1/*
2 * This file was transplanted with slight modifications from Linux sources
3 * (fs/cifs/md5.c) into U-Boot by Bartlomiej Sieka <tur@semihalf.com>.
4 */
5
6/*
7 * This code implements the MD5 message-digest algorithm.
8 * The algorithm is due to Ron Rivest.  This code was
9 * written by Colin Plumb in 1993, no copyright is claimed.
10 * This code is in the public domain; do with it what you wish.
11 *
12 * Equivalent code is available from RSA Data Security, Inc.
13 * This code has been tested against that, and is equivalent,
14 * except that you don't need to include two pages of legalese
15 * with every copy.
16 *
17 * To compute the message digest of a chunk of bytes, declare an
18 * MD5Context structure, pass it to MD5Init, call MD5Update as
19 * needed on buffers full of bytes, and then call MD5Final, which
20 * will fill a supplied 16-byte array with the digest.
21 */
22
23/* This code slightly modified to fit into Samba by
24   abartlet@samba.org Jun 2001
25   and to fit the cifs vfs by
26   Steve French sfrench@us.ibm.com */
27
28#include "compiler.h"
29
30#ifndef USE_HOSTCC
31#include <watchdog.h>
32#endif /* USE_HOSTCC */
33#include <u-boot/md5.h>
34
35static void
36MD5Transform(__u32 buf[4], __u32 const in[16]);
37
38/*
39 * Note: this code is harmless on little-endian machines.
40 */
41static void
42byteReverse(unsigned char *buf, unsigned longs)
43{
44	__u32 t;
45	do {
46		t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
47		    ((unsigned) buf[1] << 8 | buf[0]);
48		*(__u32 *) buf = t;
49		buf += 4;
50	} while (--longs);
51}
52
53/*
54 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
55 * initialization constants.
56 */
57void
58MD5Init(struct MD5Context *ctx)
59{
60	ctx->buf[0] = 0x67452301;
61	ctx->buf[1] = 0xefcdab89;
62	ctx->buf[2] = 0x98badcfe;
63	ctx->buf[3] = 0x10325476;
64
65	ctx->bits[0] = 0;
66	ctx->bits[1] = 0;
67}
68
69/*
70 * Update context to reflect the concatenation of another buffer full
71 * of bytes.
72 */
73void
74MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
75{
76	register __u32 t;
77
78	/* Update bitcount */
79
80	t = ctx->bits[0];
81	if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
82		ctx->bits[1]++;	/* Carry from low to high */
83	ctx->bits[1] += len >> 29;
84
85	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
86
87	/* Handle any leading odd-sized chunks */
88
89	if (t) {
90		unsigned char *p = (unsigned char *) ctx->in + t;
91
92		t = 64 - t;
93		if (len < t) {
94			memmove(p, buf, len);
95			return;
96		}
97		memmove(p, buf, t);
98		byteReverse(ctx->in, 16);
99		MD5Transform(ctx->buf, (__u32 *) ctx->in);
100		buf += t;
101		len -= t;
102	}
103	/* Process data in 64-byte chunks */
104
105	while (len >= 64) {
106		memmove(ctx->in, buf, 64);
107		byteReverse(ctx->in, 16);
108		MD5Transform(ctx->buf, (__u32 *) ctx->in);
109		buf += 64;
110		len -= 64;
111	}
112
113	/* Handle any remaining bytes of data. */
114
115	memmove(ctx->in, buf, len);
116}
117
118/*
119 * Final wrapup - pad to 64-byte boundary with the bit pattern
120 * 1 0* (64-bit count of bits processed, MSB-first)
121 */
122void
123MD5Final(unsigned char digest[16], struct MD5Context *ctx)
124{
125	unsigned int count;
126	unsigned char *p;
127
128	/* Compute number of bytes mod 64 */
129	count = (ctx->bits[0] >> 3) & 0x3F;
130
131	/* Set the first char of padding to 0x80.  This is safe since there is
132	   always at least one byte free */
133	p = ctx->in + count;
134	*p++ = 0x80;
135
136	/* Bytes of padding needed to make 64 bytes */
137	count = 64 - 1 - count;
138
139	/* Pad out to 56 mod 64 */
140	if (count < 8) {
141		/* Two lots of padding:  Pad the first block to 64 bytes */
142		memset(p, 0, count);
143		byteReverse(ctx->in, 16);
144		MD5Transform(ctx->buf, (__u32 *) ctx->in);
145
146		/* Now fill the next block with 56 bytes */
147		memset(ctx->in, 0, 56);
148	} else {
149		/* Pad block to 56 bytes */
150		memset(p, 0, count - 8);
151	}
152	byteReverse(ctx->in, 14);
153
154	/* Append length in bits and transform */
155	ctx->in32[14] = ctx->bits[0];
156	ctx->in32[15] = ctx->bits[1];
157
158	MD5Transform(ctx->buf, (__u32 *) ctx->in);
159	byteReverse((unsigned char *) ctx->buf, 4);
160	memmove(digest, ctx->buf, 16);
161	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
162}
163
164/* The four core functions - F1 is optimized somewhat */
165
166/* #define F1(x, y, z) (x & y | ~x & z) */
167#define F1(x, y, z) (z ^ (x & (y ^ z)))
168#define F2(x, y, z) F1(z, x, y)
169#define F3(x, y, z) (x ^ y ^ z)
170#define F4(x, y, z) (y ^ (x | ~z))
171
172/* This is the central step in the MD5 algorithm. */
173#define MD5STEP(f, w, x, y, z, data, s) \
174	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
175
176/*
177 * The core of the MD5 algorithm, this alters an existing MD5 hash to
178 * reflect the addition of 16 longwords of new data.  MD5Update blocks
179 * the data and converts bytes into longwords for this routine.
180 */
181static void
182MD5Transform(__u32 buf[4], __u32 const in[16])
183{
184	register __u32 a, b, c, d;
185
186	a = buf[0];
187	b = buf[1];
188	c = buf[2];
