1// SPDX-License-Identifier: GPL-2.0+
2/*
3 *  EFI application memory management
4 *
5 *  Copyright (c) 2016 Alexander Graf
6 */
7
8#define LOG_CATEGORY LOGC_EFI
9
10#include <efi_loader.h>
11#include <init.h>
12#include <log.h>
13#include <malloc.h>
14#include <mapmem.h>
15#include <watchdog.h>
16#include <asm/cache.h>
17#include <asm/global_data.h>
18#include <asm/sections.h>
19#include <linux/list_sort.h>
20#include <linux/sizes.h>
21
22DECLARE_GLOBAL_DATA_PTR;
23
24/* Magic number identifying memory allocated from pool */
25#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
26
27efi_uintn_t efi_memory_map_key;
28
29struct efi_mem_list {
30	struct list_head link;
31	struct efi_mem_desc desc;
32};
33
34#define EFI_CARVE_NO_OVERLAP		-1
35#define EFI_CARVE_LOOP_AGAIN		-2
36#define EFI_CARVE_OVERLAPS_NONRAM	-3
37#define EFI_CARVE_OUT_OF_RESOURCES	-4
38
39/* This list contains all memory map items */
40static LIST_HEAD(efi_mem);
41
42#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
43void *efi_bounce_buffer;
44#endif
45
46/**
47 * struct efi_pool_allocation - memory block allocated from pool
48 *
49 * @num_pages:	number of pages allocated
50 * @checksum:	checksum
51 * @data:	allocated pool memory
52 *
53 * U-Boot services each UEFI AllocatePool() request as a separate
54 * (multiple) page allocation. We have to track the number of pages
55 * to be able to free the correct amount later.
56 *
57 * The checksum calculated in function checksum() is used in FreePool() to avoid
58 * freeing memory not allocated by AllocatePool() and duplicate freeing.
59 *
60 * EFI requires 8 byte alignment for pool allocations, so we can
61 * prepend each allocation with these header fields.
62 */
63struct efi_pool_allocation {
64	u64 num_pages;
65	u64 checksum;
66	char data[] __aligned(ARCH_DMA_MINALIGN);
67};
68
69/**
70 * checksum() - calculate checksum for memory allocated from pool
71 *
72 * @alloc:	allocation header
73 * Return:	checksum, always non-zero
74 */
75static u64 checksum(struct efi_pool_allocation *alloc)
76{
77	u64 addr = (uintptr_t)alloc;
78	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
79		  EFI_ALLOC_POOL_MAGIC;
80	if (!ret)
81		++ret;
82	return ret;
83}
84
85/**
86 * efi_mem_cmp() - comparator function for sorting memory map
87 *
88 * Sorts the memory list from highest address to lowest address
89 *
90 * When allocating memory we should always start from the highest
91 * address chunk, so sort the memory list such that the first list
92 * iterator gets the highest address and goes lower from there.
93 *
94 * @priv:	unused
95 * @a:		first memory area
96 * @b:		second memory area
97 * Return:	1 if @a is before @b, -1 if @b is before @a, 0 if equal
98 */
99static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
100{
101	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
102	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
103
104	if (mema->desc.physical_start == memb->desc.physical_start)
105		return 0;
106	else if (mema->desc.physical_start < memb->desc.physical_start)
107		return 1;
108	else
109		return -1;
110}
111
112/**
113 * desc_get_end() - get end address of memory area
114 *
115 * @desc:	memory descriptor
116 * Return:	end address + 1
117 */
118static uint64_t desc_get_end(struct efi_mem_desc *desc)
119{
120	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
121}
122
123/**
124 * efi_mem_sort() - sort memory map
125 *
126 * Sort the memory map and then try to merge adjacent memory areas.
127 */
128static void efi_mem_sort(void)
129{
130	struct list_head *lhandle;
131	struct efi_mem_list *prevmem = NULL;
132	bool merge_again = true;
133
134	list_sort(NULL, &efi_mem, efi_mem_cmp);
135
136	/* Now merge entries that can be merged */
137	while (merge_again) {
138		merge_again = false;
139		list_for_each(lhandle, &efi_mem) {
140			struct efi_mem_list *lmem;
141			struct efi_mem_desc *prev = &prevmem->desc;
142			struct efi_mem_desc *cur;
143			uint64_t pages;
144
145			lmem = list_entry(lhandle, struct efi_mem_list, link);
146			if (!prevmem) {
147				prevmem = lmem;
148				continue;
149			}
150
151			cur = &lmem->desc;
152
153			if ((desc_get_end(cur) == prev->physical_start) &&
154			    (prev->type == cur->type) &&
155			    (prev->attribute == cur->attribute)) {
156				/* There is an existing map before, reuse it */
157				pages = cur->num_pages;
158				prev->num_pages += pages;
159				prev->physical_start -= pages << EFI_PAGE_SHIFT;
160				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
161				list_del(&lmem->link);
162				free(lmem);
163
164				merge_again = true;
165				break;
166			}
167
168			prevmem = lmem;
169		}
170	}
171}
172
173/**
174 * efi_mem_carve_out() - unmap memory region
175 *
176 * @map:		memory map
177 * @carve_desc:		memory region to unmap
178 * @overlap_only_ram:	the carved out region may only overlap RAM
179 * Return:		the number of overlapping pages which have been
180 *			removed from the map,
181 *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
182 *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
183 *			and the map contains anything but free ram
184 *			(only when overlap_only_ram is true),
185 *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
186 *			traversed again, as it has been altered.
