1/*
2 * Copyright (c) 2010-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*-
29 * Copyright (c) 2007-2009 Bruce Simpson.
30 * Copyright (c) 2005 Robert N. M. Watson.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. The name of the author may not be used to endorse or promote
42 *    products derived from this software without specific prior written
43 *    permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58/*
59 * IPv4 multicast socket, group, and socket option processing module.
60 */
61
62#include <sys/cdefs.h>
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/kernel.h>
67#include <sys/malloc.h>
68#include <sys/mbuf.h>
69#include <sys/protosw.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/protosw.h>
73#include <sys/sysctl.h>
74#include <sys/tree.h>
75#include <sys/mcache.h>
76
77#include <kern/zalloc.h>
78
79#include <pexpert/pexpert.h>
80
81#include <net/if.h>
82#include <net/if_dl.h>
83#include <net/route.h>
84
85#include <netinet/in.h>
86#include <netinet/in_systm.h>
87#include <netinet/in_pcb.h>
88#include <netinet/in_var.h>
89#include <netinet/ip_var.h>
90#include <netinet/igmp_var.h>
91
92#ifndef __SOCKUNION_DECLARED
93union sockunion {
94	struct sockaddr_storage	ss;
95	struct sockaddr		sa;
96	struct sockaddr_dl	sdl;
97	struct sockaddr_in	sin;
98};
99typedef union sockunion sockunion_t;
100#define __SOCKUNION_DECLARED
101#endif /* __SOCKUNION_DECLARED */
102
103/*
104 * Functions with non-static linkage defined in this file should be
105 * declared in in_var.h:
106 *  imo_multi_filter()
107 *  in_addmulti()
108 *  in_delmulti()
109 *  in_joingroup()
110 *  in_leavegroup()
111 * and ip_var.h:
112 *  inp_freemoptions()
113 *  inp_getmoptions()
114 *  inp_setmoptions()
115 *
116 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
117 * and in_delmulti().
118 */
119static void	imf_commit(struct in_mfilter *);
120static int	imf_get_source(struct in_mfilter *imf,
121		    const struct sockaddr_in *psin,
122		    struct in_msource **);
123static struct in_msource *
124		imf_graft(struct in_mfilter *, const uint8_t,
125		    const struct sockaddr_in *);
126static int	imf_prune(struct in_mfilter *, const struct sockaddr_in *);
127static void	imf_rollback(struct in_mfilter *);
128static void	imf_reap(struct in_mfilter *);
129static int	imo_grow(struct ip_moptions *, size_t);
130static size_t	imo_match_group(const struct ip_moptions *,
131		    const struct ifnet *, const struct sockaddr *);
132static struct in_msource *
133		imo_match_source(const struct ip_moptions *, const size_t,
134		    const struct sockaddr *);
135static void	ims_merge(struct ip_msource *ims,
136		    const struct in_msource *lims, const int rollback);
137static int	in_getmulti(struct ifnet *, const struct in_addr *,
138		    struct in_multi **);
139static int	in_joingroup(struct ifnet *, const struct in_addr *,
140		    struct in_mfilter *, struct in_multi **);
141static int	inm_get_source(struct in_multi *inm, const in_addr_t haddr,
142		    const int noalloc, struct ip_msource **pims);
143static int	inm_is_ifp_detached(const struct in_multi *);
144static int	inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
145static void	inm_reap(struct in_multi *);
146static struct ip_moptions *
147		inp_findmoptions(struct inpcb *);
148static int	inp_get_source_filters(struct inpcb *, struct sockopt *);
149static struct ifnet *
150		inp_lookup_mcast_ifp(const struct inpcb *,
151		    const struct sockaddr_in *, const struct in_addr);
152static int	inp_block_unblock_source(struct inpcb *, struct sockopt *);
153static int	inp_set_multicast_if(struct inpcb *, struct sockopt *);
154static int	inp_set_source_filters(struct inpcb *, struct sockopt *);
155static int	sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS;
156static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *);
157static __inline__ int ip_msource_cmp(const struct ip_msource *,
158    const struct ip_msource *);
159
160SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast");
161
162static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
163SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
164    CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group");
165
166static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
167SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
168    CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc,
169    "Max source filters per socket");
170
171int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
172SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
173    &in_mcast_loop, 0, "Loopback multicast datagrams by default");
174
175SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
176    CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters,
177    "Per-interface stack-wide source filters");
178
179RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
180
181#define	INM_TRACE_HIST_SIZE	32	/* size of trace history */
182
183/* For gdb */
184__private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE;
185
186struct in_multi_dbg {
187	struct in_multi		inm;			/* in_multi */
188	u_int16_t		inm_refhold_cnt;	/* # of ref */
189	u_int16_t		inm_refrele_cnt;	/* # of rele */
190	/*
191	 * Circular lists of inm_addref and inm_remref callers.
192	 */
193	ctrace_t		inm_refhold[INM_TRACE_HIST_SIZE];
194	ctrace_t		inm_refrele[INM_TRACE_HIST_SIZE];
195	/*
196	 * Trash list linkage
197	 */
198	TAILQ_ENTRY(in_multi_dbg) inm_trash_link;
199};
200
201/* List of trash in_multi entries protected by inm_trash_lock */
202static TAILQ_HEAD(, in_multi_dbg) inm_trash_head;
203static decl_lck_mtx_data(, inm_trash_lock);
204
205#define	INM_ZONE_MAX		64		/* maximum elements in zone */
206#define	INM_ZONE_NAME		"in_multi"	/* zone name */
207
208#if DEBUG
209static unsigned int inm_debug = 1;		/* debugging (enabled) */
210#else
211static unsigned int inm_debug;			/* debugging (disabled) */
212#endif /* !DEBUG */
213static unsigned int inm_size;			/* size of zone element */
214static struct zone *inm_zone;			/* zone for in_multi */
215
216#define	IPMS_ZONE_MAX		64		/* maximum elements in zone */
217#define	IPMS_ZONE_NAME		"ip_msource"	/* zone name */
218
219static unsigned int ipms_size;			/* size of zone element */
220static struct zone *ipms_zone;			/* zone for ip_msource */
221
222#define	INMS_ZONE_MAX		64		/* maximum elements in zone */
223#define	INMS_ZONE_NAME		"in_msource"	/* zone name */
224
225static unsigned int inms_size;			/* size of zone element */
226static struct zone *inms_zone;			/* zone for in_msource */
227
228/* Lock group and attribute for in_multihead_lock lock */
229static lck_attr_t	*in_multihead_lock_attr;
230static lck_grp_t	*in_multihead_lock_grp;
231static lck_grp_attr_t	*in_multihead_lock_grp_attr;
232
233static decl_lck_rw_data(, in_multihead_lock);
234struct in_multihead in_multihead;
235
236static struct in_multi *in_multi_alloc(int);
237static void in_multi_free(struct in_multi *);
238static void in_multi_attach(struct in_multi *);
239static void inm_trace(struct in_multi *, int);
240
241static struct ip_msource *ipms_alloc(int);
242static void ipms_free(struct ip_msource *);
243static struct in_msource *inms_alloc(int);
244static void inms_free(struct in_msource *);
245
246static __inline int
247ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b)
248{
249
250	if (a->ims_haddr < b->ims_haddr)
251		return (-1);
252	if (a->ims_haddr == b->ims_haddr)
253		return (0);
254	return (1);
255}
256
257/*
258 * Inline function which wraps assertions for a valid ifp.
259 */
260static __inline__ int
261inm_is_ifp_detached(const struct in_multi *inm)
262{
263	VERIFY(inm->inm_ifma != NULL);
264	VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp);
265
266	return (!ifnet_is_attached(inm->inm_ifp, 0));
267}
268
269/*
270 * Initialize an in_mfilter structure to a known state at t0, t1
271 * with an empty source filter list.
272 */
273static __inline__ void
274imf_init(struct in_mfilter *imf, const int st0, const int st1)
275{
276	memset(imf, 0, sizeof(struct in_mfilter));
277	RB_INIT(&imf->imf_sources);
278	imf->imf_st[0] = st0;
279	imf->imf_st[1] = st1;
280}
281
282/*
283 * Resize the ip_moptions vector to the next power-of-two minus 1.
284 */
285static int
286imo_grow(struct ip_moptions *imo, size_t newmax)
287{
288	struct in_multi		**nmships;
289	struct in_multi		**omships;
290	struct in_mfilter	 *nmfilters;
291	struct in_mfilter	 *omfilters;
292	size_t			  idx;
293	size_t			  oldmax;
294
295	IMO_LOCK_ASSERT_HELD(imo);
296
297	nmships = NULL;
298	nmfilters = NULL;
299	omships = imo->imo_membership;
300	omfilters = imo->imo_mfilters;
301	oldmax = imo->imo_max_memberships;
302	if (newmax == 0)
303		newmax = ((oldmax + 1) * 2) - 1;
304
305	if (newmax > IP_MAX_MEMBERSHIPS)
306		return (ETOOMANYREFS);
307
308	if ((nmships = (struct in_multi **)_REALLOC(omships,
309	    sizeof (struct in_multi *) * newmax, M_IPMOPTS,
310	    M_WAITOK | M_ZERO)) == NULL)
311		return (ENOMEM);
312
313	imo->imo_membership = nmships;
314
315	if ((nmfilters = (struct in_mfilter *)_REALLOC(omfilters,
316	    sizeof (struct in_mfilter) * newmax, M_INMFILTER,
317	    M_WAITOK | M_ZERO)) == NULL)
318		return (ENOMEM);
319
320	imo->imo_mfilters = nmfilters;
321
322	/* Initialize newly allocated source filter heads. */
323	for (idx = oldmax; idx < newmax; idx++)
324		imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
325
326	imo->imo_max_memberships = newmax;
327
328	return (0);
329}
330
331/*
332 * Find an IPv4 multicast group entry for this ip_moptions instance
333 * which matches the specified group, and optionally an interface.
334 * Return its index into the array, or -1 if not found.
335 */
336static size_t
337imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
338    const struct sockaddr *group)
339{
340	const struct sockaddr_in *gsin;
341	struct in_multi	*pinm;
342	int		  idx;
343	int		  nmships;
344
345	IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
346
347	gsin = (struct sockaddr_in *)(uintptr_t)(size_t)group;
348
349	/* The imo_membership array may be lazy allocated. */
350	if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
351		return (-1);
352
353	nmships = imo->imo_num_memberships;
354	for (idx = 0; idx < nmships; idx++) {
355		pinm = imo->imo_membership[idx];
356		if (pinm == NULL)
357			continue;
358		INM_LOCK(pinm);
359		if ((ifp == NULL || (pinm->inm_ifp == ifp)) &&
360		    in_hosteq(pinm->inm_addr, gsin->sin_addr)) {
361			INM_UNLOCK(pinm);
362			break;
363		}
364		INM_UNLOCK(pinm);
365	}
366	if (idx >= nmships)
367		idx = -1;
368
369	return (idx);
370}
371
372/*
373 * Find an IPv4 multicast source entry for this imo which matches
374 * the given group index for this socket, and source address.
375 *
376 * NOTE: This does not check if the entry is in-mode, merely if
377 * it exists, which may not be the desired behaviour.
378 */
379static struct in_msource *
380imo_match_source(const struct ip_moptions *imo, const size_t gidx,
381    const struct sockaddr *src)
382{
383	struct ip_msource	 find;
384	struct in_mfilter	*imf;
385	struct ip_msource	*ims;
386	const sockunion_t	*psa;
387
388	IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
389
390	VERIFY(src->sa_family == AF_INET);
391	VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships);
392
393	/* The imo_mfilters array may be lazy allocated. */
394	if (imo->imo_mfilters == NULL)
395		return (NULL);
396	imf = &imo->imo_mfilters[gidx];
397
398	/* Source trees are keyed in host byte order. */
399	psa = (sockunion_t *)(uintptr_t)(size_t)src;
400	find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr);
401	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
402
403	return ((struct in_msource *)ims);
404}
405
406/*
407 * Perform filtering for multicast datagrams on a socket by group and source.
408 *
409 * Returns 0 if a datagram should be allowed through, or various error codes
410 * if the socket was not a member of the group, or the source was muted, etc.
411 */
412int
413imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
414    const struct sockaddr *group, const struct sockaddr *src)
415{
416	size_t gidx;
417	struct in_msource *ims;
418	int mode;
419
420	IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
421	VERIFY(ifp != NULL);
422
423	gidx = imo_match_group(imo, ifp, group);
424	if (gidx == (size_t)-1)
425		return (MCAST_NOTGMEMBER);
426
427	/*
428	 * Check if the source was included in an (S,G) join.
429	 * Allow reception on exclusive memberships by default,
430	 * reject reception on inclusive memberships by default.
431	 * Exclude source only if an in-mode exclude filter exists.
432	 * Include source only if an in-mode include filter exists.
433	 * NOTE: We are comparing group state here at IGMP t1 (now)
434	 * with socket-layer t0 (since last downcall).
435	 */
436	mode = imo->imo_mfilters[gidx].imf_st[1];
437	ims = imo_match_source(imo, gidx, src);
438
439	if ((ims == NULL && mode == MCAST_INCLUDE) ||
440	    (ims != NULL && ims->imsl_st[0] != mode)) {
441		return (MCAST_NOTSMEMBER);
442	}
443
444	return (MCAST_PASS);
445}
446
447int
448imo_clone(struct inpcb *from_inp, struct inpcb *to_inp)
449{
450	int i, err = 0;
451	struct ip_moptions *from;
452	struct ip_moptions *to;
453
454	from = inp_findmoptions(from_inp);
455	if (from == NULL)
456		return (ENOMEM);
457
458	to = inp_findmoptions(to_inp);
459	if (to == NULL) {
460		IMO_REMREF(from);
461		return (ENOMEM);
462	}
463
464	IMO_LOCK(from);
465	IMO_LOCK(to);
466
467        to->imo_multicast_ifp = from->imo_multicast_ifp;
468        to->imo_multicast_vif = from->imo_multicast_vif;
469        to->imo_multicast_ttl = from->imo_multicast_ttl;
470        to->imo_multicast_loop = from->imo_multicast_loop;
471
472	/*
473	 * We're cloning, so drop any existing memberships and source
474	 * filters on the destination ip_moptions.
475	 */
476	for (i = 0; i < to->imo_num_memberships; ++i) {
477		struct in_mfilter *imf;
478
479		imf = to->imo_mfilters ? &to->imo_mfilters[i] : NULL;
480		if (imf != NULL)
481			imf_leave(imf);
482
483		(void) in_leavegroup(to->imo_membership[i], imf);
484
485		if (imf != NULL)
486			imf_purge(imf);
487
488		INM_REMREF(to->imo_membership[i]);
489		to->imo_membership[i] = NULL;
490	}
491	to->imo_num_memberships = 0;
492
493	VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0);
494	if (to->imo_max_memberships < from->imo_max_memberships) {
495		/*
496		 * Ensure source and destination ip_moptions memberships
497		 * and source filters arrays are at least equal in size.
