1// SPDX-License-Identifier: (GPL-2.0 or BSD-2-Clause)
2/*
3 * xxHash - Extremely Fast Hash algorithm
4 * Copyright (C) 2012-2016, Yann Collet.
5 *
6 * You can contact the author at:
7 * - xxHash homepage: http://cyan4973.github.io/xxHash/
8 * - xxHash source repository: https://github.com/Cyan4973/xxHash
9 */
10
11#include <asm/unaligned.h>
12#include <linux/errno.h>
13#include <linux/compiler.h>
14#include <linux/kernel.h>
15#include <linux/compat.h>
16#include <linux/string.h>
17#include <linux/xxhash.h>
18
19/*-*************************************
20 * Macros
21 **************************************/
22#define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
23#define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))
24
25#ifdef __LITTLE_ENDIAN
26# define XXH_CPU_LITTLE_ENDIAN 1
27#else
28# define XXH_CPU_LITTLE_ENDIAN 0
29#endif
30
31/*-*************************************
32 * Constants
33 **************************************/
34static const uint32_t PRIME32_1 = 2654435761U;
35static const uint32_t PRIME32_2 = 2246822519U;
36static const uint32_t PRIME32_3 = 3266489917U;
37static const uint32_t PRIME32_4 =  668265263U;
38static const uint32_t PRIME32_5 =  374761393U;
39
40static const uint64_t PRIME64_1 = 11400714785074694791ULL;
41static const uint64_t PRIME64_2 = 14029467366897019727ULL;
42static const uint64_t PRIME64_3 =  1609587929392839161ULL;
43static const uint64_t PRIME64_4 =  9650029242287828579ULL;
44static const uint64_t PRIME64_5 =  2870177450012600261ULL;
45
46/*-**************************
47 *  Utils
48 ***************************/
49void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src)
50{
51	memcpy(dst, src, sizeof(*dst));
52}
53EXPORT_SYMBOL(xxh32_copy_state);
54
55void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src)
56{
57	memcpy(dst, src, sizeof(*dst));
58}
59EXPORT_SYMBOL(xxh64_copy_state);
60
61/*-***************************
62 * Simple Hash Functions
63 ****************************/
64static uint32_t xxh32_round(uint32_t seed, const uint32_t input)
65{
66	seed += input * PRIME32_2;
67	seed = xxh_rotl32(seed, 13);
68	seed *= PRIME32_1;
69	return seed;
70}
71
72uint32_t xxh32(const void *input, const size_t len, const uint32_t seed)
73{
74	const uint8_t *p = (const uint8_t *)input;
75	const uint8_t *b_end = p + len;
76	uint32_t h32;
77
78	if (len >= 16) {
79		const uint8_t *const limit = b_end - 16;
80		uint32_t v1 = seed + PRIME32_1 + PRIME32_2;
81		uint32_t v2 = seed + PRIME32_2;
82		uint32_t v3 = seed + 0;
83		uint32_t v4 = seed - PRIME32_1;
84
85		do {
86			v1 = xxh32_round(v1, get_unaligned_le32(p));
87			p += 4;
88			v2 = xxh32_round(v2, get_unaligned_le32(p));
89			p += 4;
90			v3 = xxh32_round(v3, get_unaligned_le32(p));
91			p += 4;
92			v4 = xxh32_round(v4, get_unaligned_le32(p));
93			p += 4;
94		} while (p <= limit);
95
96		h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) +
97			xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18);
98	} else {
99		h32 = seed + PRIME32_5;
100	}
101
102	h32 += (uint32_t)len;
103
104	while (p + 4 <= b_end) {
105		h32 += get_unaligned_le32(p) * PRIME32_3;
106		h32 = xxh_rotl32(h32, 17) * PRIME32_4;
