDPROD(sc, i - 1);
922 sc->ti_std = i - 1;
923
924 return(0);
925}
926
927static void ti_free_rx_ring_std(sc)
928 struct ti_softc *sc;
929{
930 register int i;
931
932 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
933 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
934 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
935 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
936 }
937 bzero((char *)&sc->ti_rdata->ti_rx_std_ring[i],
938 sizeof(struct ti_rx_desc));
939 }
940
941 return;
942}
943
944static int ti_init_rx_ring_jumbo(sc)
945 struct ti_softc *sc;
946{
947 register int i;
948 struct ti_cmd_desc cmd;
949
950 for (i = 0; i < (TI_JSLOTS - 20); i++) {
951 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
952 return(ENOBUFS);
953 };
954
955 TI_UPDATE_JUMBOPROD(sc, i - 1);
956 sc->ti_jumbo = i - 1;
957
958 return(0);
959}
960
961static void ti_free_rx_ring_jumbo(sc)
962 struct ti_softc *sc;
963{
964 register int i;
965
966 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
967 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
968 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
969 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
970 }
971 bzero((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i],
972 sizeof(struct ti_rx_desc));
973 }
974
975 return;
976}
977
978static int ti_init_rx_ring_mini(sc)
979 struct ti_softc *sc;
980{
981 register int i;
982
983 for (i = 0; i < TI_MSLOTS; i++) {
984 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
985 return(ENOBUFS);
986 };
987
988 TI_UPDATE_MINIPROD(sc, i - 1);
989 sc->ti_mini = i - 1;
990
991 return(0);
992}
993
994static void ti_free_rx_ring_mini(sc)
995 struct ti_softc *sc;
996{
997 register int i;
998
999 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
1000 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
1001 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
1002 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1003 }
1004 bzero((char *)&sc->ti_rdata->ti_rx_mini_ring[i],
1005 sizeof(struct ti_rx_desc));
1006 }
1007
1008 return;
1009}
1010
1011static void ti_free_tx_ring(sc)
1012 struct ti_softc *sc;
1013{
1014 register int i;
1015
1016 if (sc->ti_rdata->ti_tx_ring == NULL)
1017 return;
1018
1019 for (i = 0; i < TI_TX_RING_CNT; i++) {
1020 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1021 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1022 sc->ti_cdata.ti_tx_chain[i] = NULL;
1023 }
1024 bzero((char *)&sc->ti_rdata->ti_tx_ring[i],
1025 sizeof(struct ti_tx_desc));
1026 }
1027
1028 return;
1029}
1030
1031static int ti_init_tx_ring(sc)
1032 struct ti_softc *sc;
1033{
1034 sc->ti_txcnt = 0;
1035 sc->ti_tx_saved_considx = 0;
1036 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1037 return(0);
1038}
1039
1040/*
1041 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1042 * but we have to support the old way too so that Tigon 1 cards will
1043 * work.
1044 */
1045void ti_add_mcast(sc, addr)
1046 struct ti_softc *sc;
1047 struct ether_addr *addr;
1048{
1049 struct ti_cmd_desc cmd;
1050 u_int16_t *m;
1051 u_int32_t ext[2] = {0, 0};
1052
1053 m = (u_int16_t *)&addr->octet[0];
1054
1055 switch(sc->ti_hwrev) {
1056 case TI_HWREV_TIGON:
1057 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1058 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1059 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1060 break;
1061 case TI_HWREV_TIGON_II:
1062 ext[0] = htons(m[0]);
1063 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1064 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
1065 break;
1066 default:
1067 printf("ti%d: unknown hwrev\n", sc->ti_unit);
1068 break;
1069 }
1070
1071 return;
1072}
1073
1074void ti_del_mcast(sc, addr)
1075 struct ti_softc *sc;
1076 struct ether_addr *addr;
1077{
1078 struct ti_cmd_desc cmd;
1079 u_int16_t *m;
1080 u_int32_t ext[2] = {0, 0};
1081
1082 m = (u_int16_t *)&addr->octet[0];
1083
1084 switch(sc->ti_hwrev) {
1085 case TI_HWREV_TIGON:
1086 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1087 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1088 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1089 break;
1090 case TI_HWREV_TIGON_II:
1091 ext[0] = htons(m[0]);
1092 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1093 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
1094 break;
1095 default:
1096 printf("ti%d: unknown hwrev\n", sc->ti_unit);
1097 break;
1098 }
1099
1100 return;
1101}
1102
1103/*
1104 * Configure the Tigon's multicast address filter.
1105 *
1106 * The actual multicast table management is a bit of a pain, thanks to
1107 * slight brain damage on the part of both Alteon and us. With our
1108 * multicast code, we are only alerted when the multicast address table
1109 * changes and at that point we only have the current list of addresses:
1110 * we only know the current state, not the previous state, so we don't
1111 * actually know what addresses were removed or added. The firmware has
1112 * state, but we can't get our grubby mits on it, and there is no 'delete
1113 * all multicast addresses' command. Hence, we have to maintain our own
1114 * state so we know what addresses have been programmed into the NIC at
1115 * any given time.
1116 */
1117static void ti_setmulti(sc)
1118 struct ti_softc *sc;
1119{
1120 struct ifnet *ifp;
1121 struct ifmultiaddr *ifma;
1122 struct ti_cmd_desc cmd;
1123 struct ti_mc_entry *mc;
1124 u_int32_t intrs;
1125
1126 ifp = &sc->arpcom.ac_if;
1127
1128 if (ifp->if_flags & IFF_ALLMULTI) {
1129 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1130 return;
1131 } else {
1132 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1133 }
1134
1135 /* Disable interrupts. */
1136 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1137 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1138
1139 /* First, zot all the existing filters. */
1140 while (sc->ti_mc_listhead.slh_first != NULL) {
1141 mc = sc->ti_mc_listhead.slh_first;
1142 ti_del_mcast(sc, &mc->mc_addr);
1143 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1144 free(mc, M_DEVBUF);
1145 }
1146
1147 /* Now program new ones. */
1148 for (ifma = ifp->if_multiaddrs.lh_first;
1149 ifma != NULL; ifma = ifma->ifma_link.le_next) {
1150 if (ifma->ifma_addr->sa_family != AF_LINK)
1151 continue;
1152 mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT);
1153 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1154 (char *)&mc->mc_addr, ETHER_ADDR_LEN);
1155 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1156 ti_add_mcast(sc, &mc->mc_addr);
1157 }
1158
1159 /* Re-enable interrupts. */
1160 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1161
1162 return;
1163}
1164
1165/*
1166 * Check to see if the BIOS has configured us for a 64 bit slot when
1167 * we aren't actually in one. If we detect this condition, we can work
1168 * around it on the Tigon 2 by setting a bit in the PCI state register,
1169 * but for the Tigon 1 we must give up and abort the interface attach.
1170 */
1171static int ti_64bitslot_war(sc)
1172 struct ti_softc *sc;
1173{
1174 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1175 CSR_WRITE_4(sc, 0x600, 0);
1176 CSR_WRITE_4(sc, 0x604, 0);
1177 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1178 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1179 if (sc->ti_hwrev == TI_HWREV_TIGON)
1180 return(EINVAL);
1181 else {
1182 TI_SETBIT(sc, TI_PCI_STATE,
1183 TI_PCISTATE_32BIT_BUS);
1184 return(0);
1185 }
1186 }
1187 }
1188
1189 return(0);
1190}
1191
1192/*
1193 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1194 * self-test results.
1195 */
1196static int ti_chipinit(sc)
1197 struct ti_softc *sc;
1198{
1199 u_int32_t cacheline;
1200 u_int32_t pci_writemax = 0;
1201
1202 /* Initialize link to down state. */
1203 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1204
1205 /* Set endianness before we access any non-PCI registers. */
1206#if BYTE_ORDER == BIG_ENDIAN
1207 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1208 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1209#else
1210 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1211 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1212#endif
1213
1214 /* Check the ROM failed bit to see if self-tests passed. */
1215 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1216 printf("ti%d: board self-diagnostics failed!\n", sc->ti_unit);
1217 return(ENODEV);
1218 }
1219
1220 /* Halt the CPU. */
1221 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1222
1223 /* Figure out the hardware revision. */
1224 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1225 case TI_REV_TIGON_I:
1226 sc->ti_hwrev = TI_HWREV_TIGON;
1227 break;
1228 case TI_REV_TIGON_II:
1229 sc->ti_hwrev = TI_HWREV_TIGON_II;
1230 break;
1231 default:
1232 printf("ti%d: unsupported chip revision\n", sc->ti_unit);
1233 return(ENODEV);
1234 }
1235
1236 /* Do special setup for Tigon 2. */
1237 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1238 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1239 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1240 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1241 }
1242
1243 /* Set up the PCI state register. */
1244 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1245 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1246 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1247 }
1248
1249 /* Clear the read/write max DMA parameters. */
1250 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1251 TI_PCISTATE_READ_MAXDMA));
1252
1253 /* Get cache line size. */
1254 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1255
1256 /*
1257 * If the system has set enabled the PCI memory write
1258 * and invalidate command in the command register, set
1259 * the write max parameter accordingly. This is necessary
1260 * to use MWI with the Tigon 2.