498		 */
499		err = imo_grow(to, from->imo_max_memberships);
500		if (err != 0)
501			goto done;
502	}
503	VERIFY(to->imo_max_memberships >= from->imo_max_memberships);
504
505	/*
506	 * Source filtering doesn't apply to OpenTransport socket,
507	 * so simply hold additional reference count per membership.
508	 */
509	for (i = 0; i < from->imo_num_memberships; i++) {
510		to->imo_membership[i] =
511			in_addmulti(&from->imo_membership[i]->inm_addr,
512						from->imo_membership[i]->inm_ifp);
513		if (to->imo_membership[i] == NULL)
514			break;
515		to->imo_num_memberships++;
516        }
517	VERIFY(to->imo_num_memberships == from->imo_num_memberships);
518
519done:
520	IMO_UNLOCK(to);
521	IMO_REMREF(to);
522	IMO_UNLOCK(from);
523	IMO_REMREF(from);
524
525	return (err);
526}
527
528/*
529 * Find and return a reference to an in_multi record for (ifp, group),
530 * and bump its reference count.
531 * If one does not exist, try to allocate it, and update link-layer multicast
532 * filters on ifp to listen for group.
533 * Return 0 if successful, otherwise return an appropriate error code.
534 */
535static int
536in_getmulti(struct ifnet *ifp, const struct in_addr *group,
537    struct in_multi **pinm)
538{
539	struct sockaddr_in	 gsin;
540	struct ifmultiaddr	*ifma;
541	struct in_multi		*inm;
542	int			error;
543
544	in_multihead_lock_shared();
545	IN_LOOKUP_MULTI(group, ifp, inm);
546	if (inm != NULL) {
547		INM_LOCK(inm);
548		VERIFY(inm->inm_reqcnt >= 1);
549		inm->inm_reqcnt++;
550		VERIFY(inm->inm_reqcnt != 0);
551		*pinm = inm;
552		INM_UNLOCK(inm);
553		in_multihead_lock_done();
554		/*
555		 * We already joined this group; return the inm
556		 * with a refcount held (via lookup) for caller.
557		 */
558		return (0);
559	}
560	in_multihead_lock_done();
561
562	bzero(&gsin, sizeof(gsin));
563	gsin.sin_family = AF_INET;
564	gsin.sin_len = sizeof(struct sockaddr_in);
565	gsin.sin_addr = *group;
566
567	/*
568	 * Check if a link-layer group is already associated
569	 * with this network-layer group on the given ifnet.
570	 */
571	error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
572	if (error != 0)
573		return (error);
574
575	/*
576	 * See comments in inm_remref() for access to ifma_protospec.
577	 */
578	in_multihead_lock_exclusive();
579	IFMA_LOCK(ifma);
580	if ((inm = ifma->ifma_protospec) != NULL) {
581		VERIFY(ifma->ifma_addr != NULL);
582		VERIFY(ifma->ifma_addr->sa_family == AF_INET);
583		INM_ADDREF(inm);	/* for caller */
584		IFMA_UNLOCK(ifma);
585		INM_LOCK(inm);
586		VERIFY(inm->inm_ifma == ifma);
587		VERIFY(inm->inm_ifp == ifp);
588		VERIFY(in_hosteq(inm->inm_addr, *group));
589		if (inm->inm_debug & IFD_ATTACHED) {
590			VERIFY(inm->inm_reqcnt >= 1);
591			inm->inm_reqcnt++;
592			VERIFY(inm->inm_reqcnt != 0);
593			*pinm = inm;
594			INM_UNLOCK(inm);
595			in_multihead_lock_done();
596			IFMA_REMREF(ifma);
597			/*
598			 * We lost the race with another thread doing
599			 * in_getmulti(); since this group has already
600			 * been joined; return the inm with a refcount
601			 * held for caller.
602			 */
603			return (0);
604		}
605		/*
606		 * We lost the race with another thread doing in_delmulti();
607		 * the inm referring to the ifma has been detached, thus we
608		 * reattach it back to the in_multihead list and return the
609		 * inm with a refcount held for the caller.
610		 */
611		in_multi_attach(inm);
612		VERIFY((inm->inm_debug &
613		    (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
614		*pinm = inm;
615		INM_UNLOCK(inm);
616		in_multihead_lock_done();
617		IFMA_REMREF(ifma);
618		return (0);
619	}
620	IFMA_UNLOCK(ifma);
621
622	/*
623	 * A new in_multi record is needed; allocate and initialize it.
624	 * We DO NOT perform an IGMP join as the in_ layer may need to
625	 * push an initial source list down to IGMP to support SSM.
626	 *
627	 * The initial source filter state is INCLUDE, {} as per the RFC.
628	 */
629	inm = in_multi_alloc(M_WAITOK);
630	if (inm == NULL) {
631		in_multihead_lock_done();
632		IFMA_REMREF(ifma);
633		return (ENOMEM);
634	}
635	INM_LOCK(inm);
636	inm->inm_addr = *group;
637	inm->inm_ifp = ifp;
638	inm->inm_igi = IGMP_IFINFO(ifp);
639	VERIFY(inm->inm_igi != NULL);
640	IGI_ADDREF(inm->inm_igi);
641	inm->inm_ifma = ifma;		/* keep refcount from if_addmulti() */
642	inm->inm_state = IGMP_NOT_MEMBER;
643	/*
644	 * Pending state-changes per group are subject to a bounds check.
645	 */
646	inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES;
647	inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
648	inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
649	RB_INIT(&inm->inm_srcs);
650	*pinm = inm;
651	in_multi_attach(inm);
652	VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
653	INM_ADDREF_LOCKED(inm);		/* for caller */
654	INM_UNLOCK(inm);
655
656	IFMA_LOCK(ifma);
657	VERIFY(ifma->ifma_protospec == NULL);
658	ifma->ifma_protospec = inm;
659	IFMA_UNLOCK(ifma);
660	in_multihead_lock_done();
661
662	return (0);
663}
664
665/*
666 * Clear recorded source entries for a group.
667 * Used by the IGMP code.
668 * FIXME: Should reap.
669 */
670void
671inm_clear_recorded(struct in_multi *inm)
672{
673	struct ip_msource	*ims;
674
675	INM_LOCK_ASSERT_HELD(inm);
676
677	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
678		if (ims->ims_stp) {
679			ims->ims_stp = 0;
680			--inm->inm_st[1].iss_rec;
681		}
682	}
683	VERIFY(inm->inm_st[1].iss_rec == 0);
684}
685
686/*
687 * Record a source as pending for a Source-Group IGMPv3 query.
688 * This lives here as it modifies the shared tree.
689 *
690 * inm is the group descriptor.
691 * naddr is the address of the source to record in network-byte order.
692 *
693 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
694 * lazy-allocate a source node in response to an SG query.
695 * Otherwise, no allocation is performed. This saves some memory
696 * with the trade-off that the source will not be reported to the
697 * router if joined in the window between the query response and
698 * the group actually being joined on the local host.
699 *
700 * Return 0 if the source didn't exist or was already marked as recorded.
701 * Return 1 if the source was marked as recorded by this function.
702 * Return <0 if any error occured (negated errno code).
703 */
704int
705inm_record_source(struct in_multi *inm, const in_addr_t naddr)
706{
707	struct ip_msource	 find;
708	struct ip_msource	*ims, *nims;
709
710	INM_LOCK_ASSERT_HELD(inm);
711
712	find.ims_haddr = ntohl(naddr);
713	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
714	if (ims && ims->ims_stp)
715		return (0);
716	if (ims == NULL) {
717		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
718			return (-ENOSPC);
719		nims = ipms_alloc(M_WAITOK);
720		if (nims == NULL)
721			return (-ENOMEM);
722		nims->ims_haddr = find.ims_haddr;
723		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
724		++inm->inm_nsrc;
725		ims = nims;
726	}
727
728	/*
729	 * Mark the source as recorded and update the recorded
730	 * source count.
731	 */
732	++ims->ims_stp;
733	++inm->inm_st[1].iss_rec;
734
735	return (1);
736}
737
738/*
739 * Return a pointer to an in_msource owned by an in_mfilter,
740 * given its source address.
741 * Lazy-allocate if needed. If this is a new entry its filter state is
742 * undefined at t0.
743 *
744 * imf is the filter set being modified.
745 * haddr is the source address in *host* byte-order.
746 *
747 * Caller is expected to be holding imo_lock.
748 */
749static int
750imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
751    struct in_msource **plims)
752{
753	struct ip_msource	 find;
754	struct ip_msource	*ims;
755	struct in_msource	*lims;
756	int			 error;
757
758	error = 0;
759	ims = NULL;
760	lims = NULL;
761
762	/* key is host byte order */
763	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
764	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
765	lims = (struct in_msource *)ims;
766	if (lims == NULL) {
767		if (imf->imf_nsrc == in_mcast_maxsocksrc)
768			return (ENOSPC);
769		lims = inms_alloc(M_WAITOK);
770		if (lims == NULL)
771			return (ENOMEM);
772		lims->ims_haddr = find.ims_haddr;
773		lims->imsl_st[0] = MCAST_UNDEFINED;
774		RB_INSERT(ip_msource_tree, &imf->imf_sources,
775		    (struct ip_msource *)lims);
776		++imf->imf_nsrc;
777	}
778
779	*plims = lims;
780
781	return (error);
782}
783
784/*
785 * Graft a source entry into an existing socket-layer filter set,
786 * maintaining any required invariants and checking allocations.
787 *
788 * The source is marked as being in the new filter mode at t1.
789 *
790 * Return the pointer to the new node, otherwise return NULL.
791 *
792 * Caller is expected to be holding imo_lock.
793 */
794static struct in_msource *
795imf_graft(struct in_mfilter *imf, const uint8_t st1,
796    const struct sockaddr_in *psin)
797{
798	struct in_msource	*lims;
799
800	lims = inms_alloc(M_WAITOK);
801	if (lims == NULL)
802		return (NULL);
803	lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
804	lims->imsl_st[0] = MCAST_UNDEFINED;
805	lims->imsl_st[1] = st1;
806	RB_INSERT(ip_msource_tree, &imf->imf_sources,
807	    (struct ip_msource *)lims);
808	++imf->imf_nsrc;
809
810	return (lims);
811}
812
813/*
814 * Prune a source entry from an existing socket-layer filter set,
815 * maintaining any required invariants and checking allocations.
816 *
817 * The source is marked as being left at t1, it is not freed.
818 *
819 * Return 0 if no error occurred, otherwise return an errno value.
820 *
821 * Caller is expected to be holding imo_lock.
822 */
823static int
824imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
825{
826	struct ip_msource	 find;
827	struct ip_msource	*ims;
828	struct in_msource	*lims;
829
830	/* key is host byte order */
831	find.ims_haddr = ntohl(psin->sin_addr.s_addr);
832	ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
833	if (ims == NULL)
834		return (ENOENT);
835	lims = (struct in_msource *)ims;
836	lims->imsl_st[1] = MCAST_UNDEFINED;
837	return (0);
838}
839
840/*
841 * Revert socket-layer filter set deltas at t1 to t0 state.
842 *
843 * Caller is expected to be holding imo_lock.
844 */
845static void
846imf_rollback(struct in_mfilter *imf)
847{
848	struct ip_msource	*ims, *tims;
849	struct in_msource	*lims;
850
851	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
852		lims = (struct in_msource *)ims;
853		if (lims->imsl_st[0] == lims->imsl_st[1]) {
854			/* no change at t1 */
855			continue;
856		} else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
857			/* revert change to existing source at t1 */
858			lims->imsl_st[1] = lims->imsl_st[0];
859		} else {
860			/* revert source added t1 */
861			IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
862			    (uint64_t)VM_KERNEL_ADDRPERM(lims)));
863			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
864			inms_free(lims);
865			imf->imf_nsrc--;
866		}
867	}
868	imf->imf_st[1] = imf->imf_st[0];
869}
870
871/*
872 * Mark socket-layer filter set as INCLUDE {} at t1.
873 *
874 * Caller is expected to be holding imo_lock.
875 */
876void
877imf_leave(struct in_mfilter *imf)
878{
879	struct ip_msource	*ims;
880	struct in_msource	*lims;
881
882	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
883		lims = (struct in_msource *)ims;
884		lims->imsl_st[1] = MCAST_UNDEFINED;
885	}
886	imf->imf_st[1] = MCAST_INCLUDE;
887}
888
889/*
890 * Mark socket-layer filter set deltas as committed.
891 *
892 * Caller is expected to be holding imo_lock.
893 */
894static void
895imf_commit(struct in_mfilter *imf)
896{
897	struct ip_msource	*ims;
898	struct in_msource	*lims;
899
900	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
901		lims = (struct in_msource *)ims;
902		lims->imsl_st[0] = lims->imsl_st[1];
903	}
904	imf->imf_st[0] = imf->imf_st[1];
905}
906
907/*
908 * Reap unreferenced sources from socket-layer filter set.
909 *
910 * Caller is expected to be holding imo_lock.
911 */
912static void
913imf_reap(struct in_mfilter *imf)
914{
915	struct ip_msource	*ims, *tims;
916	struct in_msource	*lims;
917
918	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
919		lims = (struct in_msource *)ims;
920		if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
921		    (lims->imsl_st[1] == MCAST_UNDEFINED)) {
922			IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
923			    (uint64_t)VM_KERNEL_ADDRPERM(lims)));
924			RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
925			inms_free(lims);
926			imf->imf_nsrc--;
927		}
928	}
929}
930
931/*
932 * Purge socket-layer filter set.
933 *
934 * Caller is expected to be holding imo_lock.
935 */
936void
937imf_purge(struct in_mfilter *imf)
938{
939	struct ip_msource	*ims, *tims;
940	struct in_msource	*lims;
941
942	RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
943		lims = (struct in_msource *)ims;
944		IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
945		    (uint64_t)VM_KERNEL_ADDRPERM(lims)));
946		RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
947		inms_free(lims);
948		imf->imf_nsrc--;
949	}
950	imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
951	VERIFY(RB_EMPTY(&imf->imf_sources));
952}
953
954/*
955 * Look up a source filter entry for a multicast group.
956 *
957 * inm is the group descriptor to work with.
958 * haddr is the host-byte-order IPv4 address to look up.
959 * noalloc may be non-zero to suppress allocation of sources.
960 * *pims will be set to the address of the retrieved or allocated source.
961 *
962 * Return 0 if successful, otherwise return a non-zero error code.