107		p += 4;
108	}
109
110	while (p < b_end) {
111		h32 += (*p) * PRIME32_5;
112		h32 = xxh_rotl32(h32, 11) * PRIME32_1;
113		p++;
114	}
115
116	h32 ^= h32 >> 15;
117	h32 *= PRIME32_2;
118	h32 ^= h32 >> 13;
119	h32 *= PRIME32_3;
120	h32 ^= h32 >> 16;
121
122	return h32;
123}
124EXPORT_SYMBOL(xxh32);
125
126static uint64_t xxh64_round(uint64_t acc, const uint64_t input)
127{
128	acc += input * PRIME64_2;
129	acc = xxh_rotl64(acc, 31);
130	acc *= PRIME64_1;
131	return acc;
132}
133
134static uint64_t xxh64_merge_round(uint64_t acc, uint64_t val)
135{
136	val = xxh64_round(0, val);
137	acc ^= val;
138	acc = acc * PRIME64_1 + PRIME64_4;
139	return acc;
140}
141
142uint64_t xxh64(const void *input, const size_t len, const uint64_t seed)
143{
144	const uint8_t *p = (const uint8_t *)input;
145	const uint8_t *const b_end = p + len;
146	uint64_t h64;
147
148	if (len >= 32) {
149		const uint8_t *const limit = b_end - 32;
150		uint64_t v1 = seed + PRIME64_1 + PRIME64_2;
151		uint64_t v2 = seed + PRIME64_2;
152		uint64_t v3 = seed + 0;
153		uint64_t v4 = seed - PRIME64_1;
154
155		do {
156			v1 = xxh64_round(v1, get_unaligned_le64(p));
157			p += 8;
158			v2 = xxh64_round(v2, get_unaligned_le64(p));
159			p += 8;
160			v3 = xxh64_round(v3, get_unaligned_le64(p));
161			p += 8;
162			v4 = xxh64_round(v4, get_unaligned_le64(p));
163			p += 8;
164		} while (p <= limit);
165
166		h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
167			xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
168		h64 = xxh64_merge_round(h64, v1);
169		h64 = xxh64_merge_round(h64, v2);
170		h64 = xxh64_merge_round(h64, v3);
171		h64 = xxh64_merge_round(h64, v4);
172
173	} else {
174		h64  = seed + PRIME64_5;
175	}
176
177	h64 += (uint64_t)len;
178
179	while (p + 8 <= b_end) {
180		const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
181
182		h64 ^= k1;
183		h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
184		p += 8;
185	}
186
187	if (p + 4 <= b_end) {
188		h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
189		h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
190		p += 4;
191	}
192
193	while (p < b_end) {
194		h64 ^= (*p) * PRIME64_5;
195		h64 = xxh_rotl64(h64, 11) * PRIME64_1;
196		p++;
197	}
198
199	h64 ^= h64 >> 33;
200	h64 *= PRIME64_2;
201	h64 ^= h64 >> 29;
202	h64 *= PRIME64_3;
203	h64 ^= h64 >> 32;
204
205	return h64;
206}
207EXPORT_SYMBOL(xxh64);
208
209/*-**************************************************
210 * Advanced Hash Functions
211 ***************************************************/
212void xxh32_reset(struct xxh32_state *statePtr, const uint32_t seed)
213{
214	/* use a local state for memcpy() to avoid strict-aliasing warnings */
215	struct xxh32_state state;
216
217	memset(&state, 0, sizeof(state));
218	state.v1 = seed + PRIME32_1 + PRIME32_2;
219	state.v2 = seed + PRIME32_2;
220	state.v3 = seed + 0;
221	state.v4 = seed - PRIME32_1;
222	memcpy(statePtr, &state, sizeof(state));
223}
224EXPORT_SYMBOL(xxh32_reset);
225
226void xxh64_reset(struct xxh64_state *statePtr, const uint64_t seed)
227{
228	/* use a local state for memcpy() to avoid strict-aliasing warnings */