1261 */
1262 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1263 switch(cacheline) {
1264 case 1:
1265 case 4:
1266 case 8:
1267 case 16:
1268 case 32:
1269 case 64:
1270 break;
1271 default:
1272 /* Disable PCI memory write and invalidate. */
1273 if (bootverbose)
1274 printf("ti%d: cache line size %d not "
1275 "supported; disabling PCI MWI\n",
1276 sc->ti_unit, cacheline);
1277 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1278 TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1279 break;
1280 }
1281 }
1282
1283#ifdef __brokenalpha__
1284 /*
1285 * From the Alteon sample driver:
1286 * Must insure that we do not cross an 8K (bytes) boundary
1287 * for DMA reads. Our highest limit is 1K bytes. This is a
1288 * restriction on some ALPHA platforms with early revision
1289 * 21174 PCI chipsets, such as the AlphaPC 164lx
1290 */
1291 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1292#else
1293 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1294#endif
1295
1296 /* This sets the min dma param all the way up (0xff). */
1297 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1298
1299 /* Configure DMA variables. */
1300#if BYTE_ORDER == BIG_ENDIAN
1301 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1302 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1303 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1304 TI_OPMODE_DONT_FRAG_JUMBO);
1305#else
1306 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1307 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1308 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1309#endif
1310
1311 /*
1312 * Only allow 1 DMA channel to be active at a time.
1313 * I don't think this is a good idea, but without it
1314 * the firmware racks up lots of nicDmaReadRingFull
1315 * errors.
1316 */
1317#ifndef TI_CSUM_OFFLOAD
1318 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1319#endif
1320
1321 /* Recommended settings from Tigon manual. */
1322 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1323 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1324
1325 if (ti_64bitslot_war(sc)) {
1326 printf("ti%d: bios thinks we're in a 64 bit slot, "
1327 "but we aren't", sc->ti_unit);
1328 return(EINVAL);
1329 }
1330
1331 return(0);
1332}
1333
1334/*
1335 * Initialize the general information block and firmware, and
1336 * start the CPU(s) running.
1337 */
1338static int ti_gibinit(sc)
1339 struct ti_softc *sc;
1340{
1341 struct ti_rcb *rcb;
1342 int i;
1343 struct ifnet *ifp;
1344
1345 ifp = &sc->arpcom.ac_if;
1346
1347 /* Disable interrupts for now. */
1348 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1349
1350 /* Tell the chip where to find the general information block. */
1351 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1352 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1353
1354 /* Load the firmware into SRAM. */
1355 ti_loadfw(sc);
1356
1357 /* Set up the contents of the general info and ring control blocks. */
1358
1359 /* Set up the event ring and producer pointer. */
1360 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1361
1362 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1363 rcb->ti_flags = 0;
1364 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1365 vtophys(&sc->ti_ev_prodidx);
1366 sc->ti_ev_prodidx.ti_idx = 0;
1367 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1368 sc->ti_ev_saved_considx = 0;
1369
1370 /* Set up the command ring and producer mailbox. */
1371 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1372
1373#ifdef __i386__
1374 sc->ti_rdata->ti_cmd_ring =
1375 (struct ti_cmd_desc *)(sc->ti_bhandle + TI_GCR_CMDRING);
1376#endif
1377#ifdef __alpha__
1378 sc->ti_rdata->ti_cmd_ring =
1379 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1380#endif
1381 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1382 rcb->ti_flags = 0;
1383 rcb->ti_max_len = 0;
1384 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1385 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1386 }
1387 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1388 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1389 sc->ti_cmd_saved_prodidx = 0;
1390
1391 /*
1392 * Assign the address of the stats refresh buffer.
1393 * We re-use the current stats buffer for this to
1394 * conserve memory.
1395 */
1396 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1397 vtophys(&sc->ti_rdata->ti_info.ti_stats);
1398
1399 /* Set up the standard receive ring. */
1400 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1401 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1402 rcb->ti_max_len = TI_FRAMELEN;
1403 rcb->ti_flags = 0;
1404#ifdef TI_CSUM_OFFLOAD
1405 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1406#endif
1407#if NVLAN > 0
1408 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1409#endif
1410
1411 /* Set up the jumbo receive ring. */
1412 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1413 TI_HOSTADDR(rcb->ti_hostaddr) =
1414 vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1415 rcb->ti_max_len = TI_JUMBO_FRAMELEN - ETHER_ALIGN;
1416 rcb->ti_flags = 0;
1417#ifdef TI_CSUM_OFFLOAD
1418 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1419#endif
1420#if NVLAN > 0
1421 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1422#endif
1423
1424 /*
1425 * Set up the mini ring. Only activated on the
1426 * Tigon 2 but the slot in the config block is
1427 * still there on the Tigon 1.
1428 */
1429 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1430 TI_HOSTADDR(rcb->ti_hostaddr) =
1431 vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1432 rcb->ti_max_len = MHLEN;
1433 if (sc->ti_hwrev == TI_HWREV_TIGON)
1434 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1435 else
1436 rcb->ti_flags = 0;
1437#ifdef TI_CSUM_OFFLOAD
1438 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|TI_RCB_FLAG_IP_CKSUM;
1439#endif
1440#if NVLAN > 0
1441 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1442#endif
1443
1444 /*
1445 * Set up the receive return ring.
1446 */
1447 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1448 TI_HOSTADDR(rcb->ti_hostaddr) =
1449 vtophys(&sc->ti_rdata->ti_rx_return_ring);
1450 rcb->ti_flags = 0;
1451 rcb->ti_max_len = TI_RETURN_RING_CNT;
1452 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1453 vtophys(&sc->ti_return_prodidx);
1454
1455 /*
1456 * Set up the tx ring. Note: for the Tigon 2, we have the option
1457 * of putting the transmit ring in the host's address space and
1458 * letting the chip DMA it instead of leaving the ring in the NIC's
1459 * memory and accessing it through the shared memory region. We
1460 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1461 * so we have to revert to the shared memory scheme if we detect
1462 * a Tigon 1 chip.
1463 */
1464 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1465 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1466#ifdef __i386__
1467 sc->ti_rdata->ti_tx_ring_nic =
1468 (struct ti_tx_desc *)(sc->ti_bhandle + TI_WINDOW);
1469#endif
1470#ifdef __alpha__
1471 sc->ti_rdata->ti_tx_ring_nic =
1472 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1473#endif
1474 }
1475 bzero((char *)sc->ti_rdata->ti_tx_ring,
1476 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1477 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1478 if (sc->ti_hwrev == TI_HWREV_TIGON)
1479 rcb->ti_flags = 0;
1480 else
1481 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1482#if NVLAN > 0
1483 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1484#endif
1485 rcb->ti_max_len = TI_TX_RING_CNT;
1486 if (sc->ti_hwrev == TI_HWREV_TIGON)
1487 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1488 else
1489 TI_HOSTADDR(rcb->ti_hostaddr) =
1490 vtophys(&sc->ti_rdata->ti_tx_ring);
1491 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1492 vtophys(&sc->ti_tx_considx);
1493
1494 /* Set up tuneables */
1495 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1496 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1497 (sc->ti_rx_coal_ticks / 10));
1498 else
1499 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1500 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1501 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1502 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1503 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1504 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1505
1506 /* Turn interrupts on. */
1507 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1508 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1509
1510 /* Start CPU. */
1511 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1512
1513 return(0);
1514}
1515
1516/*
1517 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1518 * against our list and return its name if we find a match.
1519 */
1520static int ti_probe(dev)
1521 device_t dev;
1522{
1523 struct ti_type *t;
1524
1525 t = ti_devs;
1526
1527 while(t->ti_name != NULL) {
1528 if ((pci_get_vendor(dev) == t->ti_vid) &&
1529 (pci_get_device(dev) == t->ti_did)) {
1530 device_set_desc(dev, t->ti_name);
1531 return(0);
1532 }
1533 t++;
1534 }
1535
1536 return(ENXIO);
1537}
1538
1539static int ti_attach(dev)
1540 device_t dev;
1541{
1542 int s;
1543 u_int32_t command;
1544 struct ifnet *ifp;
1545 struct ti_softc *sc;
1546 int unit, error = 0, rid;
1547
1548 s = splimp();
1549
1550 sc = device_get_softc(dev);
1551 unit = device_get_unit(dev);
1552 bzero(sc, sizeof(struct ti_softc));
1553
1554 /*
1555 * Map control/status registers.