963 */
964static int
965inm_get_source(struct in_multi *inm, const in_addr_t haddr,
966    const int noalloc, struct ip_msource **pims)
967{
968	struct ip_msource	 find;
969	struct ip_msource	*ims, *nims;
970#ifdef IGMP_DEBUG
971	struct in_addr ia;
972	char buf[MAX_IPv4_STR_LEN];
973#endif
974	INM_LOCK_ASSERT_HELD(inm);
975
976	find.ims_haddr = haddr;
977	ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
978	if (ims == NULL && !noalloc) {
979		if (inm->inm_nsrc == in_mcast_maxgrpsrc)
980			return (ENOSPC);
981		nims = ipms_alloc(M_WAITOK);
982		if (nims == NULL)
983			return (ENOMEM);
984		nims->ims_haddr = haddr;
985		RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
986		++inm->inm_nsrc;
987		ims = nims;
988#ifdef IGMP_DEBUG
989		ia.s_addr = htonl(haddr);
990		inet_ntop(AF_INET, &ia, buf, sizeof(buf));
991		IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__,
992		    buf, (uint64_t)VM_KERNEL_ADDRPERM(ims)));
993#endif
994	}
995
996	*pims = ims;
997	return (0);
998}
999
1000/*
1001 * Helper function to derive the filter mode on a source entry
1002 * from its internal counters. Predicates are:
1003 *  A source is only excluded if all listeners exclude it.
1004 *  A source is only included if no listeners exclude it,
1005 *  and at least one listener includes it.
1006 * May be used by ifmcstat(8).
1007 */
1008uint8_t
1009ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims,
1010    uint8_t t)
1011{
1012	INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
1013
1014	t = !!t;
1015	if (inm->inm_st[t].iss_ex > 0 &&
1016	    inm->inm_st[t].iss_ex == ims->ims_st[t].ex)
1017		return (MCAST_EXCLUDE);
1018	else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0)
1019		return (MCAST_INCLUDE);
1020	return (MCAST_UNDEFINED);
1021}
1022
1023/*
1024 * Merge socket-layer source into IGMP-layer source.
1025 * If rollback is non-zero, perform the inverse of the merge.
1026 */
1027static void
1028ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1029    const int rollback)
1030{
1031	int n = rollback ? -1 : 1;
1032#ifdef IGMP_DEBUG
1033	struct in_addr ia;
1034
1035	ia.s_addr = htonl(ims->ims_haddr);
1036#endif
1037
1038	if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1039		IGMP_INET_PRINTF(ia,
1040		    ("%s: t1 ex -= %d on %s\n",
1041		    __func__, n, _igmp_inet_buf));
1042		ims->ims_st[1].ex -= n;
1043	} else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1044		IGMP_INET_PRINTF(ia,
1045		    ("%s: t1 in -= %d on %s\n",
1046		    __func__, n, _igmp_inet_buf));
1047		ims->ims_st[1].in -= n;
1048	}
1049
1050	if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1051		IGMP_INET_PRINTF(ia,
1052		    ("%s: t1 ex += %d on %s\n",
1053		    __func__, n, _igmp_inet_buf));
1054		ims->ims_st[1].ex += n;
1055	} else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1056		IGMP_INET_PRINTF(ia,
1057		    ("%s: t1 in += %d on %s\n",
1058		    __func__, n, _igmp_inet_buf));
1059		ims->ims_st[1].in += n;
1060	}
1061}
1062
1063/*
1064 * Atomically update the global in_multi state, when a membership's
1065 * filter list is being updated in any way.
1066 *
1067 * imf is the per-inpcb-membership group filter pointer.
1068 * A fake imf may be passed for in-kernel consumers.
1069 *
1070 * XXX This is a candidate for a set-symmetric-difference style loop
1071 * which would eliminate the repeated lookup from root of ims nodes,
1072 * as they share the same key space.
1073 *
1074 * If any error occurred this function will back out of refcounts
1075 * and return a non-zero value.
1076 */
1077static int
1078inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1079{
1080	struct ip_msource	*ims, *nims;
1081	struct in_msource	*lims;
1082	int			 schanged, error;
1083	int			 nsrc0, nsrc1;
1084
1085	INM_LOCK_ASSERT_HELD(inm);
1086
1087	schanged = 0;
1088	error = 0;
1089	nsrc1 = nsrc0 = 0;
1090
1091	/*
1092	 * Update the source filters first, as this may fail.
1093	 * Maintain count of in-mode filters at t0, t1. These are
1094	 * used to work out if we transition into ASM mode or not.
1095	 * Maintain a count of source filters whose state was
1096	 * actually modified by this operation.
1097	 */
1098	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1099		lims = (struct in_msource *)ims;
1100		if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1101		if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1102		if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1103		error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1104		++schanged;
1105		if (error)
1106			break;
1107		ims_merge(nims, lims, 0);
1108	}
1109	if (error) {
1110		struct ip_msource *bims;
1111
1112		RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1113			lims = (struct in_msource *)ims;
1114			if (lims->imsl_st[0] == lims->imsl_st[1])
1115				continue;
1116			(void) inm_get_source(inm, lims->ims_haddr, 1, &bims);
1117			if (bims == NULL)
1118				continue;
1119			ims_merge(bims, lims, 1);
1120		}
1121		goto out_reap;
1122	}
1123
1124	IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
1125	    __func__, nsrc0, nsrc1));
1126
1127	/* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1128	if (imf->imf_st[0] == imf->imf_st[1] &&
1129	    imf->imf_st[1] == MCAST_INCLUDE) {
1130		if (nsrc1 == 0) {
1131			IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1132			--inm->inm_st[1].iss_in;
1133		}
1134	}
1135
1136	/* Handle filter mode transition on socket. */
1137	if (imf->imf_st[0] != imf->imf_st[1]) {
1138		IGMP_PRINTF(("%s: imf transition %d to %d\n",
1139		    __func__, imf->imf_st[0], imf->imf_st[1]));
1140
1141		if (imf->imf_st[0] == MCAST_EXCLUDE) {
1142			IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__));
1143			--inm->inm_st[1].iss_ex;
1144		} else if (imf->imf_st[0] == MCAST_INCLUDE) {
1145			IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1146			--inm->inm_st[1].iss_in;
1147		}
1148
1149		if (imf->imf_st[1] == MCAST_EXCLUDE) {
1150			IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__));
1151			inm->inm_st[1].iss_ex++;
1152		} else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1153			IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__));
1154			inm->inm_st[1].iss_in++;
1155		}
1156	}
1157
1158	/*
1159	 * Track inm filter state in terms of listener counts.
1160	 * If there are any exclusive listeners, stack-wide
1161	 * membership is exclusive.
1162	 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1163	 * If no listeners remain, state is undefined at t1,
1164	 * and the IGMP lifecycle for this group should finish.
1165	 */
1166	if (inm->inm_st[1].iss_ex > 0) {
1167		IGMP_PRINTF(("%s: transition to EX\n", __func__));
1168		inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1169	} else if (inm->inm_st[1].iss_in > 0) {
1170		IGMP_PRINTF(("%s: transition to IN\n", __func__));
1171		inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1172	} else {
1173		IGMP_PRINTF(("%s: transition to UNDEF\n", __func__));
1174		inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1175	}
1176
1177	/* Decrement ASM listener count on transition out of ASM mode. */
1178	if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1179		if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1180		    (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1181			IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__));
1182			--inm->inm_st[1].iss_asm;
1183		}
1184	}
1185
1186	/* Increment ASM listener count on transition to ASM mode. */
1187	if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1188		IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__));
1189		inm->inm_st[1].iss_asm++;
1190	}
1191
1192	IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__,
1193	    (uint64_t)VM_KERNEL_ADDRPERM(imf),
1194	    (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1195	inm_print(inm);
1196
1197out_reap:
1198	if (schanged > 0) {
1199		IGMP_PRINTF(("%s: sources changed; reaping\n", __func__));
1200		inm_reap(inm);
1201	}
1202	return (error);
1203}
1204
1205/*
1206 * Mark an in_multi's filter set deltas as committed.
1207 * Called by IGMP after a state change has been enqueued.
1208 */
1209void
1210inm_commit(struct in_multi *inm)
1211{
1212	struct ip_msource	*ims;
1213
1214	INM_LOCK_ASSERT_HELD(inm);
1215
1216	IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__,
1217	    (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1218	IGMP_PRINTF(("%s: pre commit:\n", __func__));
1219	inm_print(inm);
1220
1221	RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1222		ims->ims_st[0] = ims->ims_st[1];
1223	}
1224	inm->inm_st[0] = inm->inm_st[1];
1225}
1226
1227/*
1228 * Reap unreferenced nodes from an in_multi's filter set.
1229 */
1230static void
1231inm_reap(struct in_multi *inm)
1232{
1233	struct ip_msource	*ims, *tims;
1234
1235	INM_LOCK_ASSERT_HELD(inm);
1236
1237	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1238		if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1239		    ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1240		    ims->ims_stp != 0)
1241			continue;
1242		IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1243		    (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1244		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1245		ipms_free(ims);
1246		inm->inm_nsrc--;
1247	}
1248}
1249
1250/*
1251 * Purge all source nodes from an in_multi's filter set.
1252 */
1253void
1254inm_purge(struct in_multi *inm)
1255{
1256	struct ip_msource	*ims, *tims;
1257
1258	INM_LOCK_ASSERT_HELD(inm);
1259
1260	RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1261		IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1262		    (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1263		RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1264		ipms_free(ims);
1265		inm->inm_nsrc--;
1266	}
1267}
1268
1269/*
1270 * Join a multicast group; real entry point.
1271 *
1272 * Only preserves atomicity at inm level.
1273 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1274 *
1275 * If the IGMP downcall fails, the group is not joined, and an error
1276 * code is returned.
1277 */
1278static int
1279in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1280    /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1281{
1282	struct in_mfilter	 timf;
1283	struct in_multi		*inm = NULL;
1284	int			 error = 0;
1285	struct igmp_tparams	 itp;
1286
1287	IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__,
1288	    _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1289
1290	bzero(&itp, sizeof (itp));
1291	*pinm = NULL;
1292
1293	/*
1294	 * If no imf was specified (i.e. kernel consumer),
1295	 * fake one up and assume it is an ASM join.
1296	 */
1297	if (imf == NULL) {
1298		imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1299		imf = &timf;
1300	}
1301
1302	error = in_getmulti(ifp, gina, &inm);
1303	if (error) {
1304		IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__));
1305		return (error);
1306	}
1307
1308	IGMP_PRINTF(("%s: merge inm state\n", __func__));
1309
1310	INM_LOCK(inm);
1311	error = inm_merge(inm, imf);
1312	if (error) {
1313		IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1314		goto out_inm_release;
1315	}
1316
1317	IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1318	error = igmp_change_state(inm, &itp);
1319	if (error) {
1320		IGMP_PRINTF(("%s: failed to update source\n", __func__));
1321		imf_rollback(imf);
1322		goto out_inm_release;
1323	}
1324
1325out_inm_release:
1326	if (error) {
1327		IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__,
1328		    (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1329		INM_UNLOCK(inm);
1330		INM_REMREF(inm);
1331	} else {
1332		INM_UNLOCK(inm);
1333		*pinm = inm;	/* keep refcount from in_getmulti() */
1334	}
1335
1336	/* schedule timer now that we've dropped the lock(s) */
1337	igmp_set_timeout(&itp);
1338
1339	return (error);
1340}
1341
1342/*
1343 * Leave a multicast group; real entry point.
1344 * All source filters will be expunged.
1345 *
1346 * Only preserves atomicity at inm level.
1347 *
1348 * Note: This is not the same as inm_release(*) as this function also
1349 * makes a state change downcall into IGMP.
1350 */
1351int
1352in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1353{
1354	struct in_mfilter	 timf;
1355	int			 error, lastref;
1356	struct igmp_tparams	 itp;
1357
1358	bzero(&itp, sizeof (itp));
1359	error = 0;
1360
1361	INM_LOCK_ASSERT_NOTHELD(inm);
1362
1363        in_multihead_lock_exclusive();
1364        INM_LOCK(inm);
1365
1366	IGMP_INET_PRINTF(inm->inm_addr,
1367	    ("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__,
1368	    (uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf,
1369	    (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name),
1370	    inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf)));
1371
1372	/*
1373	 * If no imf was specified (i.e. kernel consumer),
1374	 * fake one up and assume it is an ASM join.
1375	 */
1376	if (imf == NULL) {
1377		imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1378		imf = &timf;
1379	}
1380
1381	/*
1382	 * Begin state merge transaction at IGMP layer.
1383	 *
1384	 * As this particular invocation should not cause any memory
1385	 * to be allocated, and there is no opportunity to roll back
1386	 * the transaction, it MUST NOT fail.
1387	 */
1388	IGMP_PRINTF(("%s: merge inm state\n", __func__));
1389
1390	error = inm_merge(inm, imf);
1391	KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
1392
1393	IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1394	error = igmp_change_state(inm, &itp);
1395#if IGMP_DEBUG
1396	if (error)
1397		IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1398#endif
1399        lastref = in_multi_detach(inm);
1400        VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) &&
1401            inm->inm_reqcnt == 0));
1402	INM_UNLOCK(inm);
1403        in_multihead_lock_done();
1404
1405        if (lastref)
1406		INM_REMREF(inm);	/* for in_multihead list */
1407
1408	/* schedule timer now that we've dropped the lock(s) */
1409	igmp_set_timeout(&itp);
1410
1411	return (error);
1412}
1413
1414/*
1415 * Join an IPv4 multicast group in (*,G) exclusive mode.
1416 * The group must be a 224.0.0.0/24 link-scope group.
1417 * This KPI is for legacy kernel consumers only.
1418 */
1419struct in_multi *
1420in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1421{
1422	struct in_multi *pinm = NULL;
1423	int error;
1424
1425	KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1426	    ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap)));
1427
1428	error = in_joingroup(ifp, ap, NULL, &pinm);
1429	VERIFY(pinm != NULL || error != 0);
1430
1431	return (pinm);
1432}
1433
1434/*
1435 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1436 * This KPI is for legacy kernel consumers only.
1437 */
1438void
1439in_delmulti(struct in_multi *inm)
1440{
1441
1442	(void) in_leavegroup(inm, NULL);
1443}
1444
1445/*
1446 * Block or unblock an ASM multicast source on an inpcb.
1447 * This implements the delta-based API described in RFC 3678.
1448 *
1449 * The delta-based API applies only to exclusive-mode memberships.
1450 * An IGMP downcall will be performed.
1451 *
1452 * Return 0 if successful, otherwise return an appropriate error code.