229	struct xxh64_state state;
230
231	memset(&state, 0, sizeof(state));
232	state.v1 = seed + PRIME64_1 + PRIME64_2;
233	state.v2 = seed + PRIME64_2;
234	state.v3 = seed + 0;
235	state.v4 = seed - PRIME64_1;
236	memcpy(statePtr, &state, sizeof(state));
237}
238EXPORT_SYMBOL(xxh64_reset);
239
240int xxh32_update(struct xxh32_state *state, const void *input, const size_t len)
241{
242	const uint8_t *p = (const uint8_t *)input;
243	const uint8_t *const b_end = p + len;
244
245	if (input == NULL)
246		return -EINVAL;
247
248	state->total_len_32 += (uint32_t)len;
249	state->large_len |= (len >= 16) | (state->total_len_32 >= 16);
250
251	if (state->memsize + len < 16) { /* fill in tmp buffer */
252		memcpy((uint8_t *)(state->mem32) + state->memsize, input, len);
253		state->memsize += (uint32_t)len;
254		return 0;
255	}
256
257	if (state->memsize) { /* some data left from previous update */
258		const uint32_t *p32 = state->mem32;
259
260		memcpy((uint8_t *)(state->mem32) + state->memsize, input,
261			16 - state->memsize);
262
263		state->v1 = xxh32_round(state->v1, get_unaligned_le32(p32));
264		p32++;
265		state->v2 = xxh32_round(state->v2, get_unaligned_le32(p32));
266		p32++;
267		state->v3 = xxh32_round(state->v3, get_unaligned_le32(p32));
268		p32++;
269		state->v4 = xxh32_round(state->v4, get_unaligned_le32(p32));
270		p32++;
271
272		p += 16-state->memsize;
273		state->memsize = 0;
274	}
275
276	if (p <= b_end - 16) {
277		const uint8_t *const limit = b_end - 16;
278		uint32_t v1 = state->v1;
279		uint32_t v2 = state->v2;
280		uint32_t v3 = state->v3;
281		uint32_t v4 = state->v4;
282
283		do {
284			v1 = xxh32_round(v1, get_unaligned_le32(p));
285			p += 4;
286			v2 = xxh32_round(v2, get_unaligned_le32(p));
287			p += 4;
288			v3 = xxh32_round(v3, get_unaligned_le32(p));
289			p += 4;
290			v4 = xxh32_round(v4, get_unaligned_le32(p));
291			p += 4;
292		} while (p <= limit);
293
294		state->v1 = v1;
295		state->v2 = v2;
296		state->v3 = v3;
297		state->v4 = v4;
298	}
299
300	if (p < b_end) {
301		memcpy(state->mem32, p, (size_t)(b_end-p));
302		state->memsize = (uint32_t)(b_end-p);
303	}
304
305	return 0;
306}
307EXPORT_SYMBOL(xxh32_update);
308
309uint32_t xxh32_digest(const struct xxh32_state *state)
310{
311	const uint8_t *p = (const uint8_t *)state->mem32;
312	const uint8_t *const b_end = (const uint8_t *)(state->mem32) +
313		state->memsize;
314	uint32_t h32;
315
316	if (state->large_len) {
317		h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) +
318			xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18);
319	} else {
320		h32 = state->v3 /* == seed */ + PRIME32_5;
321	}
322
323	h32 += state->total_len_32;
324
325	while (p + 4 <= b_end) {
326		h32 += get_unaligned_le32(p) * PRIME32_3;
327		h32 = xxh_rotl32(h32, 17) * PRIME32_4;
328		p += 4;
329	}
330
331	while (p < b_end) {
332		h32 += (*p) * PRIME32_5;
333		h32 = xxh_rotl32(h32, 11) * PRIME32_1;
334		p++;
335	}
336
337	h32 ^= h32 >> 15;
338	h32 *= PRIME32_2;
339	h32 ^= h32 >> 13;
340	h32 *= PRIME32_3;
341	h32 ^= h32 >> 16;
342
343	return h32;
344}
345EXPORT_SYMBOL(xxh32_digest);
346
347int xxh64_update(struct xxh64_state *state, const void *input, const size_t len)