1556 */
1557 command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1558 command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1559 pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
1560 command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
1561
1562 if (!(command & PCIM_CMD_MEMEN)) {
1563 printf("ti%d: failed to enable memory mapping!\n", unit);
1564 error = ENXIO;
1565 goto fail;
1566 }
1567
1568 rid = TI_PCI_LOMEM;
1569 sc->ti_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1570 0, ~0, 1, RF_ACTIVE);
1571
1572 if (sc->ti_res == NULL) {
1573 printf ("ti%d: couldn't map memory\n", unit);
1574 error = ENXIO;
1575 goto fail;
1576 }
1577
1578 sc->ti_btag = rman_get_bustag(sc->ti_res);
1579 sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1580
1578 /* Allocate interrupt */
1579 rid = 0;
1580 sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1581 RF_SHAREABLE | RF_ACTIVE);
1582
1583 if (sc->ti_irq == NULL) {
1584 printf("ti%d: couldn't map interrupt\n", unit);
1585 error = ENXIO;
1586 goto fail;
1587 }
1588
1589 error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1590 ti_intr, sc, &sc->ti_intrhand);
1591
1592 if (error) {
1593 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1594 bus_release_resource(dev, SYS_RES_MEMORY,
1595 TI_PCI_LOMEM, sc->ti_res);
1596 printf("ti%d: couldn't set up irq\n", unit);
1597 goto fail;
1598 }
1599
1600 sc->ti_unit = unit;
1601
1602 if (ti_chipinit(sc)) {
1603 printf("ti%d: chip initialization failed\n", sc->ti_unit);
1604 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1605 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1606 bus_release_resource(dev, SYS_RES_MEMORY,
1607 TI_PCI_LOMEM, sc->ti_res);
1608 error = ENXIO;
1609 goto fail;
1610 }
1611
1612 /* Zero out the NIC's on-board SRAM. */
1613 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1614
1615 /* Init again -- zeroing memory may have clobbered some registers. */
1616 if (ti_chipinit(sc)) {
1617 printf("ti%d: chip initialization failed\n", sc->ti_unit);
1618 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1619 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1620 bus_release_resource(dev, SYS_RES_MEMORY,
1621 TI_PCI_LOMEM, sc->ti_res);
1622 error = ENXIO;
1623 goto fail;
1624 }
1625
1626 /*
1627 * Get station address from the EEPROM. Note: the manual states
1628 * that the MAC address is at offset 0x8c, however the data is
1629 * stored as two longwords (since that's how it's loaded into
1630 * the NIC). This means the MAC address is actually preceeded
1631 * by two zero bytes. We need to skip over those.
1632 */
1633 if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1634 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1635 printf("ti%d: failed to read station address\n", unit);
1636 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1637 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1638 bus_release_resource(dev, SYS_RES_MEMORY,
1639 TI_PCI_LOMEM, sc->ti_res);
1640 error = ENXIO;
1641 goto fail;
1642 }
1643
1644 /*
1645 * A Tigon chip was detected. Inform the world.
1646 */
1647 printf("ti%d: Ethernet address: %6D\n", unit,
1648 sc->arpcom.ac_enaddr, ":");
1649
1650 /* Allocate the general information block and ring buffers. */
1651 sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1652 M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
1653
1654 if (sc->ti_rdata == NULL) {
1655 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1656 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1657 bus_release_resource(dev, SYS_RES_MEMORY,
1658 TI_PCI_LOMEM, sc->ti_res);
1659 error = ENXIO;
1660 printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1661 goto fail;
1662 }
1663
1664 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1665
1666 /* Try to allocate memory for jumbo buffers. */
1667 if (ti_alloc_jumbo_mem(sc)) {
1668 printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1669 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1670 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1671 bus_release_resource(dev, SYS_RES_MEMORY,
1672 TI_PCI_LOMEM, sc->ti_res);
1673 free(sc->ti_rdata, M_DEVBUF);
1674 error = ENXIO;
1675 goto fail;
1676 }
1677
1678 /* Set default tuneable values. */
1679 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1680 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1681 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1682 sc->ti_rx_max_coal_bds = 64;
1683 sc->ti_tx_max_coal_bds = 128;
1684 sc->ti_tx_buf_ratio = 21;
1685
1686 /* Set up ifnet structure */
1687 ifp = &sc->arpcom.ac_if;
1688 ifp->if_softc = sc;
1689 ifp->if_unit = sc->ti_unit;
1690 ifp->if_name = "ti";
1691 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1692 ifp->if_ioctl = ti_ioctl;
1693 ifp->if_output = ether_output;
1694 ifp->if_start = ti_start;
1695 ifp->if_watchdog = ti_watchdog;
1696 ifp->if_init = ti_init;
1697 ifp->if_mtu = ETHERMTU;
1698 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1699
1700 /* Set up ifmedia support. */
1701 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1702 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1703 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1704 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1705 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1706 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1707 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1708 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1709 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1710
1711 /*
1712 * Call MI attach routines.
1713 */
1714 if_attach(ifp);
1715 ether_ifattach(ifp);
1716
1717#if NBPF > 0
1718 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1719#endif
1720
1721fail:
1722 splx(s);
1723
1724 return(error);
1725}
1726
1727static int ti_detach(dev)
1728 device_t dev;
1729{
1730 struct ti_softc *sc;
1731 struct ifnet *ifp;
1732 int s;
1733
1734 s = splimp();
1735
1736 sc = device_get_softc(dev);
1737 ifp = &sc->arpcom.ac_if;
1738
1739 if_detach(ifp);
1740 ti_stop(sc);
1741
1742 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1743 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1744 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1745
1746 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1747 free(sc->ti_rdata, M_DEVBUF);
1748 ifmedia_removeall(&sc->ifmedia);
1749
1750 splx(s);
1751
1752 return(0);
1753}
1754
1755/*
1756 * Frame reception handling. This is called if there's a frame
1757 * on the receive return list.
1758 *
1759 * Note: we have to be able to handle three possibilities here:
1760 * 1) the frame is from the mini receive ring (can only happen)
1761 * on Tigon 2 boards)
1762 * 2) the frame is from the jumbo recieve ring
1763 * 3) the frame is from the standard receive ring
1764 */
1765
1766static void ti_rxeof(sc)
1767 struct ti_softc *sc;
1768{
1769 struct ifnet *ifp;
1770 struct ti_cmd_desc cmd;
1771
1772 ifp = &sc->arpcom.ac_if;
1773
1774 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1775 struct ti_rx_desc *cur_rx;
1776 u_int32_t rxidx;
1777 struct ether_header *eh;
1778 struct mbuf *m = NULL;
1779#if NVLAN > 0
1780 u_int16_t vlan_tag = 0;
1781 int have_tag = 0;
1782#endif
1783#ifdef TI_CSUM_OFFLOAD
1784 struct ip *ip;
1785#endif
1786
1787 cur_rx =
1788 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1789 rxidx = cur_rx->ti_idx;
1790 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1791
1792#if NVLAN > 0
1793 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1794 have_tag = 1;
1795 vlan_tag = cur_rx->ti_vlan_tag;
1796 }
1797#endif
1798
1799 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1800 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1801 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1802 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1803 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1804 ifp->if_ierrors++;
1805 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1806 continue;
1807 }
1808 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1809 ifp->if_ierrors++;
1810 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1811 continue;
1812 }
1813 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1814 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1815 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1816 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1817 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1818 ifp->if_ierrors++;
1819 ti_newbuf_mini(sc, sc->ti_mini, m);
1820 continue;
1821 }
1822 if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1823 ifp->if_ierrors++;
1824 ti_newbuf_mini(sc, sc->ti_mini, m);
1825 continue;
1826 }
1827 } else {
1828 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1829 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1830 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1831 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1832 ifp->if_ierrors++;
1833 ti_newbuf_std(sc, sc->ti_std, m);
1834 continue;
1835 }
1836 if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1837 ifp->if_ierrors++;
1838 ti_newbuf_std(sc, sc->ti_std, m);
1839 continue;
1840 }
1841 }
1842
1843 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1844 ifp->if_ipackets++;
1845 eh = mtod(m, struct ether_header *);
1846 m->m_pkthdr.rcvif = ifp;
1847
1848#if NBPF > 0
1849 /*
1850 * Handle BPF listeners. Let the BPF user see the packet, but
1851 * don't pass it up to the ether_input() layer unless it's
1852 * a broadcast packet, multicast packet, matches our ethernet
1853 * address or the interface is in promiscuous mode.