1453 */
1454static int
1455inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1456{
1457	struct group_source_req		 gsr;
1458	sockunion_t			*gsa, *ssa;
1459	struct ifnet			*ifp;
1460	struct in_mfilter		*imf;
1461	struct ip_moptions		*imo;
1462	struct in_msource		*ims;
1463	struct in_multi			*inm;
1464	size_t				 idx;
1465	uint16_t			 fmode;
1466	int				 error, doblock;
1467	unsigned int			 ifindex = 0;
1468	struct igmp_tparams		 itp;
1469
1470	bzero(&itp, sizeof (itp));
1471	ifp = NULL;
1472	error = 0;
1473	doblock = 0;
1474
1475	memset(&gsr, 0, sizeof(struct group_source_req));
1476	gsa = (sockunion_t *)&gsr.gsr_group;
1477	ssa = (sockunion_t *)&gsr.gsr_source;
1478
1479	switch (sopt->sopt_name) {
1480	case IP_BLOCK_SOURCE:
1481	case IP_UNBLOCK_SOURCE: {
1482		struct ip_mreq_source	 mreqs;
1483
1484		error = sooptcopyin(sopt, &mreqs,
1485		    sizeof(struct ip_mreq_source),
1486		    sizeof(struct ip_mreq_source));
1487		if (error)
1488			return (error);
1489
1490		gsa->sin.sin_family = AF_INET;
1491		gsa->sin.sin_len = sizeof(struct sockaddr_in);
1492		gsa->sin.sin_addr = mreqs.imr_multiaddr;
1493
1494		ssa->sin.sin_family = AF_INET;
1495		ssa->sin.sin_len = sizeof(struct sockaddr_in);
1496		ssa->sin.sin_addr = mreqs.imr_sourceaddr;
1497
1498		if (!in_nullhost(mreqs.imr_interface))
1499			ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
1500
1501		if (sopt->sopt_name == IP_BLOCK_SOURCE)
1502			doblock = 1;
1503
1504		IGMP_INET_PRINTF(mreqs.imr_interface,
1505		    ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
1506		    _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
1507		break;
1508	    }
1509
1510	case MCAST_BLOCK_SOURCE:
1511	case MCAST_UNBLOCK_SOURCE:
1512		error = sooptcopyin(sopt, &gsr,
1513		    sizeof(struct group_source_req),
1514		    sizeof(struct group_source_req));
1515		if (error)
1516			return (error);
1517
1518		if (gsa->sin.sin_family != AF_INET ||
1519		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
1520			return (EINVAL);
1521
1522		if (ssa->sin.sin_family != AF_INET ||
1523		    ssa->sin.sin_len != sizeof(struct sockaddr_in))
1524			return (EINVAL);
1525
1526		ifnet_head_lock_shared();
1527		if (gsr.gsr_interface == 0 ||
1528		    (u_int)if_index < gsr.gsr_interface) {
1529			ifnet_head_done();
1530			return (EADDRNOTAVAIL);
1531		}
1532
1533		ifp = ifindex2ifnet[gsr.gsr_interface];
1534		ifnet_head_done();
1535
1536		if (ifp == NULL)
1537			return (EADDRNOTAVAIL);
1538
1539		if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1540			doblock = 1;
1541		break;
1542
1543	default:
1544		IGMP_PRINTF(("%s: unknown sopt_name %d\n",
1545		    __func__, sopt->sopt_name));
1546		return (EOPNOTSUPP);
1547		break;
1548	}
1549
1550	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
1551		return (EINVAL);
1552
1553	/*
1554	 * Check if we are actually a member of this group.
1555	 */
1556	imo = inp_findmoptions(inp);
1557	if (imo == NULL)
1558		return (ENOMEM);
1559
1560	IMO_LOCK(imo);
1561	idx = imo_match_group(imo, ifp, &gsa->sa);
1562	if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1563		error = EADDRNOTAVAIL;
1564		goto out_imo_locked;
1565	}
1566
1567	VERIFY(imo->imo_mfilters != NULL);
1568	imf = &imo->imo_mfilters[idx];
1569	inm = imo->imo_membership[idx];
1570
1571	/*
1572	 * Attempting to use the delta-based API on an
1573	 * non exclusive-mode membership is an error.
1574	 */
1575	fmode = imf->imf_st[0];
1576	if (fmode != MCAST_EXCLUDE) {
1577		error = EINVAL;
1578		goto out_imo_locked;
1579	}
1580
1581	/*
1582	 * Deal with error cases up-front:
1583	 *  Asked to block, but already blocked; or
1584	 *  Asked to unblock, but nothing to unblock.
1585	 * If adding a new block entry, allocate it.
1586	 */
1587	ims = imo_match_source(imo, idx, &ssa->sa);
1588	if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1589		IGMP_INET_PRINTF(ssa->sin.sin_addr,
1590		    ("%s: source %s %spresent\n", __func__,
1591		    _igmp_inet_buf, doblock ? "" : "not "));
1592		error = EADDRNOTAVAIL;
1593		goto out_imo_locked;
1594	}
1595
1596	/*
1597	 * Begin state merge transaction at socket layer.
1598	 */
1599	if (doblock) {
1600		IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
1601		ims = imf_graft(imf, fmode, &ssa->sin);
1602		if (ims == NULL)
1603			error = ENOMEM;
1604	} else {
1605		IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
1606		error = imf_prune(imf, &ssa->sin);
1607	}
1608
1609	if (error) {
1610		IGMP_PRINTF(("%s: merge imf state failed\n", __func__));
1611		goto out_imf_rollback;
1612	}
1613
1614	/*
1615	 * Begin state merge transaction at IGMP layer.
1616	 */
1617	INM_LOCK(inm);
1618	IGMP_PRINTF(("%s: merge inm state\n", __func__));
1619	error = inm_merge(inm, imf);
1620	if (error) {
1621		IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1622		INM_UNLOCK(inm);
1623		goto out_imf_rollback;
1624	}
1625
1626	IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1627	error = igmp_change_state(inm, &itp);
1628	INM_UNLOCK(inm);
1629#if IGMP_DEBUG
1630	if (error)
1631		IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1632#endif
1633
1634out_imf_rollback:
1635	if (error)
1636		imf_rollback(imf);
1637	else
1638		imf_commit(imf);
1639
1640	imf_reap(imf);
1641
1642out_imo_locked:
1643	IMO_UNLOCK(imo);
1644	IMO_REMREF(imo);	/* from inp_findmoptions() */
1645
1646	/* schedule timer now that we've dropped the lock(s) */
1647	igmp_set_timeout(&itp);
1648
1649	return (error);
1650}
1651
1652/*
1653 * Given an inpcb, return its multicast options structure pointer.
1654 *
1655 * Caller is responsible for locking the inpcb, and releasing the
1656 * extra reference held on the imo, upon a successful return.
1657 */
1658static struct ip_moptions *
1659inp_findmoptions(struct inpcb *inp)
1660{
1661	struct ip_moptions	 *imo;
1662	struct in_multi		**immp;
1663	struct in_mfilter	 *imfp;
1664	size_t			  idx;
1665
1666	if ((imo = inp->inp_moptions) != NULL) {
1667		IMO_ADDREF(imo);	/* for caller */
1668		return (imo);
1669	}
1670
1671	imo = ip_allocmoptions(M_WAITOK);
1672	if (imo == NULL)
1673		return (NULL);
1674
1675	immp = _MALLOC(sizeof (*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1676	    M_WAITOK | M_ZERO);
1677	if (immp == NULL) {
1678		IMO_REMREF(imo);
1679		return (NULL);
1680	}
1681
1682	imfp = _MALLOC(sizeof (struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1683	    M_INMFILTER, M_WAITOK | M_ZERO);
1684	if (imfp == NULL) {
1685		_FREE(immp, M_IPMOPTS);
1686		IMO_REMREF(imo);
1687		return (NULL);
1688	}
1689
1690	imo->imo_multicast_ifp = NULL;
1691	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1692	imo->imo_multicast_vif = -1;
1693	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1694	imo->imo_multicast_loop = in_mcast_loop;
1695	imo->imo_num_memberships = 0;
1696	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1697	imo->imo_membership = immp;
1698
1699	/* Initialize per-group source filters. */
1700	for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1701		imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1702
1703	imo->imo_mfilters = imfp;
1704	inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */
1705	IMO_ADDREF(imo);	/* for caller */
1706
1707	return (imo);
1708}
1709/*
1710 * Atomically get source filters on a socket for an IPv4 multicast group.
1711 */
1712static int
1713inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1714{
1715	struct __msfilterreq64	msfr, msfr64;
1716	struct __msfilterreq32	msfr32;
1717	sockunion_t		*gsa;
1718	struct ifnet		*ifp;
1719	struct ip_moptions	*imo;
1720	struct in_mfilter	*imf;
1721	struct ip_msource	*ims;
1722	struct in_msource	*lims;
1723	struct sockaddr_in	*psin;
1724	struct sockaddr_storage	*ptss;
1725	struct sockaddr_storage	*tss;
1726	int			 error;
1727	size_t			 idx, nsrcs, ncsrcs;
1728	user_addr_t 		 tmp_ptr;
1729
1730	imo = inp->inp_moptions;
1731	VERIFY(imo != NULL);
1732
1733	if (IS_64BIT_PROCESS(current_proc())) {
1734		error = sooptcopyin(sopt, &msfr64,
1735		    sizeof(struct __msfilterreq64),
1736		    sizeof(struct __msfilterreq64));
1737		if (error)
1738			return (error);
1739		/* we never use msfr.msfr_srcs; */
1740		memcpy(&msfr, &msfr64, sizeof(msfr));
1741	} else {
1742		error = sooptcopyin(sopt, &msfr32,
1743		    sizeof(struct __msfilterreq32),
1744		    sizeof(struct __msfilterreq32));
1745		if (error)
1746			return (error);
1747		/* we never use msfr.msfr_srcs; */
1748		memcpy(&msfr, &msfr32, sizeof(msfr));
1749	}
1750
1751	ifnet_head_lock_shared();
1752	if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
1753		ifnet_head_done();
1754		return (EADDRNOTAVAIL);
1755	}
1756
1757	ifp = ifindex2ifnet[msfr.msfr_ifindex];
1758	ifnet_head_done();
1759
1760	if (ifp == NULL)
1761		return (EADDRNOTAVAIL);
1762
1763	if ((size_t) msfr.msfr_nsrcs >
1764	    UINT32_MAX / sizeof(struct sockaddr_storage))
1765		msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
1766
1767	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1768		msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1769
1770	IMO_LOCK(imo);
1771	/*
1772	 * Lookup group on the socket.
1773	 */
1774	gsa = (sockunion_t *)&msfr.msfr_group;
1775	idx = imo_match_group(imo, ifp, &gsa->sa);
1776	if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1777		IMO_UNLOCK(imo);
1778		return (EADDRNOTAVAIL);
1779	}
1780	imf = &imo->imo_mfilters[idx];
1781
1782	/*
1783	 * Ignore memberships which are in limbo.
1784	 */
1785	if (imf->imf_st[1] == MCAST_UNDEFINED) {
1786		IMO_UNLOCK(imo);
1787		return (EAGAIN);
1788	}
1789	msfr.msfr_fmode = imf->imf_st[1];
1790
1791	/*
1792	 * If the user specified a buffer, copy out the source filter
1793	 * entries to userland gracefully.
1794	 * We only copy out the number of entries which userland
1795	 * has asked for, but we always tell userland how big the
1796	 * buffer really needs to be.
1797	 */
1798
1799	if (IS_64BIT_PROCESS(current_proc()))
1800		tmp_ptr = msfr64.msfr_srcs;
1801	else
1802		tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
1803
1804	tss = NULL;
1805	if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
1806		tss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*tss),
1807		    M_TEMP, M_WAITOK | M_ZERO);
1808		if (tss == NULL) {
1809			IMO_UNLOCK(imo);
1810			return (ENOBUFS);
1811		}
1812		bzero(tss, (size_t) msfr.msfr_nsrcs * sizeof(*tss));
1813	}
1814
1815	/*
1816	 * Count number of sources in-mode at t0.
1817	 * If buffer space exists and remains, copy out source entries.
1818	 */
1819	nsrcs = msfr.msfr_nsrcs;
1820	ncsrcs = 0;
1821	ptss = tss;
1822	RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1823		lims = (struct in_msource *)ims;
1824		if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1825		    lims->imsl_st[0] != imf->imf_st[0])
1826			continue;
1827		if (tss != NULL && nsrcs > 0) {
1828			psin = (struct sockaddr_in *)ptss;
1829			psin->sin_family = AF_INET;
1830			psin->sin_len = sizeof(struct sockaddr_in);
1831			psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1832			psin->sin_port = 0;
1833			++ptss;
1834			--nsrcs;
1835			++ncsrcs;
1836		}
1837	}
1838
1839	IMO_UNLOCK(imo);
1840
1841	if (tss != NULL) {
1842		error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss));
1843		FREE(tss, M_TEMP);
1844		if (error)
1845			return (error);
1846	}
1847
1848	msfr.msfr_nsrcs = ncsrcs;
1849	if (IS_64BIT_PROCESS(current_proc())) {
1850		msfr64.msfr_ifindex = msfr.msfr_ifindex;
1851		msfr64.msfr_fmode   = msfr.msfr_fmode;
1852		msfr64.msfr_nsrcs   = msfr.msfr_nsrcs;
1853		memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1854		    sizeof(struct sockaddr_storage));
1855		error = sooptcopyout(sopt, &msfr64,
1856		    sizeof(struct __msfilterreq64));
1857	} else {
1858		msfr32.msfr_ifindex = msfr.msfr_ifindex;
1859		msfr32.msfr_fmode   = msfr.msfr_fmode;
1860		msfr32.msfr_nsrcs   = msfr.msfr_nsrcs;
1861		memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1862		    sizeof(struct sockaddr_storage));
1863		error = sooptcopyout(sopt, &msfr32,
1864		    sizeof(struct __msfilterreq32));
1865	}
1866
1867	return (error);
1868}
1869
1870/*
1871 * Return the IP multicast options in response to user getsockopt().
1872 */
1873int
1874inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1875{
1876	struct ip_mreqn		 mreqn;
1877	struct ip_moptions	*imo;
1878	struct ifnet		*ifp;
1879	struct in_ifaddr	*ia;
1880	int			 error, optval;
1881	unsigned int		 ifindex;
1882	u_char			 coptval;
1883
1884	imo = inp->inp_moptions;
1885	/*
1886	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1887	 * or is a divert socket, reject it.