348{
349	const uint8_t *p = (const uint8_t *)input;
350	const uint8_t *const b_end = p + len;
351
352	if (input == NULL)
353		return -EINVAL;
354
355	state->total_len += len;
356
357	if (state->memsize + len < 32) { /* fill in tmp buffer */
358		memcpy(((uint8_t *)state->mem64) + state->memsize, input, len);
359		state->memsize += (uint32_t)len;
360		return 0;
361	}
362
363	if (state->memsize) { /* tmp buffer is full */
364		uint64_t *p64 = state->mem64;
365
366		memcpy(((uint8_t *)p64) + state->memsize, input,
367			32 - state->memsize);
368
369		state->v1 = xxh64_round(state->v1, get_unaligned_le64(p64));
370		p64++;
371		state->v2 = xxh64_round(state->v2, get_unaligned_le64(p64));
372		p64++;
373		state->v3 = xxh64_round(state->v3, get_unaligned_le64(p64));
374		p64++;
375		state->v4 = xxh64_round(state->v4, get_unaligned_le64(p64));
376
377		p += 32 - state->memsize;
378		state->memsize = 0;
379	}
380
381	if (p + 32 <= b_end) {
382		const uint8_t *const limit = b_end - 32;
383		uint64_t v1 = state->v1;
384		uint64_t v2 = state->v2;
385		uint64_t v3 = state->v3;
386		uint64_t v4 = state->v4;
387
388		do {
389			v1 = xxh64_round(v1, get_unaligned_le64(p));
390			p += 8;
391			v2 = xxh64_round(v2, get_unaligned_le64(p));
392			p += 8;
393			v3 = xxh64_round(v3, get_unaligned_le64(p));
394			p += 8;
395			v4 = xxh64_round(v4, get_unaligned_le64(p));
396			p += 8;
397		} while (p <= limit);
398
399		state->v1 = v1;
400		state->v2 = v2;
401		state->v3 = v3;
402		state->v4 = v4;
403	}
404
405	if (p < b_end) {
406		memcpy(state->mem64, p, (size_t)(b_end-p));
407		state->memsize = (uint32_t)(b_end - p);
408	}
409
410	return 0;
411}
412EXPORT_SYMBOL(xxh64_update);
413
414uint64_t xxh64_digest(const struct xxh64_state *state)
415{
416	const uint8_t *p = (const uint8_t *)state->mem64;
417	const uint8_t *const b_end = (const uint8_t *)state->mem64 +
418		state->memsize;
419	uint64_t h64;
420
421	if (state->total_len >= 32) {
422		const uint64_t v1 = state->v1;
423		const uint64_t v2 = state->v2;
424		const uint64_t v3 = state->v3;
425		const uint64_t v4 = state->v4;
426
427		h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
428			xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
429		h64 = xxh64_merge_round(h64, v1);
430		h64 = xxh64_merge_round(h64, v2);
431		h64 = xxh64_merge_round(h64, v3);
432		h64 = xxh64_merge_round(h64, v4);
433	} else {
434		h64  = state->v3 + PRIME64_5;
435	}
436
437	h64 += (uint64_t)state->total_len;
438
439	while (p + 8 <= b_end) {
440		const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
441
442		h64 ^= k1;
443		h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
444		p += 8;
445	}
446
447	if (p + 4 <= b_end) {
448		h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
449		h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
450		p += 4;
451	}
452
453	while (p < b_end) {
454		h64 ^= (*p) * PRIME64_5;
455		h64 = xxh_rotl64(h64, 11) * PRIME64_1;
456		p++;
457	}
458
459	h64 ^= h64 >> 33;
460	h64 *= PRIME64_2;
461	h64 ^= h64 >> 29;
462	h64 *= PRIME64_3;
463	h64 ^= h64 >> 32;
464
465	return h64;
466}
467EXPORT_SYMBOL(xxh64_digest);
468