1854 */
1855 if (ifp->if_bpf) {
1856 bpf_mtap(ifp, m);
1857 if (ifp->if_flags & IFF_PROMISC &&
1858 (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1859 ETHER_ADDR_LEN) &&
1860 (eh->ether_dhost[0] & 1) == 0)) {
1861 m_freem(m);
1862 continue;
1863 }
1864 }
1865#endif
1866
1867 /* Remove header from mbuf and pass it on. */
1868 m_adj(m, sizeof(struct ether_header));
1869
1870#ifdef TI_CSUM_OFFLOAD
1871 ip = mtod(m, struct ip *);
1872 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1873 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1874 m->m_flags |= M_HWCKSUM;
1875#endif
1876
1877#if NVLAN > 0
1878 /*
1879 * If we received a packet with a vlan tag, pass it
1880 * to vlan_input() instead of ether_input().
1881 */
1882 if (have_tag) {
1883 vlan_input_tag(eh, m, vlan_tag);
1884 have_tag = vlan_tag = 0;
1885 continue;
1886 }
1887#endif
1888 ether_input(ifp, eh, m);
1889 }
1890
1891 /* Only necessary on the Tigon 1. */
1892 if (sc->ti_hwrev == TI_HWREV_TIGON)
1893 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1894 sc->ti_rx_saved_considx);
1895
1896 TI_UPDATE_STDPROD(sc, sc->ti_std);
1897 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1898 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1899
1900 return;
1901}
1902
1903static void ti_txeof(sc)
1904 struct ti_softc *sc;
1905{
1906 struct ti_tx_desc *cur_tx = NULL;
1907 struct ifnet *ifp;
1908
1909 ifp = &sc->arpcom.ac_if;
1910
1911 /*
1912 * Go through our tx ring and free mbufs for those
1913 * frames that have been sent.
1914 */
1915 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1916 u_int32_t idx = 0;
1917
1918 idx = sc->ti_tx_saved_considx;
1919 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1920 if (idx > 383)
1921 CSR_WRITE_4(sc, TI_WINBASE,
1922 TI_TX_RING_BASE + 6144);
1923 else if (idx > 255)
1924 CSR_WRITE_4(sc, TI_WINBASE,
1925 TI_TX_RING_BASE + 4096);
1926 else if (idx > 127)
1927 CSR_WRITE_4(sc, TI_WINBASE,
1928 TI_TX_RING_BASE + 2048);
1929 else
1930 CSR_WRITE_4(sc, TI_WINBASE,
1931 TI_TX_RING_BASE);
1932 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1933 } else
1934 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1935 if (cur_tx->ti_flags & TI_BDFLAG_END)
1936 ifp->if_opackets++;
1937 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1938 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1939 sc->ti_cdata.ti_tx_chain[idx] = NULL;
1940 }
1941 sc->ti_txcnt--;
1942 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1943 ifp->if_timer = 0;
1944 }
1945
1946 if (cur_tx != NULL)
1947 ifp->if_flags &= ~IFF_OACTIVE;
1948
1949 return;
1950}
1951
1952static void ti_intr(xsc)
1953 void *xsc;
1954{
1955 struct ti_softc *sc;
1956 struct ifnet *ifp;
1957
1958 sc = xsc;
1959 ifp = &sc->arpcom.ac_if;
1960
1961#ifdef notdef
1962 /* Avoid this for now -- checking this register is expensive. */
1963 /* Make sure this is really our interrupt. */
1964 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1965 return;
1966#endif
1967
1968 /* Ack interrupt and stop others from occuring. */
1969 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1970
1971 if (ifp->if_flags & IFF_RUNNING) {
1972 /* Check RX return ring producer/consumer */
1973 ti_rxeof(sc);
1974
1975 /* Check TX ring producer/consumer */
1976 ti_txeof(sc);
1977 }
1978
1979 ti_handle_events(sc);
1980
1981 /* Re-enable interrupts. */
1982 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1983
1984 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1985 ti_start(ifp);
1986
1987 return;
1988}
1989
1990static void ti_stats_update(sc)
1991 struct ti_softc *sc;
1992{
1993 struct ifnet *ifp;
1994
1995 ifp = &sc->arpcom.ac_if;
1996
1997 ifp->if_collisions +=
1998 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1999 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2000 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2001 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2002 ifp->if_collisions;
2003
2004 return;
2005}
2006
2007/*
2008 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2009 * pointers to descriptors.
2010 */
2011static int ti_encap(sc, m_head, txidx)
2012 struct ti_softc *sc;
2013 struct mbuf *m_head;
2014 u_int32_t *txidx;
2015{
2016 struct ti_tx_desc *f = NULL;
2017 struct mbuf *m;
2018 u_int32_t frag, cur, cnt = 0;
2019#if NVLAN > 0
2020 struct ifvlan *ifv = NULL;
2021
2022 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2023 m_head->m_pkthdr.rcvif != NULL &&
2024 m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2025 ifv = m_head->m_pkthdr.rcvif->if_softc;
2026#endif
2027
2028 m = m_head;
2029 cur = frag = *txidx;
2030
2031 /*
2032 * Start packing the mbufs in this chain into
2033 * the fragment pointers. Stop when we run out
2034 * of fragments or hit the end of the mbuf chain.
2035 */
2036 for (m = m_head; m != NULL; m = m->m_next) {
2037 if (m->m_len != 0) {
2038 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2039 if (frag > 383)
2040 CSR_WRITE_4(sc, TI_WINBASE,
2041 TI_TX_RING_BASE + 6144);
2042 else if (frag > 255)
2043 CSR_WRITE_4(sc, TI_WINBASE,
2044 TI_TX_RING_BASE + 4096);
2045 else if (frag > 127)
2046 CSR_WRITE_4(sc, TI_WINBASE,
2047 TI_TX_RING_BASE + 2048);
2048 else
2049 CSR_WRITE_4(sc, TI_WINBASE,
2050 TI_TX_RING_BASE);
2051 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2052 } else
2053 f = &sc->ti_rdata->ti_tx_ring[frag];
2054 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2055 break;
2056 TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2057 f->ti_len = m->m_len;
2058 f->ti_flags = 0;
2059#if NVLAN > 0
2060 if (ifv != NULL) {
2061 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2062 f->ti_vlan_tag = ifv->ifv_tag;
2063 } else {
2064 f->ti_vlan_tag = 0;
2065 }
2066#endif
2067 /*
2068 * Sanity check: avoid coming within 16 descriptors
2069 * of the end of the ring.
2070 */
2071 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2072 return(ENOBUFS);
2073 cur = frag;
2074 TI_INC(frag, TI_TX_RING_CNT);
2075 cnt++;
2076 }
2077 }
2078
2079 if (m != NULL)
2080 return(ENOBUFS);
2081
2082 if (frag == sc->ti_tx_saved_considx)
2083 return(ENOBUFS);
2084
2085 if (sc->ti_hwrev == TI_HWREV_TIGON)
2086 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2087 TI_BDFLAG_END;
2088 else
2089 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2090 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2091 sc->ti_txcnt += cnt;
2092
2093 *txidx = frag;
2094
2095 return(0);
2096}
2097
2098/*
2099 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2100 * to the mbuf data regions directly in the transmit descriptors.
2101 */
2102static void ti_start(ifp)
2103 struct ifnet *ifp;
2104{
2105 struct ti_softc *sc;
2106 struct mbuf *m_head = NULL;
2107 u_int32_t prodidx = 0;
2108
2109 sc = ifp->if_softc;
2110
2111 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2112
2113 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2114 IF_DEQUEUE(&ifp->if_snd, m_head);
2115 if (m_head == NULL)
2116 break;
2117
2118 /*
2119 * Pack the data into the transmit ring. If we
2120 * don't have room, set the OACTIVE flag and wait
2121 * for the NIC to drain the ring.
2122 */
2123 if (ti_encap(sc, m_head, &prodidx)) {
2124 IF_PREPEND(&ifp->if_snd, m_head);
2125 ifp->if_flags |= IFF_OACTIVE;
2126 break;
2127 }
2128
2129 /*
2130 * If there's a BPF listener, bounce a copy of this frame
2131 * to him.
2132 */
2133#if NBPF > 0
2134 if (ifp->if_bpf)
2135 bpf_mtap(ifp, m_head);
2136#endif
2137 }
2138
2139 /* Transmit */
2140 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2141
2142 /*
2143 * Set a timeout in case the chip goes out to lunch.