1888	 */
1889	if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
1890	    (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
1891	    SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
1892		return (EOPNOTSUPP);
1893	}
1894
1895	error = 0;
1896	switch (sopt->sopt_name) {
1897	case IP_MULTICAST_IF:
1898		memset(&mreqn, 0, sizeof(struct ip_mreqn));
1899		if (imo != NULL) {
1900			IMO_LOCK(imo);
1901			ifp = imo->imo_multicast_ifp;
1902			if (!in_nullhost(imo->imo_multicast_addr)) {
1903				mreqn.imr_address = imo->imo_multicast_addr;
1904			} else if (ifp != NULL) {
1905				mreqn.imr_ifindex = ifp->if_index;
1906				IFP_TO_IA(ifp, ia);
1907				if (ia != NULL) {
1908					IFA_LOCK_SPIN(&ia->ia_ifa);
1909					mreqn.imr_address =
1910					    IA_SIN(ia)->sin_addr;
1911					IFA_UNLOCK(&ia->ia_ifa);
1912					IFA_REMREF(&ia->ia_ifa);
1913				}
1914			}
1915			IMO_UNLOCK(imo);
1916		}
1917		if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1918			error = sooptcopyout(sopt, &mreqn,
1919			    sizeof(struct ip_mreqn));
1920		} else {
1921			error = sooptcopyout(sopt, &mreqn.imr_address,
1922			    sizeof(struct in_addr));
1923		}
1924		break;
1925
1926	case IP_MULTICAST_IFINDEX:
1927		if (imo != NULL)
1928			IMO_LOCK(imo);
1929		if (imo == NULL || imo->imo_multicast_ifp == NULL) {
1930			ifindex = 0;
1931		} else {
1932			ifindex = imo->imo_multicast_ifp->if_index;
1933		}
1934		if (imo != NULL)
1935			IMO_UNLOCK(imo);
1936		error = sooptcopyout(sopt, &ifindex, sizeof (ifindex));
1937		break;
1938
1939	case IP_MULTICAST_TTL:
1940		if (imo == NULL)
1941			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1942		else {
1943			IMO_LOCK(imo);
1944			optval = coptval = imo->imo_multicast_ttl;
1945			IMO_UNLOCK(imo);
1946		}
1947		if (sopt->sopt_valsize == sizeof(u_char))
1948			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1949		else
1950			error = sooptcopyout(sopt, &optval, sizeof(int));
1951		break;
1952
1953	case IP_MULTICAST_LOOP:
1954		if (imo == 0)
1955			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1956		else {
1957			IMO_LOCK(imo);
1958			optval = coptval = imo->imo_multicast_loop;
1959			IMO_UNLOCK(imo);
1960		}
1961		if (sopt->sopt_valsize == sizeof(u_char))
1962			error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1963		else
1964			error = sooptcopyout(sopt, &optval, sizeof(int));
1965		break;
1966
1967	case IP_MSFILTER:
1968		if (imo == NULL) {
1969			error = EADDRNOTAVAIL;
1970		} else {
1971			error = inp_get_source_filters(inp, sopt);
1972		}
1973		break;
1974
1975	default:
1976		error = ENOPROTOOPT;
1977		break;
1978	}
1979
1980	return (error);
1981}
1982
1983/*
1984 * Look up the ifnet to use for a multicast group membership,
1985 * given the IPv4 address of an interface, and the IPv4 group address.
1986 *
1987 * This routine exists to support legacy multicast applications
1988 * which do not understand that multicast memberships are scoped to
1989 * specific physical links in the networking stack, or which need
1990 * to join link-scope groups before IPv4 addresses are configured.
1991 *
1992 * If inp is non-NULL and is bound to an interface, use this socket's
1993 * inp_boundif for any required routing table lookup.
1994 *
1995 * If the route lookup fails, attempt to use the first non-loopback
1996 * interface with multicast capability in the system as a
1997 * last resort. The legacy IPv4 ASM API requires that we do
1998 * this in order to allow groups to be joined when the routing
1999 * table has not yet been populated during boot.
2000 *
2001 * Returns NULL if no ifp could be found.
2002 *
2003 */
2004static struct ifnet *
2005inp_lookup_mcast_ifp(const struct inpcb *inp,
2006    const struct sockaddr_in *gsin, const struct in_addr ina)
2007{
2008	struct ifnet	*ifp;
2009	unsigned int	 ifindex = 0;
2010
2011	VERIFY(gsin->sin_family == AF_INET);
2012	VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)));
2013
2014	ifp = NULL;
2015	if (!in_nullhost(ina)) {
2016		struct in_addr new_ina;
2017		memcpy(&new_ina, &ina, sizeof(struct in_addr));
2018		ifp = ip_multicast_if(&new_ina, &ifindex);
2019	} else {
2020		struct route ro;
2021		unsigned int ifscope = IFSCOPE_NONE;
2022
2023		if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
2024			ifscope = inp->inp_boundifp->if_index;
2025
2026		bzero(&ro, sizeof (ro));
2027		memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
2028		rtalloc_scoped_ign(&ro, 0, ifscope);
2029		if (ro.ro_rt != NULL) {
2030			ifp = ro.ro_rt->rt_ifp;
2031			VERIFY(ifp != NULL);
2032		} else {
2033			struct in_ifaddr *ia;
2034			struct ifnet *mifp;
2035
2036			mifp = NULL;
2037			lck_rw_lock_shared(in_ifaddr_rwlock);
2038			TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
2039				IFA_LOCK_SPIN(&ia->ia_ifa);
2040				mifp = ia->ia_ifp;
2041				IFA_UNLOCK(&ia->ia_ifa);
2042				if (!(mifp->if_flags & IFF_LOOPBACK) &&
2043				     (mifp->if_flags & IFF_MULTICAST)) {
2044					ifp = mifp;
2045					break;
2046				}
2047			}
2048			lck_rw_done(in_ifaddr_rwlock);
2049		}
2050		ROUTE_RELEASE(&ro);
2051	}
2052
2053	return (ifp);
2054}
2055
2056/*
2057 * Join an IPv4 multicast group, possibly with a source.
2058 *
2059 * NB: sopt->sopt_val might point to the kernel address space. This means that
2060 * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped
2061 * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will
2062 * just issue an in-kernel memcpy.
2063 */
2064int
2065inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2066{
2067	struct group_source_req		 gsr;
2068	sockunion_t			*gsa, *ssa;
2069	struct ifnet			*ifp;
2070	struct in_mfilter		*imf;
2071	struct ip_moptions		*imo;
2072	struct in_multi			*inm = NULL;
2073	struct in_msource		*lims;
2074	size_t				 idx;
2075	int				 error, is_new;
2076	struct igmp_tparams		 itp;
2077
2078	bzero(&itp, sizeof (itp));
2079	ifp = NULL;
2080	imf = NULL;
2081	error = 0;
2082	is_new = 0;
2083
2084	memset(&gsr, 0, sizeof(struct group_source_req));
2085	gsa = (sockunion_t *)&gsr.gsr_group;
2086	gsa->ss.ss_family = AF_UNSPEC;
2087	ssa = (sockunion_t *)&gsr.gsr_source;
2088	ssa->ss.ss_family = AF_UNSPEC;
2089
2090	switch (sopt->sopt_name) {
2091	case IP_ADD_MEMBERSHIP:
2092	case IP_ADD_SOURCE_MEMBERSHIP: {
2093		struct ip_mreq_source	 mreqs;
2094
2095		if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2096			error = sooptcopyin(sopt, &mreqs,
2097			    sizeof(struct ip_mreq),
2098			    sizeof(struct ip_mreq));
2099			/*
2100			 * Do argument switcharoo from ip_mreq into
2101			 * ip_mreq_source to avoid using two instances.
2102			 */
2103			mreqs.imr_interface = mreqs.imr_sourceaddr;
2104			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2105		} else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2106			error = sooptcopyin(sopt, &mreqs,
2107			    sizeof(struct ip_mreq_source),
2108			    sizeof(struct ip_mreq_source));
2109		}
2110		if (error) {
2111			IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/"
2112			    "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n",
2113			    __func__, sopt->sopt_name, error));
2114			return (error);
2115		}
2116
2117		gsa->sin.sin_family = AF_INET;
2118		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2119		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2120
2121		if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2122			ssa->sin.sin_family = AF_INET;
2123			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2124			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2125		}
2126
2127		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2128			return (EINVAL);
2129
2130		ifp = inp_lookup_mcast_ifp(inp, &gsa->sin,
2131		    mreqs.imr_interface);
2132		IGMP_INET_PRINTF(mreqs.imr_interface,
2133		    ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2134		    _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2135		break;
2136	}
2137
2138	case MCAST_JOIN_GROUP:
2139	case MCAST_JOIN_SOURCE_GROUP:
2140		if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2141			error = sooptcopyin(sopt, &gsr,
2142			    sizeof(struct group_req),
2143			    sizeof(struct group_req));
2144		} else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2145			error = sooptcopyin(sopt, &gsr,
2146			    sizeof(struct group_source_req),
2147			    sizeof(struct group_source_req));
2148		}
2149		if (error)
2150			return (error);
2151
2152		if (gsa->sin.sin_family != AF_INET ||
2153		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2154			return (EINVAL);
2155
2156		/*
2157		 * Overwrite the port field if present, as the sockaddr
2158		 * being copied in may be matched with a binary comparison.
2159		 */
2160		gsa->sin.sin_port = 0;
2161		if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2162			if (ssa->sin.sin_family != AF_INET ||
2163			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2164				return (EINVAL);
2165			ssa->sin.sin_port = 0;
2166		}
2167
2168		if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2169			return (EINVAL);
2170
2171		ifnet_head_lock_shared();
2172		if (gsr.gsr_interface == 0 ||
2173		    (u_int)if_index < gsr.gsr_interface) {
2174			ifnet_head_done();
2175			return (EADDRNOTAVAIL);
2176		}
2177		ifp = ifindex2ifnet[gsr.gsr_interface];
2178		ifnet_head_done();
2179
2180		break;
2181
2182	default:
2183		IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2184		    __func__, sopt->sopt_name));
2185		return (EOPNOTSUPP);
2186		break;
2187	}
2188
2189	if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2190		return (EADDRNOTAVAIL);
2191
2192	imo = inp_findmoptions(inp);
2193	if (imo == NULL)
2194		return (ENOMEM);
2195
2196	IMO_LOCK(imo);
2197	idx = imo_match_group(imo, ifp, &gsa->sa);
2198	if (idx == (size_t)-1) {
2199		is_new = 1;
2200	} else {
2201		inm = imo->imo_membership[idx];
2202		imf = &imo->imo_mfilters[idx];
2203		if (ssa->ss.ss_family != AF_UNSPEC) {
2204			/*
2205			 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2206			 * is an error. On an existing inclusive membership,
2207			 * it just adds the source to the filter list.
2208			 */
2209			if (imf->imf_st[1] != MCAST_INCLUDE) {
2210				error = EINVAL;
2211				goto out_imo_locked;
2212			}
2213			/*
2214			 * Throw out duplicates.
2215			 *
2216			 * XXX FIXME: This makes a naive assumption that
2217			 * even if entries exist for *ssa in this imf,
2218			 * they will be rejected as dupes, even if they
2219			 * are not valid in the current mode (in-mode).
2220			 *
2221			 * in_msource is transactioned just as for anything
2222			 * else in SSM -- but note naive use of inm_graft()
2223			 * below for allocating new filter entries.
2224			 *
2225			 * This is only an issue if someone mixes the
2226			 * full-state SSM API with the delta-based API,
2227			 * which is discouraged in the relevant RFCs.
2228			 */
2229			lims = imo_match_source(imo, idx, &ssa->sa);
2230			if (lims != NULL /*&&
2231			    lims->imsl_st[1] == MCAST_INCLUDE*/) {
2232				error = EADDRNOTAVAIL;
2233				goto out_imo_locked;
2234			}
2235		} else {
2236			/*
2237			 * MCAST_JOIN_GROUP on an existing exclusive
2238			 * membership is an error; return EADDRINUSE
2239			 * to preserve 4.4BSD API idempotence, and
2240			 * avoid tedious detour to code below.
2241			 * NOTE: This is bending RFC 3678 a bit.
2242			 *
2243			 * On an existing inclusive membership, this is also
2244			 * an error; if you want to change filter mode,
2245			 * you must use the userland API setsourcefilter().
2246			 * XXX We don't reject this for imf in UNDEFINED
2247			 * state at t1, because allocation of a filter
2248			 * is atomic with allocation of a membership.
2249			 */
2250			error = EINVAL;
2251			/* See comments above for EADDRINUSE */
2252			if (imf->imf_st[1] == MCAST_EXCLUDE)
2253				error = EADDRINUSE;
2254			goto out_imo_locked;
2255		}
2256	}
2257
2258	/*
2259	 * Begin state merge transaction at socket layer.
2260	 */
2261
2262	if (is_new) {
2263		if (imo->imo_num_memberships == imo->imo_max_memberships) {
2264			error = imo_grow(imo, 0);
2265			if (error)
2266				goto out_imo_locked;
2267		}
2268		/*
2269		 * Allocate the new slot upfront so we can deal with
2270		 * grafting the new source filter in same code path
2271		 * as for join-source on existing membership.
2272		 */
2273		idx = imo->imo_num_memberships;
2274		imo->imo_membership[idx] = NULL;
2275		imo->imo_num_memberships++;
2276		VERIFY(imo->imo_mfilters != NULL);
2277		imf = &imo->imo_mfilters[idx];
2278		VERIFY(RB_EMPTY(&imf->imf_sources));
2279	}
2280
2281	/*
2282	 * Graft new source into filter list for this inpcb's
2283	 * membership of the group. The in_multi may not have
2284	 * been allocated yet if this is a new membership, however,
2285	 * the in_mfilter slot will be allocated and must be initialized.
2286	 */
2287	if (ssa->ss.ss_family != AF_UNSPEC) {
2288		/* Membership starts in IN mode */
2289		if (is_new) {
2290			IGMP_PRINTF(("%s: new join w/source\n", __func__));
2291			imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2292		} else {
2293			IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
2294		}
2295		lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin);
2296		if (lims == NULL) {
2297			IGMP_PRINTF(("%s: merge imf state failed\n",
2298			    __func__));
2299			error = ENOMEM;
2300			goto out_imo_free;
2301		}
2302	} else {
2303		/* No address specified; Membership starts in EX mode */
2304		if (is_new) {
2305			IGMP_PRINTF(("%s: new join w/o source\n", __func__));
2306			imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2307		}
2308	}
2309
2310	/*
2311	 * Begin state merge transaction at IGMP layer.
2312	 */
2313
2314	if (is_new) {
2315		VERIFY(inm == NULL);
2316		error = in_joingroup(ifp, &gsa->sin.sin_addr, imf, &inm);
2317		VERIFY(inm != NULL || error != 0);
2318		if (error)
2319			goto out_imo_free;
2320		imo->imo_membership[idx] = inm;	/* from in_joingroup() */
2321	} else {
2322		IGMP_PRINTF(("%s: merge inm state\n", __func__));
2323		INM_LOCK(inm);
2324		error = inm_merge(inm, imf);
2325		if (error) {
2326			IGMP_PRINTF(("%s: failed to merge inm state\n",
2327			    __func__));
2328			INM_UNLOCK(inm);
2329			goto out_imf_rollback;
2330		}
2331		IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2332		error = igmp_change_state(inm, &itp);
2333		INM_UNLOCK(inm);
2334		if (error) {
2335			IGMP_PRINTF(("%s: failed igmp downcall\n",
2336			    __func__));
2337			goto out_imf_rollback;
2338		}
2339	}
2340
2341out_imf_rollback:
2342	if (error) {
2343		imf_rollback(imf);
2344		if (is_new)
2345			imf_purge(imf);
2346		else
2347			imf_reap(imf);
2348	} else {
2349		imf_commit(imf);
2350	}
2351
2352out_imo_free:
2353	if (error && is_new) {
2354		VERIFY(inm == NULL);
2355		imo->imo_membership[idx] = NULL;
2356		--imo->imo_num_memberships;
2357	}
2358
2359out_imo_locked:
2360	IMO_UNLOCK(imo);
2361	IMO_REMREF(imo);	/* from inp_findmoptions() */
2362
2363	/* schedule timer now that we've dropped the lock(s) */
2364	igmp_set_timeout(&itp);
2365
2366	return (error);
2367}
2368
2369/*
2370 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2371 *
2372 * NB: sopt->sopt_val might point to the kernel address space. Refer to the
2373 * block comment on top of inp_join_group() for more information.