189	d = buf[3];
190
191	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
192	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
193	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
194	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
195	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
196	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
197	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
198	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
199	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
200	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
201	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
202	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
203	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
204	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
205	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
206	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
207
208	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
209	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
210	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
211	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
212	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
213	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
214	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
215	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
216	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
217	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
218	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
219	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
220	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
221	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
222	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
223	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
224
225	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
226	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
227	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
228	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
229	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
230	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
231	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
232	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
233	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
234	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
235	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
236	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
237	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
238	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
239	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
240	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
241
242	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
243	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
244	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
245	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
246	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
247	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
248	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
249	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
250	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
251	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
252	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
253	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
254	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
255	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
256	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
257	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
258
259	buf[0] += a;
260	buf[1] += b;
261	buf[2] += c;
262	buf[3] += d;
263}
264
265/*
266 * Calculate and store in 'output' the MD5 digest of 'len' bytes at
267 * 'input'. 'output' must have enough space to hold 16 bytes.
268 */
269void
270md5 (unsigned char *input, int len, unsigned char output[16])
271{
272	struct MD5Context context;
273
274	MD5Init(&context);
275	MD5Update(&context, input, len);
276	MD5Final(output, &context);
277}
278
279
280/*
281 * Calculate and store in 'output' the MD5 digest of 'len' bytes at 'input'.
282 * 'output' must have enough space to hold 16 bytes. If 'chunk' Trigger the
283 * watchdog every 'chunk_sz' bytes of input processed.
284 */
285void
286md5_wd(const unsigned char *input, unsigned int len, unsigned char output[16],
287	unsigned int chunk_sz)
288{
289	struct MD5Context context;
290#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
291	const unsigned char *end, *curr;
292	int chunk;
293#endif
294
295	MD5Init(&context);
296
297#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
298	curr = input;
299	end = input + len;
300	while (curr < end) {
301		chunk = end - curr;
302		if (chunk > chunk_sz)
303			chunk = chunk_sz;
304		MD5Update(&context, curr, chunk);
305		curr += chunk;
306		schedule();
307	}
308#else
309	MD5Update(&context, input, len);
310#endif
311
312	MD5Final(output, &context);
313}
314