2144 */
2145 ifp->if_timer = 5;
2146
2147 return;
2148}
2149
2150static void ti_init(xsc)
2151 void *xsc;
2152{
2153 struct ti_softc *sc = xsc;
2154 int s;
2155
2156 s = splimp();
2157
2158 /* Cancel pending I/O and flush buffers. */
2159 ti_stop(sc);
2160
2161 /* Init the gen info block, ring control blocks and firmware. */
2162 if (ti_gibinit(sc)) {
2163 printf("ti%d: initialization failure\n", sc->ti_unit);
2164 splx(s);
2165 return;
2166 }
2167
2168 splx(s);
2169
2170 return;
2171}
2172
2173static void ti_init2(sc)
2174 struct ti_softc *sc;
2175{
2176 struct ti_cmd_desc cmd;
2177 struct ifnet *ifp;
2178 u_int16_t *m;
2179 struct ifmedia *ifm;
2180 int tmp;
2181
2182 ifp = &sc->arpcom.ac_if;
2183
2184 /* Specify MTU and interface index. */
2185 CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2186 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2187 ETHER_HDR_LEN + ETHER_CRC_LEN);
2188 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2189
2190 /* Load our MAC address. */
2191 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2192 CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2193 CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2194 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2195
2196 /* Enable or disable promiscuous mode as needed. */
2197 if (ifp->if_flags & IFF_PROMISC) {
2198 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2199 } else {
2200 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2201 }
2202
2203 /* Program multicast filter. */
2204 ti_setmulti(sc);
2205
2206 /*
2207 * If this is a Tigon 1, we should tell the
2208 * firmware to use software packet filtering.
2209 */
2210 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2211 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2212 }
2213
2214 /* Init RX ring. */
2215 ti_init_rx_ring_std(sc);
2216
2217 /* Init jumbo RX ring. */
2218 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2219 ti_init_rx_ring_jumbo(sc);
2220
2221 /*
2222 * If this is a Tigon 2, we can also configure the
2223 * mini ring.
2224 */
2225 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2226 ti_init_rx_ring_mini(sc);
2227
2228 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2229 sc->ti_rx_saved_considx = 0;
2230
2231 /* Init TX ring. */
2232 ti_init_tx_ring(sc);
2233
2234 /* Tell firmware we're alive. */
2235 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2236
2237 /* Enable host interrupts. */
2238 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2239
2240 ifp->if_flags |= IFF_RUNNING;
2241 ifp->if_flags &= ~IFF_OACTIVE;
2242
2243 /*
2244 * Make sure to set media properly. We have to do this
2245 * here since we have to issue commands in order to set
2246 * the link negotiation and we can't issue commands until
2247 * the firmware is running.
2248 */
2249 ifm = &sc->ifmedia;
2250 tmp = ifm->ifm_media;
2251 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2252 ti_ifmedia_upd(ifp);
2253 ifm->ifm_media = tmp;
2254
2255 return;
2256}
2257
2258/*
2259 * Set media options.
2260 */
2261static int ti_ifmedia_upd(ifp)
2262 struct ifnet *ifp;
2263{
2264 struct ti_softc *sc;
2265 struct ifmedia *ifm;
2266 struct ti_cmd_desc cmd;
2267
2268 sc = ifp->if_softc;
2269 ifm = &sc->ifmedia;
2270
2271 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2272 return(EINVAL);
2273
2274 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2275 case IFM_AUTO:
2276 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2277 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2278 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2279 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2280 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2281 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2282 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2283 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2284 break;
2285 case IFM_1000_SX:
2286 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2287 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2288 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2289 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2290 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2291 break;
2292 case IFM_100_FX:
2293 case IFM_10_FL:
2294 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2295 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2296 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2297 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2298 } else {
2299 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2300 }
2301 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2302 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2303 } else {
2304 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2305 }
2306 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2307 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2308 break;
2309 }
2310
2311 return(0);
2312}
2313
2314/*
2315 * Report current media status.
2316 */
2317static void ti_ifmedia_sts(ifp, ifmr)
2318 struct ifnet *ifp;
2319 struct ifmediareq *ifmr;
2320{
2321 struct ti_softc *sc;
2322
2323 sc = ifp->if_softc;
2324
2325 ifmr->ifm_status = IFM_AVALID;
2326 ifmr->ifm_active = IFM_ETHER;
2327
2328 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2329 return;
2330
2331 ifmr->ifm_status |= IFM_ACTIVE;
2332
2333 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2334 ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2335 else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2336 u_int32_t media;
2337 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2338 if (media & TI_LNK_100MB)
2339 ifmr->ifm_active |= IFM_100_FX;
2340 if (media & TI_LNK_10MB)
2341 ifmr->ifm_active |= IFM_10_FL;
2342 if (media & TI_LNK_FULL_DUPLEX)
2343 ifmr->ifm_active |= IFM_FDX;
2344 if (media & TI_LNK_HALF_DUPLEX)
2345 ifmr->ifm_active |= IFM_HDX;
2346 }
2347
2348 return;
2349}
2350
2351static int ti_ioctl(ifp, command, data)
2352 struct ifnet *ifp;
2353 u_long command;
2354 caddr_t data;
2355{
2356 struct ti_softc *sc = ifp->if_softc;
2357 struct ifreq *ifr = (struct ifreq *) data;
2358 int s, error = 0;
2359 struct ti_cmd_desc cmd;
2360
2361 s = splimp();
2362
2363 switch(command) {
2364 case SIOCSIFADDR:
2365 case SIOCGIFADDR:
2366 error = ether_ioctl(ifp, command, data);
2367 break;
2368 case SIOCSIFMTU:
2369 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2370 error = EINVAL;
2371 else {
2372 ifp->if_mtu = ifr->ifr_mtu;
2373 ti_init(sc);
2374 }
2375 break;
2376 case SIOCSIFFLAGS:
2377 if (ifp->if_flags & IFF_UP) {
2378 /*
2379 * If only the state of the PROMISC flag changed,
2380 * then just use the 'set promisc mode' command
2381 * instead of reinitializing the entire NIC. Doing
2382 * a full re-init means reloading the firmware and
2383 * waiting for it to start up, which may take a
2384 * second or two.
2385 */
2386 if (ifp->if_flags & IFF_RUNNING &&
2387 ifp->if_flags & IFF_PROMISC &&
2388 !(sc->ti_if_flags & IFF_PROMISC)) {
2389 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2390 TI_CMD_CODE_PROMISC_ENB, 0);
2391 } else if (ifp->if_flags & IFF_RUNNING &&
2392 !(ifp->if_flags & IFF_PROMISC) &&
2393 sc->ti_if_flags & IFF_PROMISC) {
2394 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2395 TI_CMD_CODE_PROMISC_DIS, 0);
2396 } else
2397 ti_init(sc);
2398 } else {
2399 if (ifp->if_flags & IFF_RUNNING) {
2400 ti_stop(sc);
2401 }
2402 }
2403 sc->ti_if_flags = ifp->if_flags;
2404 error = 0;
2405 break;
2406 case SIOCADDMULTI:
2407 case SIOCDELMULTI:
2408 if (ifp->if_flags & IFF_RUNNING) {
2409 ti_setmulti(sc);
2410 error = 0;
2411 }
2412 break;
2413 case SIOCSIFMEDIA:
2414 case SIOCGIFMEDIA:
2415 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2416 break;
2417 default:
2418 error = EINVAL;
2419 break;
2420 }
2421
2422 (void)splx(s);
2423
2424 return(error);
2425}
2426
2427static void ti_watchdog(ifp)
2428 struct ifnet *ifp;
2429{
2430 struct ti_softc *sc;
2431
2432 sc = ifp->if_softc;
2433
2434 printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2435 ti_stop(sc);
2436 ti_init(sc);
2437
2438 ifp->if_oerrors++;
2439
2440 return;
2441}
2442
2443/*
2444 * Stop the adapter and free any mbufs allocated to the
2445 * RX and TX lists.
2446 */
2447static void ti_stop(sc)
2448 struct ti_softc *sc;
2449{
2450 struct ifnet *ifp;
2451 struct ti_cmd_desc cmd;
2452
2453 ifp = &sc->arpcom.ac_if;
2454
2455 /* Disable host interrupts. */
2456 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2457 /*
2458 * Tell firmware we're shutting down.
2459 */
2460 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2461
2462 /* Halt and reinitialize. */
2463 ti_chipinit(sc);
2464 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2465 ti_chipinit(sc);
2466
2467 /* Free the RX lists. */
2468 ti_free_rx_ring_std(sc);
2469
2470 /* Free jumbo RX list. */
2471 ti_free_rx_ring_jumbo(sc);
2472
2473 /* Free mini RX list. */
2474 ti_free_rx_ring_mini(sc);
2475
2476 /* Free TX buffers. */
2477 ti_free_tx_ring(sc);
2478
2479 sc->ti_ev_prodidx.ti_idx = 0;
2480 sc->ti_return_prodidx.ti_idx = 0;
2481 sc->ti_tx_considx.ti_idx = 0;
2482 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2483
2484 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2485
2486 return;
2487}
2488
2489/*
2490 * Stop all chip I/O so that the kernel's probe routines don't
2491 * get confused by errant DMAs when rebooting.