2374 */
2375int
2376inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2377{
2378	struct group_source_req		 gsr;
2379	struct ip_mreq_source		 mreqs;
2380	sockunion_t			*gsa, *ssa;
2381	struct ifnet			*ifp;
2382	struct in_mfilter		*imf;
2383	struct ip_moptions		*imo;
2384	struct in_msource		*ims;
2385	struct in_multi			*inm = NULL;
2386	size_t				 idx;
2387	int				 error, is_final;
2388	unsigned int			 ifindex = 0;
2389	struct igmp_tparams		 itp;
2390
2391	bzero(&itp, sizeof (itp));
2392	ifp = NULL;
2393	error = 0;
2394	is_final = 1;
2395
2396	memset(&gsr, 0, sizeof(struct group_source_req));
2397	gsa = (sockunion_t *)&gsr.gsr_group;
2398	gsa->ss.ss_family = AF_UNSPEC;
2399	ssa = (sockunion_t *)&gsr.gsr_source;
2400	ssa->ss.ss_family = AF_UNSPEC;
2401
2402	switch (sopt->sopt_name) {
2403	case IP_DROP_MEMBERSHIP:
2404	case IP_DROP_SOURCE_MEMBERSHIP:
2405		if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2406			error = sooptcopyin(sopt, &mreqs,
2407			    sizeof(struct ip_mreq),
2408			    sizeof(struct ip_mreq));
2409			/*
2410			 * Swap interface and sourceaddr arguments,
2411			 * as ip_mreq and ip_mreq_source are laid
2412			 * out differently.
2413			 */
2414			mreqs.imr_interface = mreqs.imr_sourceaddr;
2415			mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2416		} else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2417			error = sooptcopyin(sopt, &mreqs,
2418			    sizeof(struct ip_mreq_source),
2419			    sizeof(struct ip_mreq_source));
2420		}
2421		if (error)
2422			return (error);
2423
2424		gsa->sin.sin_family = AF_INET;
2425		gsa->sin.sin_len = sizeof(struct sockaddr_in);
2426		gsa->sin.sin_addr = mreqs.imr_multiaddr;
2427
2428		if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2429			ssa->sin.sin_family = AF_INET;
2430			ssa->sin.sin_len = sizeof(struct sockaddr_in);
2431			ssa->sin.sin_addr = mreqs.imr_sourceaddr;
2432		}
2433		/*
2434		 * Attempt to look up hinted ifp from interface address.
2435		 * Fallthrough with null ifp iff lookup fails, to
2436		 * preserve 4.4BSD mcast API idempotence.
2437		 * XXX NOTE WELL: The RFC 3678 API is preferred because
2438		 * using an IPv4 address as a key is racy.
2439		 */
2440		if (!in_nullhost(mreqs.imr_interface))
2441			ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
2442
2443		IGMP_INET_PRINTF(mreqs.imr_interface,
2444		    ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2445		    _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2446
2447		break;
2448
2449	case MCAST_LEAVE_GROUP:
2450	case MCAST_LEAVE_SOURCE_GROUP:
2451		if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2452			error = sooptcopyin(sopt, &gsr,
2453			    sizeof(struct group_req),
2454			    sizeof(struct group_req));
2455		} else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2456			error = sooptcopyin(sopt, &gsr,
2457			    sizeof(struct group_source_req),
2458			    sizeof(struct group_source_req));
2459		}
2460		if (error)
2461			return (error);
2462
2463		if (gsa->sin.sin_family != AF_INET ||
2464		    gsa->sin.sin_len != sizeof(struct sockaddr_in))
2465			return (EINVAL);
2466
2467		if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2468			if (ssa->sin.sin_family != AF_INET ||
2469			    ssa->sin.sin_len != sizeof(struct sockaddr_in))
2470				return (EINVAL);
2471		}
2472
2473		ifnet_head_lock_shared();
2474		if (gsr.gsr_interface == 0 ||
2475		    (u_int)if_index < gsr.gsr_interface) {
2476			ifnet_head_done();
2477			return (EADDRNOTAVAIL);
2478		}
2479
2480		ifp = ifindex2ifnet[gsr.gsr_interface];
2481		ifnet_head_done();
2482		break;
2483
2484	default:
2485		IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2486		    __func__, sopt->sopt_name));
2487		return (EOPNOTSUPP);
2488		break;
2489	}
2490
2491	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2492		return (EINVAL);
2493
2494	/*
2495	 * Find the membership in the membership array.
2496	 */
2497	imo = inp_findmoptions(inp);
2498	if (imo == NULL)
2499		return (ENOMEM);
2500
2501	IMO_LOCK(imo);
2502	idx = imo_match_group(imo, ifp, &gsa->sa);
2503	if (idx == (size_t)-1) {
2504		error = EADDRNOTAVAIL;
2505		goto out_locked;
2506	}
2507	inm = imo->imo_membership[idx];
2508	imf = &imo->imo_mfilters[idx];
2509
2510	if (ssa->ss.ss_family != AF_UNSPEC) {
2511		IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__,
2512		    sopt->sopt_name));
2513		is_final = 0;
2514	}
2515
2516	/*
2517	 * Begin state merge transaction at socket layer.
2518	 */
2519
2520	/*
2521	 * If we were instructed only to leave a given source, do so.
2522	 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2523	 */
2524	if (is_final) {
2525		imf_leave(imf);
2526	} else {
2527		if (imf->imf_st[0] == MCAST_EXCLUDE) {
2528			error = EADDRNOTAVAIL;
2529			goto out_locked;
2530		}
2531		ims = imo_match_source(imo, idx, &ssa->sa);
2532		if (ims == NULL) {
2533			IGMP_INET_PRINTF(ssa->sin.sin_addr,
2534			    ("%s: source %s %spresent\n", __func__,
2535			    _igmp_inet_buf, "not "));
2536			error = EADDRNOTAVAIL;
2537			goto out_locked;
2538		}
2539		IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
2540		error = imf_prune(imf, &ssa->sin);
2541		if (error) {
2542			IGMP_PRINTF(("%s: merge imf state failed\n",
2543			    __func__));
2544			goto out_locked;
2545		}
2546	}
2547
2548	/*
2549	 * Begin state merge transaction at IGMP layer.
2550	 */
2551
2552	if (is_final) {
2553		/*
2554		 * Give up the multicast address record to which
2555		 * the membership points.  Reference held in imo
2556		 * will be released below.
2557		 */
2558		(void) in_leavegroup(inm, imf);
2559	} else {
2560		IGMP_PRINTF(("%s: merge inm state\n", __func__));
2561		INM_LOCK(inm);
2562		error = inm_merge(inm, imf);
2563		if (error) {
2564			IGMP_PRINTF(("%s: failed to merge inm state\n",
2565			    __func__));
2566			INM_UNLOCK(inm);
2567			goto out_imf_rollback;
2568		}
2569
2570		IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2571		error = igmp_change_state(inm, &itp);
2572		if (error) {
2573			IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2574		}
2575		INM_UNLOCK(inm);
2576	}
2577
2578out_imf_rollback:
2579	if (error)
2580		imf_rollback(imf);
2581	else
2582		imf_commit(imf);
2583
2584	imf_reap(imf);
2585
2586	if (is_final) {
2587		/* Remove the gap in the membership and filter array. */
2588		VERIFY(inm == imo->imo_membership[idx]);
2589		imo->imo_membership[idx] = NULL;
2590		INM_REMREF(inm);
2591		for (++idx; idx < imo->imo_num_memberships; ++idx) {
2592			imo->imo_membership[idx-1] = imo->imo_membership[idx];
2593			imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2594		}
2595		imo->imo_num_memberships--;
2596	}
2597
2598out_locked:
2599	IMO_UNLOCK(imo);
2600	IMO_REMREF(imo);	/* from inp_findmoptions() */
2601
2602	/* schedule timer now that we've dropped the lock(s) */
2603	igmp_set_timeout(&itp);
2604
2605	return (error);
2606}
2607
2608/*
2609 * Select the interface for transmitting IPv4 multicast datagrams.
2610 *
2611 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2612 * may be passed to this socket option. An address of INADDR_ANY or an
2613 * interface index of 0 is used to remove a previous selection.
2614 * When no interface is selected, one is chosen for every send.
2615 */
2616static int
2617inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2618{
2619	struct in_addr		 addr;
2620	struct ip_mreqn		 mreqn;
2621	struct ifnet		*ifp;
2622	struct ip_moptions	*imo;
2623	int			 error = 0 ;
2624	unsigned int		 ifindex = 0;
2625
2626	if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2627		/*
2628		 * An interface index was specified using the
2629		 * Linux-derived ip_mreqn structure.
2630		 */
2631		error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2632		    sizeof(struct ip_mreqn));
2633		if (error)
2634			return (error);
2635
2636		ifnet_head_lock_shared();
2637		if (mreqn.imr_ifindex < 0 || if_index < mreqn.imr_ifindex) {
2638			ifnet_head_done();
2639			return (EINVAL);
2640		}
2641
2642		if (mreqn.imr_ifindex == 0) {
2643			ifp = NULL;
2644		} else {
2645			ifp = ifindex2ifnet[mreqn.imr_ifindex];
2646			if (ifp == NULL) {
2647				ifnet_head_done();
2648				return (EADDRNOTAVAIL);
2649			}
2650		}
2651		ifnet_head_done();
2652	} else {
2653		/*
2654		 * An interface was specified by IPv4 address.
2655		 * This is the traditional BSD usage.
2656		 */
2657		error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2658		    sizeof(struct in_addr));
2659		if (error)
2660			return (error);
2661		if (in_nullhost(addr)) {
2662			ifp = NULL;
2663		} else {
2664			ifp = ip_multicast_if(&addr, &ifindex);
2665			if (ifp == NULL) {
2666				IGMP_INET_PRINTF(addr,
2667				    ("%s: can't find ifp for addr=%s\n",
2668				    __func__, _igmp_inet_buf));
2669				return (EADDRNOTAVAIL);
2670			}
2671		}
2672		/* XXX remove? */
2673#ifdef IGMP_DEBUG0
2674		IGMP_PRINTF(("%s: ifp = 0x%llx, addr = %s\n", __func__,
2675		    (uint64_t)VM_KERNEL_ADDRPERM(ifp), inet_ntoa(addr)));
2676#endif
2677	}
2678
2679	/* Reject interfaces which do not support multicast. */
2680	if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2681		return (EOPNOTSUPP);
2682
2683	imo = inp_findmoptions(inp);
2684	if (imo == NULL)
2685		return (ENOMEM);
2686
2687	IMO_LOCK(imo);
2688	imo->imo_multicast_ifp = ifp;
2689	if (ifindex)
2690		imo->imo_multicast_addr = addr;
2691	else
2692		imo->imo_multicast_addr.s_addr = INADDR_ANY;
2693	IMO_UNLOCK(imo);
2694	IMO_REMREF(imo);	/* from inp_findmoptions() */
2695
2696	return (0);
2697}
2698
2699/*
2700 * Atomically set source filters on a socket for an IPv4 multicast group.
2701 */
2702static int
2703inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2704{
2705	struct __msfilterreq64	 msfr, msfr64;
2706	struct __msfilterreq32	 msfr32;
2707	sockunion_t		*gsa;
2708	struct ifnet		*ifp;
2709	struct in_mfilter	*imf;
2710	struct ip_moptions	*imo;
2711	struct in_multi		*inm;
2712	size_t			 idx;
2713	int			 error;
2714	user_addr_t		 tmp_ptr;
2715	struct igmp_tparams	 itp;
2716
2717	bzero(&itp, sizeof (itp));
2718
2719	if (IS_64BIT_PROCESS(current_proc())) {
2720		error = sooptcopyin(sopt, &msfr64,
2721		    sizeof(struct __msfilterreq64),
2722		    sizeof(struct __msfilterreq64));
2723		if (error)
2724			return (error);
2725		/* we never use msfr.msfr_srcs; */
2726		memcpy(&msfr, &msfr64, sizeof(msfr));
2727	} else {
2728		error = sooptcopyin(sopt, &msfr32,
2729		    sizeof(struct __msfilterreq32),
2730		    sizeof(struct __msfilterreq32));
2731		if (error)
2732			return (error);
2733		/* we never use msfr.msfr_srcs; */
2734		memcpy(&msfr, &msfr32, sizeof(msfr));
2735	}
2736
2737	if ((size_t) msfr.msfr_nsrcs >
2738	    UINT32_MAX / sizeof(struct sockaddr_storage))
2739		msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
2740
2741	if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2742		return (ENOBUFS);
2743
2744	if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2745	     msfr.msfr_fmode != MCAST_INCLUDE))
2746		return (EINVAL);
2747
2748	if (msfr.msfr_group.ss_family != AF_INET ||
2749	    msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2750		return (EINVAL);
2751
2752	gsa = (sockunion_t *)&msfr.msfr_group;
2753	if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr)))
2754		return (EINVAL);
2755
2756	gsa->sin.sin_port = 0;	/* ignore port */
2757
2758	ifnet_head_lock_shared();
2759	if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
2760		ifnet_head_done();
2761		return (EADDRNOTAVAIL);
2762	}
2763
2764	ifp = ifindex2ifnet[msfr.msfr_ifindex];
2765	ifnet_head_done();
2766	if (ifp == NULL)
2767		return (EADDRNOTAVAIL);
2768
2769	/*
2770	 * Check if this socket is a member of this group.
2771	 */
2772	imo = inp_findmoptions(inp);
2773	if (imo == NULL)
2774		return (ENOMEM);
2775
2776	IMO_LOCK(imo);
2777	idx = imo_match_group(imo, ifp, &gsa->sa);
2778	if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
2779		error = EADDRNOTAVAIL;
2780		goto out_imo_locked;
2781	}
2782	inm = imo->imo_membership[idx];
2783	imf = &imo->imo_mfilters[idx];
2784
2785	/*
2786	 * Begin state merge transaction at socket layer.
2787	 */
2788
2789	imf->imf_st[1] = msfr.msfr_fmode;
2790
2791	/*
2792	 * Apply any new source filters, if present.
2793	 * Make a copy of the user-space source vector so
2794	 * that we may copy them with a single copyin. This
2795	 * allows us to deal with page faults up-front.
2796	 */
2797	if (msfr.msfr_nsrcs > 0) {
2798		struct in_msource	*lims;
2799		struct sockaddr_in	*psin;
2800		struct sockaddr_storage	*kss, *pkss;
2801		int			 i;
2802
2803		if (IS_64BIT_PROCESS(current_proc()))
2804			tmp_ptr = msfr64.msfr_srcs;
2805		else
2806			tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
2807
2808		IGMP_PRINTF(("%s: loading %lu source list entries\n",
2809		    __func__, (unsigned long)msfr.msfr_nsrcs));
2810		kss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*kss),
2811		    M_TEMP, M_WAITOK);
2812		if (kss == NULL) {
2813			error = ENOMEM;
2814			goto out_imo_locked;
2815		}
2816		error = copyin(tmp_ptr, kss,
2817		    (size_t) msfr.msfr_nsrcs * sizeof(*kss));
2818		if (error) {
2819			FREE(kss, M_TEMP);
2820			goto out_imo_locked;
2821		}
2822
2823		/*
2824		 * Mark all source filters as UNDEFINED at t1.
2825		 * Restore new group filter mode, as imf_leave()
2826		 * will set it to INCLUDE.
2827		 */
2828		imf_leave(imf);
2829		imf->imf_st[1] = msfr.msfr_fmode;
2830
2831		/*
2832		 * Update socket layer filters at t1, lazy-allocating
2833		 * new entries. This saves a bunch of memory at the
2834		 * cost of one RB_FIND() per source entry; duplicate
2835		 * entries in the msfr_nsrcs vector are ignored.
2836		 * If we encounter an error, rollback transaction.
2837		 *
2838		 * XXX This too could be replaced with a set-symmetric
2839		 * difference like loop to avoid walking from root
2840		 * every time, as the key space is common.
2841		 */
2842		for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs;
2843		    i++, pkss++) {
2844			psin = (struct sockaddr_in *)pkss;
2845			if (psin->sin_family != AF_INET) {
2846				error = EAFNOSUPPORT;
2847				break;
2848			}
2849			if (psin->sin_len != sizeof(struct sockaddr_in)) {
2850				error = EINVAL;
2851				break;
2852			}
2853			error = imf_get_source(imf, psin, &lims);
2854			if (error)
2855				break;
2856			lims->imsl_st[1] = imf->imf_st[1];
2857		}
2858		FREE(kss, M_TEMP);
2859	}
2860
2861	if (error)
2862		goto out_imf_rollback;
2863
2864	/*
2865	 * Begin state merge transaction at IGMP layer.
2866	 */
2867	INM_LOCK(inm);
2868	IGMP_PRINTF(("%s: merge inm state\n", __func__));
2869	error = inm_merge(inm, imf);
2870	if (error) {
2871		IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
2872		INM_UNLOCK(inm);
2873		goto out_imf_rollback;
2874	}
2875
2876	IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2877	error = igmp_change_state(inm, &itp);
2878	INM_UNLOCK(inm);
2879#ifdef IGMP_DEBUG
2880	if (error)
2881		IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2882#endif
2883
2884out_imf_rollback:
2885	if (error)
2886		imf_rollback(imf);
2887	else
2888		imf_commit(imf);
2889
2890	imf_reap(imf);
2891
2892out_imo_locked:
2893	IMO_UNLOCK(imo);
2894	IMO_REMREF(imo);	/* from inp_findmoptions() */
2895
2896	/* schedule timer now that we've dropped the lock(s) */
2897	igmp_set_timeout(&itp);
2898
2899	return (error);
2900}
2901
2902/*
2903 * Set the IP multicast options in response to user setsockopt().
2904 *
2905 * Many of the socket options handled in this function duplicate the
2906 * functionality of socket options in the regular unicast API. However,
2907 * it is not possible to merge the duplicate code, because the idempotence
2908 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2909 * the effects of these options must be treated as separate and distinct.
2910 */
2911int
2912inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2913{
2914	struct ip_moptions	*imo;
2915	int			 error;
2916	unsigned int		 ifindex;
2917	struct ifnet		*ifp;
2918
2919	error = 0;
2920
2921	/*
2922	 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2923	 * or is a divert socket, reject it.
2924	 */
2925	if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
2926	    (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
2927	     SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM))
2928		return (EOPNOTSUPP);
2929
2930	switch (sopt->sopt_name) {
2931	case IP_MULTICAST_IF:
2932		error = inp_set_multicast_if(inp, sopt);
2933		break;
2934
2935	case IP_MULTICAST_IFINDEX:
2936		/*
2937		 * Select the interface for outgoing multicast packets.
2938		 */
2939		error = sooptcopyin(sopt, &ifindex, sizeof (ifindex),
2940		    sizeof (ifindex));
2941		if (error)
2942			break;
2943
2944		imo = inp_findmoptions(inp);
2945		if (imo == NULL) {
2946			error = ENOMEM;
2947			break;
2948		}
2949		/*
2950		 * Index 0 is used to remove a previous selection.
2951		 * When no interface is selected, a default one is
2952		 * chosen every time a multicast packet is sent.
2953		 */
2954		if (ifindex == 0) {
2955			IMO_LOCK(imo);
2956			imo->imo_multicast_ifp = NULL;
2957			IMO_UNLOCK(imo);
2958			IMO_REMREF(imo);	/* from inp_findmoptions() */
2959			break;
2960		}
2961
2962		ifnet_head_lock_shared();
2963		/* Don't need to check is ifindex is < 0 since it's unsigned */
2964		if ((unsigned int)if_index < ifindex) {
2965			ifnet_head_done();
2966			IMO_REMREF(imo);	/* from inp_findmoptions() */
2967			error = ENXIO;	/* per IPV6_MULTICAST_IF */
2968			break;
2969		}
2970		ifp = ifindex2ifnet[ifindex];
2971		ifnet_head_done();
2972
2973		/* If it's detached or isn't a multicast interface, bail out */
2974		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2975			IMO_REMREF(imo);	/* from inp_findmoptions() */
2976			error = EADDRNOTAVAIL;
2977			break;
2978		}
2979		IMO_LOCK(imo);
2980		imo->imo_multicast_ifp = ifp;
2981		/*
2982		 * Clear out any remnants of past IP_MULTICAST_IF.  The addr
2983		 * isn't really used anywhere in the kernel; we could have
2984		 * iterated thru the addresses of the interface and pick one
2985		 * here, but that is redundant since ip_getmoptions() already
2986		 * takes care of that for INADDR_ANY.
2987		 */
2988		imo->imo_multicast_addr.s_addr = INADDR_ANY;
2989		IMO_UNLOCK(imo);
2990		IMO_REMREF(imo);	/* from inp_findmoptions() */
2991		break;
2992
2993	case IP_MULTICAST_TTL: {
2994		u_char ttl;
2995
2996		/*
2997		 * Set the IP time-to-live for outgoing multicast packets.
2998		 * The original multicast API required a char argument,
2999		 * which is inconsistent with the rest of the socket API.
3000		 * We allow either a char or an int.
3001		 */
3002		if (sopt->sopt_valsize == sizeof(u_char)) {
3003			error = sooptcopyin(sopt, &ttl, sizeof(u_char),
3004			    sizeof(u_char));
3005			if (error)
3006				break;
3007		} else {
3008			u_int ittl;
3009
3010			error = sooptcopyin(sopt, &ittl, sizeof(u_int),
3011			    sizeof(u_int));
3012			if (error)
3013				break;
3014			if (ittl > 255) {
3015				error = EINVAL;
3016				break;
3017			}
3018			ttl = (u_char)ittl;
3019		}
3020		imo = inp_findmoptions(inp);
3021		if (imo == NULL) {
3022			error = ENOMEM;
3023			break;
3024		}
3025		IMO_LOCK(imo);
3026		imo->imo_multicast_ttl = ttl;
3027		IMO_UNLOCK(imo);
3028		IMO_REMREF(imo);	/* from inp_findmoptions() */
3029		break;
3030	}
3031
3032	case IP_MULTICAST_LOOP: {
3033		u_char loop;
3034
3035		/*
3036		 * Set the loopback flag for outgoing multicast packets.
3037		 * Must be zero or one.  The original multicast API required a
3038		 * char argument, which is inconsistent with the rest
3039		 * of the socket API.  We allow either a char or an int.
3040		 */
3041		if (sopt->sopt_valsize == sizeof(u_char)) {
3042			error = sooptcopyin(sopt, &loop, sizeof(u_char),
3043			    sizeof(u_char));
3044			if (error)
3045				break;
3046		} else {
3047			u_int iloop;
3048
3049			error = sooptcopyin(sopt, &iloop, sizeof(u_int),
3050					    sizeof(u_int));
3051			if (error)
3052				break;
3053			loop = (u_char)iloop;
3054		}
3055		imo = inp_findmoptions(inp);
3056		if (imo == NULL) {
3057			error = ENOMEM;
3058			break;
3059		}
3060		IMO_LOCK(imo);
3061		imo->imo_multicast_loop = !!loop;
3062		IMO_UNLOCK(imo);
3063		IMO_REMREF(imo);	/* from inp_findmoptions() */
3064		break;
3065	}
3066
3067	case IP_ADD_MEMBERSHIP:
3068	case IP_ADD_SOURCE_MEMBERSHIP:
3069	case MCAST_JOIN_GROUP:
3070	case MCAST_JOIN_SOURCE_GROUP:
3071		error = inp_join_group(inp, sopt);
3072		break;
3073
3074	case IP_DROP_MEMBERSHIP:
3075	case IP_DROP_SOURCE_MEMBERSHIP:
3076	case MCAST_LEAVE_GROUP:
3077	case MCAST_LEAVE_SOURCE_GROUP:
3078		error = inp_leave_group(inp, sopt);
3079		break;
3080
3081	case IP_BLOCK_SOURCE:
3082	case IP_UNBLOCK_SOURCE:
3083	case MCAST_BLOCK_SOURCE:
3084	case MCAST_UNBLOCK_SOURCE:
3085		error = inp_block_unblock_source(inp, sopt);
3086		break;
3087
3088	case IP_MSFILTER:
3089		error = inp_set_source_filters(inp, sopt);
3090		break;
3091
3092	default:
3093		error = EOPNOTSUPP;
3094		break;
3095	}
3096
3097	return (error);
3098}
3099
3100/*
3101 * Expose IGMP's multicast filter mode and source list(s) to userland,
3102 * keyed by (ifindex, group).
3103 * The filter mode is written out as a uint32_t, followed by
3104 * 0..n of struct in_addr.
3105 * For use by ifmcstat(8).
3106 */
3107static int
3108sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS
3109{
3110#pragma unused(oidp)
3111
3112	struct in_addr			 src, group;
3113	struct ifnet			*ifp;
3114	struct in_multi			*inm;
3115	struct in_multistep		step;
3116	struct ip_msource		*ims;
3117	int				*name;
3118	int				 retval = 0;
3119	u_int				 namelen;
3120	uint32_t			 fmode, ifindex;
3121
3122	name = (int *)arg1;
3123	namelen = (u_int)arg2;
3124
3125	if (req->newptr != USER_ADDR_NULL)
3126		return (EPERM);
3127
3128	if (namelen != 2)
3129		return (EINVAL);
3130
3131	ifindex = name[0];
3132	ifnet_head_lock_shared();
3133	if (ifindex <= 0 || ifindex > (u_int)if_index) {
3134		IGMP_PRINTF(("%s: ifindex %u out of range\n",
3135		    __func__, ifindex));
3136		ifnet_head_done();
3137		return (ENOENT);
3138	}
3139
3140	group.s_addr = name[1];
3141	if (!IN_MULTICAST(ntohl(group.s_addr))) {
3142		IGMP_INET_PRINTF(group,
3143		    ("%s: group %s is not multicast\n",
3144		    __func__, _igmp_inet_buf));
3145		ifnet_head_done();
3146		return (EINVAL);
3147	}
3148
3149	ifp = ifindex2ifnet[ifindex];
3150	ifnet_head_done();
3151	if (ifp == NULL) {
3152		IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
3153		return (ENOENT);
3154	}
3155
3156	in_multihead_lock_shared();
3157	IN_FIRST_MULTI(step, inm);
3158	while (inm != NULL) {
3159		INM_LOCK(inm);
3160		if (inm->inm_ifp != ifp)
3161			goto next;
3162
3163		if (!in_hosteq(inm->inm_addr, group))
3164			goto next;
3165
3166		fmode = inm->inm_st[1].iss_fmode;
3167		retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3168		if (retval != 0) {
3169			INM_UNLOCK(inm);
3170			break;		/* abort */
3171		}
3172		RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3173#ifdef IGMP_DEBUG
3174			struct in_addr ina;
3175			ina.s_addr = htonl(ims->ims_haddr);
3176			IGMP_INET_PRINTF(ina,
3177			    ("%s: visit node %s\n", __func__, _igmp_inet_buf));
3178#endif
3179			/*
3180			 * Only copy-out sources which are in-mode.
3181			 */
3182			if (fmode != ims_get_mode(inm, ims, 1)) {
3183				IGMP_PRINTF(("%s: skip non-in-mode\n",
3184				    __func__));
3185				continue; /* process next source */
3186			}
3187			src.s_addr = htonl(ims->ims_haddr);
3188			retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3189			if (retval != 0)
3190				break;	/* process next inm */
3191		}
3192next:
3193		INM_UNLOCK(inm);
3194		IN_NEXT_MULTI(step, inm);
3195	}
3196	in_multihead_lock_done();
3197
3198	return (retval);
3199}
3200
3201/*
3202 * XXX
3203 * The whole multicast option thing needs to be re-thought.
3204 * Several of these options are equally applicable to non-multicast
3205 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
3206 * standard option (IP_TTL).