2492 */
2493static void ti_shutdown(dev)
2494 device_t dev;
2495{
2496 struct ti_softc *sc;
2497
2498 sc = device_get_softc(dev);
2499
2500 ti_chipinit(sc);
2501
2502 return;
2503}
1581 /* Allocate interrupt */
1582 rid = 0;
1583 sc->ti_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1584 RF_SHAREABLE | RF_ACTIVE);
1585
1586 if (sc->ti_irq == NULL) {
1587 printf("ti%d: couldn't map interrupt\n", unit);
1588 error = ENXIO;
1589 goto fail;
1590 }
1591
1592 error = bus_setup_intr(dev, sc->ti_irq, INTR_TYPE_NET,
1593 ti_intr, sc, &sc->ti_intrhand);
1594
1595 if (error) {
1596 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1597 bus_release_resource(dev, SYS_RES_MEMORY,
1598 TI_PCI_LOMEM, sc->ti_res);
1599 printf("ti%d: couldn't set up irq\n", unit);
1600 goto fail;
1601 }
1602
1603 sc->ti_unit = unit;
1604
1605 if (ti_chipinit(sc)) {
1606 printf("ti%d: chip initialization failed\n", sc->ti_unit);
1607 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1608 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1609 bus_release_resource(dev, SYS_RES_MEMORY,
1610 TI_PCI_LOMEM, sc->ti_res);
1611 error = ENXIO;
1612 goto fail;
1613 }
1614
1615 /* Zero out the NIC's on-board SRAM. */
1616 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1617
1618 /* Init again -- zeroing memory may have clobbered some registers. */
1619 if (ti_chipinit(sc)) {
1620 printf("ti%d: chip initialization failed\n", sc->ti_unit);
1621 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1622 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1623 bus_release_resource(dev, SYS_RES_MEMORY,
1624 TI_PCI_LOMEM, sc->ti_res);
1625 error = ENXIO;
1626 goto fail;
1627 }
1628
1629 /*
1630 * Get station address from the EEPROM. Note: the manual states
1631 * that the MAC address is at offset 0x8c, however the data is
1632 * stored as two longwords (since that's how it's loaded into
1633 * the NIC). This means the MAC address is actually preceeded
1634 * by two zero bytes. We need to skip over those.
1635 */
1636 if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
1637 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1638 printf("ti%d: failed to read station address\n", unit);
1639 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1640 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1641 bus_release_resource(dev, SYS_RES_MEMORY,
1642 TI_PCI_LOMEM, sc->ti_res);
1643 error = ENXIO;
1644 goto fail;
1645 }
1646
1647 /*
1648 * A Tigon chip was detected. Inform the world.
1649 */
1650 printf("ti%d: Ethernet address: %6D\n", unit,
1651 sc->arpcom.ac_enaddr, ":");
1652
1653 /* Allocate the general information block and ring buffers. */
1654 sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1655 M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
1656
1657 if (sc->ti_rdata == NULL) {
1658 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1659 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1660 bus_release_resource(dev, SYS_RES_MEMORY,
1661 TI_PCI_LOMEM, sc->ti_res);
1662 error = ENXIO;
1663 printf("ti%d: no memory for list buffers!\n", sc->ti_unit);
1664 goto fail;
1665 }
1666
1667 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1668
1669 /* Try to allocate memory for jumbo buffers. */
1670 if (ti_alloc_jumbo_mem(sc)) {
1671 printf("ti%d: jumbo buffer allocation failed\n", sc->ti_unit);
1672 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1673 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1674 bus_release_resource(dev, SYS_RES_MEMORY,
1675 TI_PCI_LOMEM, sc->ti_res);
1676 free(sc->ti_rdata, M_DEVBUF);
1677 error = ENXIO;
1678 goto fail;
1679 }
1680
1681 /* Set default tuneable values. */
1682 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1683 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1684 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1685 sc->ti_rx_max_coal_bds = 64;
1686 sc->ti_tx_max_coal_bds = 128;
1687 sc->ti_tx_buf_ratio = 21;
1688
1689 /* Set up ifnet structure */
1690 ifp = &sc->arpcom.ac_if;
1691 ifp->if_softc = sc;
1692 ifp->if_unit = sc->ti_unit;
1693 ifp->if_name = "ti";
1694 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1695 ifp->if_ioctl = ti_ioctl;
1696 ifp->if_output = ether_output;
1697 ifp->if_start = ti_start;
1698 ifp->if_watchdog = ti_watchdog;
1699 ifp->if_init = ti_init;
1700 ifp->if_mtu = ETHERMTU;
1701 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1702
1703 /* Set up ifmedia support. */
1704 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1705 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1706 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1707 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1708 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX, 0, NULL);
1709 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1710 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1711 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1712 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1713
1714 /*
1715 * Call MI attach routines.
1716 */
1717 if_attach(ifp);
1718 ether_ifattach(ifp);
1719
1720#if NBPF > 0
1721 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1722#endif
1723
1724fail:
1725 splx(s);
1726
1727 return(error);
1728}
1729
1730static int ti_detach(dev)
1731 device_t dev;
1732{
1733 struct ti_softc *sc;
1734 struct ifnet *ifp;
1735 int s;
1736
1737 s = splimp();
1738
1739 sc = device_get_softc(dev);
1740 ifp = &sc->arpcom.ac_if;
1741
1742 if_detach(ifp);
1743 ti_stop(sc);
1744
1745 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1746 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1747 bus_release_resource(dev, SYS_RES_MEMORY, TI_PCI_LOMEM, sc->ti_res);
1748
1749 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
1750 free(sc->ti_rdata, M_DEVBUF);
1751 ifmedia_removeall(&sc->ifmedia);
1752
1753 splx(s);
1754
1755 return(0);
1756}
1757
1758/*
1759 * Frame reception handling. This is called if there's a frame
1760 * on the receive return list.
1761 *
1762 * Note: we have to be able to handle three possibilities here:
1763 * 1) the frame is from the mini receive ring (can only happen)
1764 * on Tigon 2 boards)
1765 * 2) the frame is from the jumbo recieve ring
1766 * 3) the frame is from the standard receive ring
1767 */
1768
1769static void ti_rxeof(sc)
1770 struct ti_softc *sc;
1771{
1772 struct ifnet *ifp;
1773 struct ti_cmd_desc cmd;
1774
1775 ifp = &sc->arpcom.ac_if;
1776
1777 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1778 struct ti_rx_desc *cur_rx;
1779 u_int32_t rxidx;
1780 struct ether_header *eh;
1781 struct mbuf *m = NULL;
1782#if NVLAN > 0
1783 u_int16_t vlan_tag = 0;
1784 int have_tag = 0;
1785#endif
1786#ifdef TI_CSUM_OFFLOAD
1787 struct ip *ip;
1788#endif
1789
1790 cur_rx =
1791 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1792 rxidx = cur_rx->ti_idx;
1793 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1794
1795#if NVLAN > 0
1796 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1797 have_tag = 1;
1798 vlan_tag = cur_rx->ti_vlan_tag;
1799 }
1800#endif
1801
1802 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1803 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1804 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1805 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1806 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1807 ifp->if_ierrors++;
1808 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1809 continue;
1810 }
1811 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1812 ifp->if_ierrors++;
1813 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1814 continue;
1815 }
1816 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1817 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1818 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1819 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1820 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1821 ifp->if_ierrors++;
1822 ti_newbuf_mini(sc, sc->ti_mini, m);
1823 continue;
1824 }
1825 if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1826 ifp->if_ierrors++;
1827 ti_newbuf_mini(sc, sc->ti_mini, m);
1828 continue;
1829 }
1830 } else {
1831 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1832 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1833 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1834 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1835 ifp->if_ierrors++;
1836 ti_newbuf_std(sc, sc->ti_std, m);
1837 continue;
1838 }
1839 if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1840 ifp->if_ierrors++;
1841 ti_newbuf_std(sc, sc->ti_std, m);
1842 continue;
1843 }
1844 }
1845
1846 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1847 ifp->if_ipackets++;
1848 eh = mtod(m, struct ether_header *);
1849 m->m_pkthdr.rcvif = ifp;
1850
1851#if NBPF > 0
1852 /*
1853 * Handle BPF listeners. Let the BPF user see the packet, but
1854 * don't pass it up to the ether_input() layer unless it's
1855 * a broadcast packet, multicast packet, matches our ethernet
1856 * address or the interface is in promiscuous mode.
1857 */
1858 if (ifp->if_bpf) {
1859 bpf_mtap(ifp, m);
1860 if (ifp->if_flags & IFF_PROMISC &&
1861 (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1862 ETHER_ADDR_LEN) &&
1863 (eh->ether_dhost[0] & 1) == 0)) {
1864 m_freem(m);
1865 continue;
1866 }
1867 }
1868#endif
1869
1870 /* Remove header from mbuf and pass it on. */
1871 m_adj(m, sizeof(struct ether_header));
1872
1873#ifdef TI_CSUM_OFFLOAD
1874 ip = mtod(m, struct ip *);
1875 if (!(cur_rx->ti_tcp_udp_cksum ^ 0xFFFF) &&
1876 !(ip->ip_off & htons(IP_MF | IP_OFFMASK | IP_RF)))
1877 m->m_flags |= M_HWCKSUM;
1878#endif
1879
1880#if NVLAN > 0
1881 /*
1882 * If we received a packet with a vlan tag, pass it
1883 * to vlan_input() instead of ether_input().
1884 */
1885 if (have_tag) {
1886 vlan_input_tag(eh, m, vlan_tag);
1887 have_tag = vlan_tag = 0;
1888 continue;
1889 }
1890#endif
1891 ether_input(ifp, eh, m);
1892 }
1893
1894 /* Only necessary on the Tigon 1. */
1895 if (sc->ti_hwrev == TI_HWREV_TIGON)
1896 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1897 sc->ti_rx_saved_considx);
1898
1899 TI_UPDATE_STDPROD(sc, sc->ti_std);
1900 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1901 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1902
1903 return;
1904}
1905
1906static void ti_txeof(sc)
1907 struct ti_softc *sc;
1908{
1909 struct ti_tx_desc *cur_tx = NULL;
1910 struct ifnet *ifp;
1911
1912 ifp = &sc->arpcom.ac_if;
1913
1914 /*
1915 * Go through our tx ring and free mbufs for those
1916 * frames that have been sent.
1917 */
1918 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1919 u_int32_t idx = 0;
1920
1921 idx = sc->ti_tx_saved_considx;
1922 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1923 if (idx > 383)
1924 CSR_WRITE_4(sc, TI_WINBASE,
1925 TI_TX_RING_BASE + 6144);
1926 else if (idx > 255)
1927 CSR_WRITE_4(sc, TI_WINBASE,
1928 TI_TX_RING_BASE + 4096);
1929 else if (idx > 127)
1930 CSR_WRITE_4(sc, TI_WINBASE,
1931 TI_TX_RING_BASE + 2048);
1932 else
1933 CSR_WRITE_4(sc, TI_WINBASE,
1934 TI_TX_RING_BASE);
1935 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1936 } else
1937 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1938 if (cur_tx->ti_flags & TI_BDFLAG_END)
1939 ifp->if_opackets++;
1940 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1941 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1942 sc->ti_cdata.ti_tx_chain[idx] = NULL;
1943 }
1944 sc->ti_txcnt--;
1945 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1946 ifp->if_timer = 0;
1947 }
1948
1949 if (cur_tx != NULL)
1950 ifp->if_flags &= ~IFF_OACTIVE;
1951
1952 return;
1953}
1954
1955static void ti_intr(xsc)
1956 void *xsc;
1957{
1958 struct ti_softc *sc;
1959 struct ifnet *ifp;
1960
1961 sc = xsc;
1962 ifp = &sc->arpcom.ac_if;
1963
1964#ifdef notdef
1965 /* Avoid this for now -- checking this register is expensive. */
1966 /* Make sure this is really our interrupt. */
1967 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
1968 return;
1969#endif
1970
1971 /* Ack interrupt and stop others from occuring. */
1972 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1973
1974 if (ifp->if_flags & IFF_RUNNING) {
1975 /* Check RX return ring producer/consumer */
1976 ti_rxeof(sc);
1977
1978 /* Check TX ring producer/consumer */
1979 ti_txeof(sc);
1980 }
1981
1982 ti_handle_events(sc);
1983
1984 /* Re-enable interrupts. */
1985 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1986
1987 if (ifp->if_flags & IFF_RUNNING && ifp->if_snd.ifq_head != NULL)
1988 ti_start(ifp);
1989
1990 return;
1991}
1992
1993static void ti_stats_update(sc)
1994 struct ti_softc *sc;
1995{
1996 struct ifnet *ifp;
1997
1998 ifp = &sc->arpcom.ac_if;
1999
2000 ifp->if_collisions +=
2001 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2002 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2003 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2004 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2005 ifp->if_collisions;
2006
2007 return;
2008}
2009
2010/*
2011 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2012 * pointers to descriptors.
2013 */
2014static int ti_encap(sc, m_head, txidx)
2015 struct ti_softc *sc;
2016 struct mbuf *m_head;
2017 u_int32_t *txidx;
2018{
2019 struct ti_tx_desc *f = NULL;
2020 struct mbuf *m;
2021 u_int32_t frag, cur, cnt = 0;
2022#if NVLAN > 0
2023 struct ifvlan *ifv = NULL;
2024
2025 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2026 m_head->m_pkthdr.rcvif != NULL &&
2027 m_head->m_pkthdr.rcvif->if_type == IFT_8021_VLAN)
2028 ifv = m_head->m_pkthdr.rcvif->if_softc;
2029#endif
2030
2031 m = m_head;
2032 cur = frag = *txidx;
2033
2034 /*
2035 * Start packing the mbufs in this chain into
2036 * the fragment pointers. Stop when we run out
2037 * of fragments or hit the end of the mbuf chain.
2038 */
2039 for (m = m_head; m != NULL; m = m->m_next) {
2040 if (m->m_len != 0) {
2041 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2042 if (frag > 383)
2043 CSR_WRITE_4(sc, TI_WINBASE,
2044 TI_TX_RING_BASE + 6144);
2045 else if (frag > 255)
2046 CSR_WRITE_4(sc, TI_WINBASE,
2047 TI_TX_RING_BASE + 4096);
2048 else if (frag > 127)
2049 CSR_WRITE_4(sc, TI_WINBASE,
2050 TI_TX_RING_BASE + 2048);
2051 else
2052 CSR_WRITE_4(sc, TI_WINBASE,
2053 TI_TX_RING_BASE);
2054 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
2055 } else
2056 f = &sc->ti_rdata->ti_tx_ring[frag];
2057 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2058 break;
2059 TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
2060 f->ti_len = m->m_len;
2061 f->ti_flags = 0;
2062#if NVLAN > 0
2063 if (ifv != NULL) {
2064 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2065 f->ti_vlan_tag = ifv->ifv_tag;
2066 } else {
2067 f->ti_vlan_tag = 0;
2068 }
2069#endif
2070 /*
2071 * Sanity check: avoid coming within 16 descriptors
2072 * of the end of the ring.
2073 */
2074 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2075 return(ENOBUFS);
2076 cur = frag;
2077 TI_INC(frag, TI_TX_RING_CNT);
2078 cnt++;
2079 }
2080 }
2081
2082 if (m != NULL)
2083 return(ENOBUFS);
2084
2085 if (frag == sc->ti_tx_saved_considx)
2086 return(ENOBUFS);
2087
2088 if (sc->ti_hwrev == TI_HWREV_TIGON)
2089 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
2090 TI_BDFLAG_END;
2091 else
2092 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2093 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2094 sc->ti_txcnt += cnt;
2095
2096 *txidx = frag;
2097
2098 return(0);
2099}
2100
2101/*
2102 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2103 * to the mbuf data regions directly in the transmit descriptors.
2104 */
2105static void ti_start(ifp)
2106 struct ifnet *ifp;
2107{
2108 struct ti_softc *sc;
2109 struct mbuf *m_head = NULL;
2110 u_int32_t prodidx = 0;
2111
2112 sc = ifp->if_softc;
2113
2114 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2115
2116 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2117 IF_DEQUEUE(&ifp->if_snd, m_head);
2118 if (m_head == NULL)
2119 break;
2120
2121 /*
2122 * Pack the data into the transmit ring. If we
2123 * don't have room, set the OACTIVE flag and wait
2124 * for the NIC to drain the ring.
2125 */
2126 if (ti_encap(sc, m_head, &prodidx)) {
2127 IF_PREPEND(&ifp->if_snd, m_head);
2128 ifp->if_flags |= IFF_OACTIVE;
2129 break;
2130 }
2131
2132 /*
2133 * If there's a BPF listener, bounce a copy of this frame
2134 * to him.
2135 */
2136#if NBPF > 0
2137 if (ifp->if_bpf)
2138 bpf_mtap(ifp, m_head);
2139#endif
2140 }
2141
2142 /* Transmit */
2143 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2144
2145 /*
2146 * Set a timeout in case the chip goes out to lunch.
2147 */
2148 ifp->if_timer = 5;
2149
2150 return;
2151}
2152
2153static void ti_init(xsc)
2154 void *xsc;
2155{
2156 struct ti_softc *sc = xsc;
2157 int s;
2158
2159 s = splimp();
2160
2161 /* Cancel pending I/O and flush buffers. */
2162 ti_stop(sc);
2163
2164 /* Init the gen info block, ring control blocks and firmware. */
2165 if (ti_gibinit(sc)) {
2166 printf("ti%d: initialization failure\n", sc->ti_unit);
2167 splx(s);
2168 return;
2169 }
2170
2171 splx(s);
2172
2173 return;
2174}
2175
2176static void ti_init2(sc)
2177 struct ti_softc *sc;
2178{
2179 struct ti_cmd_desc cmd;
2180 struct ifnet *ifp;
2181 u_int16_t *m;
2182 struct ifmedia *ifm;
2183 int tmp;
2184
2185 ifp = &sc->arpcom.ac_if;
2186
2187 /* Specify MTU and interface index. */
2188 CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_unit);
2189 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2190 ETHER_HDR_LEN + ETHER_CRC_LEN);
2191 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2192
2193 /* Load our MAC address. */
2194 m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2195 CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2196 CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2197 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2198
2199 /* Enable or disable promiscuous mode as needed. */
2200 if (ifp->if_flags & IFF_PROMISC) {
2201 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2202 } else {
2203 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2204 }
2205
2206 /* Program multicast filter. */
2207 ti_setmulti(sc);
2208
2209 /*
2210 * If this is a Tigon 1, we should tell the
2211 * firmware to use software packet filtering.