3207 */
3208/*
3209 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
3210 */
3211static struct ifnet *
3212ip_multicast_if(struct in_addr *a, unsigned int *ifindexp)
3213{
3214	unsigned int ifindex;
3215	struct ifnet *ifp;
3216
3217	if (ifindexp != NULL)
3218		*ifindexp = 0;
3219	if (ntohl(a->s_addr) >> 24 == 0) {
3220		ifindex = ntohl(a->s_addr) & 0xffffff;
3221		ifnet_head_lock_shared();
3222		/* Don't need to check is ifindex is < 0 since it's unsigned */
3223		if ((unsigned int)if_index < ifindex) {
3224			ifnet_head_done();
3225			return (NULL);
3226		}
3227		ifp = ifindex2ifnet[ifindex];
3228		ifnet_head_done();
3229		if (ifp != NULL && ifindexp != NULL)
3230			*ifindexp = ifindex;
3231	} else {
3232		INADDR_TO_IFP(*a, ifp);
3233	}
3234	return (ifp);
3235}
3236
3237void
3238in_multi_init(void)
3239{
3240	PE_parse_boot_argn("ifa_debug", &inm_debug, sizeof (inm_debug));
3241
3242	/* Setup lock group and attribute for in_multihead */
3243	in_multihead_lock_grp_attr = lck_grp_attr_alloc_init();
3244	in_multihead_lock_grp = lck_grp_alloc_init("in_multihead",
3245	    in_multihead_lock_grp_attr);
3246	in_multihead_lock_attr = lck_attr_alloc_init();
3247	lck_rw_init(&in_multihead_lock, in_multihead_lock_grp,
3248	    in_multihead_lock_attr);
3249
3250	lck_mtx_init(&inm_trash_lock, in_multihead_lock_grp,
3251	    in_multihead_lock_attr);
3252	TAILQ_INIT(&inm_trash_head);
3253
3254	inm_size = (inm_debug == 0) ? sizeof (struct in_multi) :
3255	    sizeof (struct in_multi_dbg);
3256	inm_zone = zinit(inm_size, INM_ZONE_MAX * inm_size,
3257	    0, INM_ZONE_NAME);
3258	if (inm_zone == NULL) {
3259		panic("%s: failed allocating %s", __func__, INM_ZONE_NAME);
3260		/* NOTREACHED */
3261	}
3262	zone_change(inm_zone, Z_EXPAND, TRUE);
3263
3264	ipms_size = sizeof (struct ip_msource);
3265	ipms_zone = zinit(ipms_size, IPMS_ZONE_MAX * ipms_size,
3266	    0, IPMS_ZONE_NAME);
3267	if (ipms_zone == NULL) {
3268		panic("%s: failed allocating %s", __func__, IPMS_ZONE_NAME);
3269		/* NOTREACHED */
3270	}
3271	zone_change(ipms_zone, Z_EXPAND, TRUE);
3272
3273	inms_size = sizeof (struct in_msource);
3274	inms_zone = zinit(inms_size, INMS_ZONE_MAX * inms_size,
3275	    0, INMS_ZONE_NAME);
3276	if (inms_zone == NULL) {
3277		panic("%s: failed allocating %s", __func__, INMS_ZONE_NAME);
3278		/* NOTREACHED */
3279	}
3280	zone_change(inms_zone, Z_EXPAND, TRUE);
3281}
3282
3283static struct in_multi *
3284in_multi_alloc(int how)
3285{
3286	struct in_multi *inm;
3287
3288	inm = (how == M_WAITOK) ? zalloc(inm_zone) : zalloc_noblock(inm_zone);
3289	if (inm != NULL) {
3290		bzero(inm, inm_size);
3291		lck_mtx_init(&inm->inm_lock, in_multihead_lock_grp,
3292		    in_multihead_lock_attr);
3293		inm->inm_debug |= IFD_ALLOC;
3294		if (inm_debug != 0) {
3295			inm->inm_debug |= IFD_DEBUG;
3296			inm->inm_trace = inm_trace;
3297		}
3298	}
3299	return (inm);
3300}
3301
3302static void
3303in_multi_free(struct in_multi *inm)
3304{
3305	INM_LOCK(inm);
3306	if (inm->inm_debug & IFD_ATTACHED) {
3307		panic("%s: attached inm=%p is being freed", __func__, inm);
3308		/* NOTREACHED */
3309	} else if (inm->inm_ifma != NULL) {
3310		panic("%s: ifma not NULL for inm=%p", __func__, inm);
3311		/* NOTREACHED */
3312	} else if (!(inm->inm_debug & IFD_ALLOC)) {
3313		panic("%s: inm %p cannot be freed", __func__, inm);
3314		/* NOTREACHED */
3315	} else if (inm->inm_refcount != 0) {
3316		panic("%s: non-zero refcount inm=%p", __func__, inm);
3317		/* NOTREACHED */
3318	} else if (inm->inm_reqcnt != 0) {
3319		panic("%s: non-zero reqcnt inm=%p", __func__, inm);
3320		/* NOTREACHED */
3321	}
3322
3323	/* Free any pending IGMPv3 state-change records */
3324	IF_DRAIN(&inm->inm_scq);
3325
3326	inm->inm_debug &= ~IFD_ALLOC;
3327	if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3328	    (IFD_DEBUG | IFD_TRASHED)) {
3329		lck_mtx_lock(&inm_trash_lock);
3330		TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3331		    inm_trash_link);
3332		lck_mtx_unlock(&inm_trash_lock);
3333		inm->inm_debug &= ~IFD_TRASHED;
3334	}
3335	INM_UNLOCK(inm);
3336
3337	lck_mtx_destroy(&inm->inm_lock, in_multihead_lock_grp);
3338	zfree(inm_zone, inm);
3339}
3340
3341static void
3342in_multi_attach(struct in_multi *inm)
3343{
3344	in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3345	INM_LOCK_ASSERT_HELD(inm);
3346
3347	if (inm->inm_debug & IFD_ATTACHED) {
3348		panic("%s: Attempt to attach an already attached inm=%p",
3349		    __func__, inm);
3350		/* NOTREACHED */
3351	} else if (inm->inm_debug & IFD_TRASHED) {
3352		panic("%s: Attempt to reattach a detached inm=%p",
3353		    __func__, inm);
3354		/* NOTREACHED */
3355	}
3356
3357	inm->inm_reqcnt++;
3358	VERIFY(inm->inm_reqcnt == 1);
3359	INM_ADDREF_LOCKED(inm);
3360	inm->inm_debug |= IFD_ATTACHED;
3361	/*
3362	 * Reattach case:  If debugging is enabled, take it
3363	 * out of the trash list and clear IFD_TRASHED.
3364	 */
3365	if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3366	    (IFD_DEBUG | IFD_TRASHED)) {
3367		/* Become a regular mutex, just in case */
3368		INM_CONVERT_LOCK(inm);
3369		lck_mtx_lock(&inm_trash_lock);
3370		TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3371		    inm_trash_link);
3372		lck_mtx_unlock(&inm_trash_lock);
3373		inm->inm_debug &= ~IFD_TRASHED;
3374	}
3375
3376	LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
3377}
3378
3379int
3380in_multi_detach(struct in_multi *inm)
3381{
3382	in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3383	INM_LOCK_ASSERT_HELD(inm);
3384
3385	if (inm->inm_reqcnt == 0) {
3386		panic("%s: inm=%p negative reqcnt", __func__, inm);
3387		/* NOTREACHED */
3388	}
3389
3390	--inm->inm_reqcnt;
3391	if (inm->inm_reqcnt > 0)
3392		return (0);
3393
3394	if (!(inm->inm_debug & IFD_ATTACHED)) {
3395		panic("%s: Attempt to detach an unattached record inm=%p",
3396		    __func__, inm);
3397		/* NOTREACHED */
3398	} else if (inm->inm_debug & IFD_TRASHED) {
3399		panic("%s: inm %p is already in trash list", __func__, inm);
3400		/* NOTREACHED */
3401	}
3402
3403	/*
3404	 * NOTE: Caller calls IFMA_REMREF
3405	 */
3406	inm->inm_debug &= ~IFD_ATTACHED;
3407	LIST_REMOVE(inm, inm_link);
3408
3409	if (inm->inm_debug & IFD_DEBUG) {
3410		/* Become a regular mutex, just in case */
3411		INM_CONVERT_LOCK(inm);
3412		lck_mtx_lock(&inm_trash_lock);
3413		TAILQ_INSERT_TAIL(&inm_trash_head,
3414		    (struct in_multi_dbg *)inm, inm_trash_link);
3415		lck_mtx_unlock(&inm_trash_lock);
3416		inm->inm_debug |= IFD_TRASHED;
3417	}
3418
3419	return (1);
3420}
3421
3422void
3423inm_addref(struct in_multi *inm, int locked)
3424{
3425	if (!locked)
3426		INM_LOCK_SPIN(inm);
3427	else
3428		INM_LOCK_ASSERT_HELD(inm);
3429
3430	if (++inm->inm_refcount == 0) {
3431		panic("%s: inm=%p wraparound refcnt", __func__, inm);
3432		/* NOTREACHED */
3433	} else if (inm->inm_trace != NULL) {
3434		(*inm->inm_trace)(inm, TRUE);
3435	}
3436	if (!locked)
3437		INM_UNLOCK(inm);
3438}
3439
3440void
3441inm_remref(struct in_multi *inm, int locked)
3442{
3443	struct ifmultiaddr *ifma;
3444	struct igmp_ifinfo *igi;
3445
3446	if (!locked)
3447		INM_LOCK_SPIN(inm);
3448	else
3449		INM_LOCK_ASSERT_HELD(inm);
3450
3451	if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) {
3452		panic("%s: inm=%p negative/missing refcnt", __func__, inm);
3453		/* NOTREACHED */
3454	} else if (inm->inm_trace != NULL) {
3455		(*inm->inm_trace)(inm, FALSE);
3456	}
3457
3458	--inm->inm_refcount;
3459	if (inm->inm_refcount > 0) {
3460		if (!locked)
3461			INM_UNLOCK(inm);
3462		return;
3463	}
3464
3465	/*
3466	 * Synchronization with in_getmulti().  In the event the inm has been
3467	 * detached, the underlying ifma would still be in the if_multiaddrs
3468	 * list, and thus can be looked up via if_addmulti().  At that point,
3469	 * the only way to find this inm is via ifma_protospec.  To avoid
3470	 * race conditions between the last inm_remref() of that inm and its
3471	 * use via ifma_protospec, in_multihead lock is used for serialization.
3472	 * In order to avoid violating the lock order, we must drop inm_lock
3473	 * before acquiring in_multihead lock.  To prevent the inm from being
3474	 * freed prematurely, we hold an extra reference.
3475	 */
3476	++inm->inm_refcount;
3477	INM_UNLOCK(inm);
3478	in_multihead_lock_shared();
3479	INM_LOCK_SPIN(inm);
3480	--inm->inm_refcount;
3481	if (inm->inm_refcount > 0) {
3482		/* We've lost the race, so abort since inm is still in use */
3483		INM_UNLOCK(inm);
3484		in_multihead_lock_done();
3485		/* If it was locked, return it as such */
3486		if (locked)
3487			INM_LOCK(inm);
3488		return;
3489	}
3490	inm_purge(inm);
3491	ifma = inm->inm_ifma;
3492	inm->inm_ifma = NULL;
3493	inm->inm_ifp = NULL;
3494	igi = inm->inm_igi;
3495	inm->inm_igi = NULL;
3496	INM_UNLOCK(inm);
3497	IFMA_LOCK_SPIN(ifma);
3498	ifma->ifma_protospec = NULL;
3499	IFMA_UNLOCK(ifma);
3500	in_multihead_lock_done();
3501
3502	in_multi_free(inm);
3503	if_delmulti_ifma(ifma);
3504	/* Release reference held to the underlying ifmultiaddr */
3505	IFMA_REMREF(ifma);
3506
3507	if (igi != NULL)
3508		IGI_REMREF(igi);
3509}
3510
3511static void
3512inm_trace(struct in_multi *inm, int refhold)
3513{
3514	struct in_multi_dbg *inm_dbg = (struct in_multi_dbg *)inm;
3515	ctrace_t *tr;
3516	u_int32_t idx;
3517	u_int16_t *cnt;
3518
3519	if (!(inm->inm_debug & IFD_DEBUG)) {
3520		panic("%s: inm %p has no debug structure", __func__, inm);
3521		/* NOTREACHED */
3522	}
3523	if (refhold) {
3524		cnt = &inm_dbg->inm_refhold_cnt;
3525		tr = inm_dbg->inm_refhold;
3526	} else {
3527		cnt = &inm_dbg->inm_refrele_cnt;
3528		tr = inm_dbg->inm_refrele;
3529	}
3530
3531	idx = atomic_add_16_ov(cnt, 1) % INM_TRACE_HIST_SIZE;
3532	ctrace_record(&tr[idx]);
3533}
3534
3535void
3536in_multihead_lock_exclusive(void)
3537{
3538	lck_rw_lock_exclusive(&in_multihead_lock);
3539}
3540
3541void
3542in_multihead_lock_shared(void)
3543{
3544	lck_rw_lock_shared(&in_multihead_lock);
3545}
3546
3547void
3548in_multihead_lock_assert(int what)
3549{
3550	lck_rw_assert(&in_multihead_lock, what);
3551}
3552
3553void
3554in_multihead_lock_done(void)
3555{
3556	lck_rw_done(&in_multihead_lock);
3557}
3558
3559static struct ip_msource *
3560ipms_alloc(int how)
3561{
3562	struct ip_msource *ims;
3563
3564	ims = (how == M_WAITOK) ? zalloc(ipms_zone) : zalloc_noblock(ipms_zone);
3565	if (ims != NULL)
3566		bzero(ims, ipms_size);
3567
3568	return (ims);
3569}
3570
3571static void
3572ipms_free(struct ip_msource *ims)
3573{
3574	zfree(ipms_zone, ims);
3575}
3576
3577static struct in_msource *
3578inms_alloc(int how)
3579{
3580	struct in_msource *inms;
3581
3582	inms = (how == M_WAITOK) ? zalloc(inms_zone) :
3583	    zalloc_noblock(inms_zone);
3584	if (inms != NULL)
3585		bzero(inms, inms_size);
3586
3587	return (inms);
3588}
3589
3590static void
3591inms_free(struct in_msource *inms)
3592{
3593	zfree(inms_zone, inms);
3594}
3595
3596#ifdef IGMP_DEBUG
3597
3598static const char *inm_modestrs[] = { "un\n", "in", "ex" };
3599
3600static const char *
3601inm_mode_str(const int mode)
3602{
3603	if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3604		return (inm_modestrs[mode]);
3605	return ("??");
3606}
3607
3608static const char *inm_statestrs[] = {
3609	"not-member\n",
3610	"silent\n",
3611	"reporting\n",
3612	"idle\n",
3613	"lazy\n",
3614	"sleeping\n",
3615	"awakening\n",
3616	"query-pending\n",
3617	"sg-query-pending\n",
3618	"leaving"
3619};
3620
3621static const char *
3622inm_state_str(const int state)
3623{
3624	if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3625		return (inm_statestrs[state]);
3626	return ("??");
3627}
3628
3629/*
3630 * Dump an in_multi structure to the console.
3631 */
3632void
3633inm_print(const struct in_multi *inm)
3634{
3635	int t;
3636	char buf[MAX_IPv4_STR_LEN];
3637
3638	INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
3639
3640	if (igmp_debug == 0)
3641		return;
3642
3643	inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf));
3644	printf("%s: --- begin inm 0x%llx ---\n", __func__,
3645	    (uint64_t)VM_KERNEL_ADDRPERM(inm));
3646	printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n",
3647	    buf,
3648	    (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp),
3649	    if_name(inm->inm_ifp),
3650	    (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma));
3651	printf("timer %u state %s refcount %u scq.len %u\n",
3652	    inm->inm_timer,
3653	    inm_state_str(inm->inm_state),
3654	    inm->inm_refcount,
3655	    inm->inm_scq.ifq_len);
3656	printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n",
3657	    (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi),
3658	    inm->inm_nsrc,
3659	    inm->inm_sctimer,
3660	    inm->inm_scrv);
3661	for (t = 0; t < 2; t++) {
3662		printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3663		    inm_mode_str(inm->inm_st[t].iss_fmode),
3664		    inm->inm_st[t].iss_asm,
3665		    inm->inm_st[t].iss_ex,
3666		    inm->inm_st[t].iss_in,
3667		    inm->inm_st[t].iss_rec);
3668	}
3669	printf("%s: --- end inm 0x%llx ---\n", __func__,
3670	    (uint64_t)VM_KERNEL_ADDRPERM(inm));
3671}
3672
3673#else
3674
3675void
3676inm_print(__unused const struct in_multi *inm)
3677{
3678
3679}
3680
3681#endif
3682