2212 */
2213 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2214 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2215 }
2216
2217 /* Init RX ring. */
2218 ti_init_rx_ring_std(sc);
2219
2220 /* Init jumbo RX ring. */
2221 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2222 ti_init_rx_ring_jumbo(sc);
2223
2224 /*
2225 * If this is a Tigon 2, we can also configure the
2226 * mini ring.
2227 */
2228 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2229 ti_init_rx_ring_mini(sc);
2230
2231 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2232 sc->ti_rx_saved_considx = 0;
2233
2234 /* Init TX ring. */
2235 ti_init_tx_ring(sc);
2236
2237 /* Tell firmware we're alive. */
2238 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2239
2240 /* Enable host interrupts. */
2241 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2242
2243 ifp->if_flags |= IFF_RUNNING;
2244 ifp->if_flags &= ~IFF_OACTIVE;
2245
2246 /*
2247 * Make sure to set media properly. We have to do this
2248 * here since we have to issue commands in order to set
2249 * the link negotiation and we can't issue commands until
2250 * the firmware is running.
2251 */
2252 ifm = &sc->ifmedia;
2253 tmp = ifm->ifm_media;
2254 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2255 ti_ifmedia_upd(ifp);
2256 ifm->ifm_media = tmp;
2257
2258 return;
2259}
2260
2261/*
2262 * Set media options.
2263 */
2264static int ti_ifmedia_upd(ifp)
2265 struct ifnet *ifp;
2266{
2267 struct ti_softc *sc;
2268 struct ifmedia *ifm;
2269 struct ti_cmd_desc cmd;
2270
2271 sc = ifp->if_softc;
2272 ifm = &sc->ifmedia;
2273
2274 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2275 return(EINVAL);
2276
2277 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2278 case IFM_AUTO:
2279 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2280 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2281 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2282 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2283 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2284 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2285 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2286 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2287 break;
2288 case IFM_1000_SX:
2289 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2290 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2291 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2292 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2293 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2294 break;
2295 case IFM_100_FX:
2296 case IFM_10_FL:
2297 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2298 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2299 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX) {
2300 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2301 } else {
2302 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2303 }
2304 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2305 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2306 } else {
2307 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2308 }
2309 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2310 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2311 break;
2312 }
2313
2314 return(0);
2315}
2316
2317/*
2318 * Report current media status.
2319 */
2320static void ti_ifmedia_sts(ifp, ifmr)
2321 struct ifnet *ifp;
2322 struct ifmediareq *ifmr;
2323{
2324 struct ti_softc *sc;
2325
2326 sc = ifp->if_softc;
2327
2328 ifmr->ifm_status = IFM_AVALID;
2329 ifmr->ifm_active = IFM_ETHER;
2330
2331 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2332 return;
2333
2334 ifmr->ifm_status |= IFM_ACTIVE;
2335
2336 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
2337 ifmr->ifm_active |= IFM_1000_SX|IFM_FDX;
2338 else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2339 u_int32_t media;
2340 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2341 if (media & TI_LNK_100MB)
2342 ifmr->ifm_active |= IFM_100_FX;
2343 if (media & TI_LNK_10MB)
2344 ifmr->ifm_active |= IFM_10_FL;
2345 if (media & TI_LNK_FULL_DUPLEX)
2346 ifmr->ifm_active |= IFM_FDX;
2347 if (media & TI_LNK_HALF_DUPLEX)
2348 ifmr->ifm_active |= IFM_HDX;
2349 }
2350
2351 return;
2352}
2353
2354static int ti_ioctl(ifp, command, data)
2355 struct ifnet *ifp;
2356 u_long command;
2357 caddr_t data;
2358{
2359 struct ti_softc *sc = ifp->if_softc;
2360 struct ifreq *ifr = (struct ifreq *) data;
2361 int s, error = 0;
2362 struct ti_cmd_desc cmd;
2363
2364 s = splimp();
2365
2366 switch(command) {
2367 case SIOCSIFADDR:
2368 case SIOCGIFADDR:
2369 error = ether_ioctl(ifp, command, data);
2370 break;
2371 case SIOCSIFMTU:
2372 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2373 error = EINVAL;
2374 else {
2375 ifp->if_mtu = ifr->ifr_mtu;
2376 ti_init(sc);
2377 }
2378 break;
2379 case SIOCSIFFLAGS:
2380 if (ifp->if_flags & IFF_UP) {
2381 /*
2382 * If only the state of the PROMISC flag changed,
2383 * then just use the 'set promisc mode' command
2384 * instead of reinitializing the entire NIC. Doing
2385 * a full re-init means reloading the firmware and
2386 * waiting for it to start up, which may take a
2387 * second or two.
2388 */
2389 if (ifp->if_flags & IFF_RUNNING &&
2390 ifp->if_flags & IFF_PROMISC &&
2391 !(sc->ti_if_flags & IFF_PROMISC)) {
2392 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2393 TI_CMD_CODE_PROMISC_ENB, 0);
2394 } else if (ifp->if_flags & IFF_RUNNING &&
2395 !(ifp->if_flags & IFF_PROMISC) &&
2396 sc->ti_if_flags & IFF_PROMISC) {
2397 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2398 TI_CMD_CODE_PROMISC_DIS, 0);
2399 } else
2400 ti_init(sc);
2401 } else {
2402 if (ifp->if_flags & IFF_RUNNING) {
2403 ti_stop(sc);
2404 }
2405 }
2406 sc->ti_if_flags = ifp->if_flags;
2407 error = 0;
2408 break;
2409 case SIOCADDMULTI:
2410 case SIOCDELMULTI:
2411 if (ifp->if_flags & IFF_RUNNING) {
2412 ti_setmulti(sc);
2413 error = 0;
2414 }
2415 break;
2416 case SIOCSIFMEDIA:
2417 case SIOCGIFMEDIA:
2418 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2419 break;
2420 default:
2421 error = EINVAL;
2422 break;
2423 }
2424
2425 (void)splx(s);
2426
2427 return(error);
2428}
2429
2430static void ti_watchdog(ifp)
2431 struct ifnet *ifp;
2432{
2433 struct ti_softc *sc;
2434
2435 sc = ifp->if_softc;
2436
2437 printf("ti%d: watchdog timeout -- resetting\n", sc->ti_unit);
2438 ti_stop(sc);
2439 ti_init(sc);
2440
2441 ifp->if_oerrors++;
2442
2443 return;
2444}
2445
2446/*
2447 * Stop the adapter and free any mbufs allocated to the
2448 * RX and TX lists.
2449 */
2450static void ti_stop(sc)
2451 struct ti_softc *sc;
2452{
2453 struct ifnet *ifp;
2454 struct ti_cmd_desc cmd;
2455
2456 ifp = &sc->arpcom.ac_if;
2457
2458 /* Disable host interrupts. */
2459 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2460 /*
2461 * Tell firmware we're shutting down.
2462 */
2463 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2464
2465 /* Halt and reinitialize. */
2466 ti_chipinit(sc);
2467 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2468 ti_chipinit(sc);
2469
2470 /* Free the RX lists. */
2471 ti_free_rx_ring_std(sc);
2472
2473 /* Free jumbo RX list. */
2474 ti_free_rx_ring_jumbo(sc);
2475
2476 /* Free mini RX list. */
2477 ti_free_rx_ring_mini(sc);
2478
2479 /* Free TX buffers. */
2480 ti_free_tx_ring(sc);
2481
2482 sc->ti_ev_prodidx.ti_idx = 0;
2483 sc->ti_return_prodidx.ti_idx = 0;
2484 sc->ti_tx_considx.ti_idx = 0;
2485 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2486
2487 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2488
2489 return;
2490}
2491
2492/*
2493 * Stop all chip I/O so that the kernel's probe routines don't
2494 * get confused by errant DMAs when rebooting.
2495 */
2496static void ti_shutdown(dev)
2497 device_t dev;
2498{
2499 struct ti_softc *sc;
2500
2501 sc = device_get_softc(dev);
2502
2503 ti_chipinit(sc);
2504
2505 return;
2506}