187 *
188 * Unmaps all memory occupied by the carve_desc region from the list entry
189 * pointed to by map.
190 *
191 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
192 * to re-add the already carved out pages to the mapping.
193 */
194static s64 efi_mem_carve_out(struct efi_mem_list *map,
195			     struct efi_mem_desc *carve_desc,
196			     bool overlap_only_ram)
197{
198	struct efi_mem_list *newmap;
199	struct efi_mem_desc *map_desc = &map->desc;
200	uint64_t map_start = map_desc->physical_start;
201	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
202	uint64_t carve_start = carve_desc->physical_start;
203	uint64_t carve_end = carve_start +
204			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
205
206	/* check whether we're overlapping */
207	if ((carve_end <= map_start) || (carve_start >= map_end))
208		return EFI_CARVE_NO_OVERLAP;
209
210	/* We're overlapping with non-RAM, warn the caller if desired */
211	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
212		return EFI_CARVE_OVERLAPS_NONRAM;
213
214	/* Sanitize carve_start and carve_end to lie within our bounds */
215	carve_start = max(carve_start, map_start);
216	carve_end = min(carve_end, map_end);
217
218	/* Carving at the beginning of our map? Just move it! */
219	if (carve_start == map_start) {
220		if (map_end == carve_end) {
221			/* Full overlap, just remove map */
222			list_del(&map->link);
223			free(map);
224		} else {
225			map->desc.physical_start = carve_end;
226			map->desc.virtual_start = carve_end;
227			map->desc.num_pages = (map_end - carve_end)
228					      >> EFI_PAGE_SHIFT;
229		}
230
231		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
232	}
233
234	/*
235	 * Overlapping maps, just split the list map at carve_start,
236	 * it will get moved or removed in the next iteration.
237	 *
238	 * [ map_desc |__carve_start__| newmap ]
239	 */
240
241	/* Create a new map from [ carve_start ... map_end ] */
242	newmap = calloc(1, sizeof(*newmap));
243	if (!newmap)
244		return EFI_CARVE_OUT_OF_RESOURCES;
245	newmap->desc = map->desc;
246	newmap->desc.physical_start = carve_start;
247	newmap->desc.virtual_start = carve_start;
248	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
249	/* Insert before current entry (descending address order) */
250	list_add_tail(&newmap->link, &map->link);
251
252	/* Shrink the map to [ map_start ... carve_start ] */
253	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
254
255	return EFI_CARVE_LOOP_AGAIN;
256}
257
258/**
259 * efi_add_memory_map_pg() - add pages to the memory map
260 *
261 * @start:		start address, must be a multiple of EFI_PAGE_SIZE
262 * @pages:		number of pages to add
263 * @memory_type:	type of memory added
264 * @overlap_only_ram:	region may only overlap RAM
265 * Return:		status code
266 */
267static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
268					  int memory_type,
269					  bool overlap_only_ram)
270{
271	struct list_head *lhandle;
272	struct efi_mem_list *newlist;
273	bool carve_again;
274	uint64_t carved_pages = 0;
275	struct efi_event *evt;
276
277	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
278		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
279
280	if (memory_type >= EFI_MAX_MEMORY_TYPE)
281		return EFI_INVALID_PARAMETER;
282
283	if (!pages)
284		return EFI_SUCCESS;
285
286	++efi_memory_map_key;
287	newlist = calloc(1, sizeof(*newlist));
288	if (!newlist)
289		return EFI_OUT_OF_RESOURCES;
290	newlist->desc.type = memory_type;
291	newlist->desc.physical_start = start;
292	newlist->desc.virtual_start = start;
293	newlist->desc.num_pages = pages;
294
295	switch (memory_type) {
296	case EFI_RUNTIME_SERVICES_CODE:
297	case EFI_RUNTIME_SERVICES_DATA:
298		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
299		break;
300	case EFI_MMAP_IO:
301		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
302		break;
303	default:
304		newlist->desc.attribute = EFI_MEMORY_WB;
305		break;
306	}
307
308	/* Add our new map */
309	do {
310		carve_again = false;
311		list_for_each(lhandle, &efi_mem) {
312			struct efi_mem_list *lmem;
313			s64 r;
314
315			lmem = list_entry(lhandle, struct efi_mem_list, link);
316			r = efi_mem_carve_out(lmem, &newlist->desc,
317					      overlap_only_ram);
318			switch (r) {
319			case EFI_CARVE_OUT_OF_RESOURCES:
320				free(newlist);
321				return EFI_OUT_OF_RESOURCES;
322			case EFI_CARVE_OVERLAPS_NONRAM:
323				/*
324				 * The user requested to only have RAM overlaps,
325				 * but we hit a non-RAM region. Error out.
326				 */
327				free(newlist);
328				return EFI_NO_MAPPING;
329			case EFI_CARVE_NO_OVERLAP:
330				/* Just ignore this list entry */
331				break;
332			case EFI_CARVE_LOOP_AGAIN:
333				/*
334				 * We split an entry, but need to loop through
335				 * the list again to actually carve it.
336				 */
337				carve_again = true;
338				break;
339			default:
340				/* We carved a number of pages */
341				carved_pages += r;
342				carve_again = true;
343				break;
344			}
345
346			if (carve_again) {
347				/* The list changed, we need to start over */
348				break;
349			}
350		}
351	} while (carve_again);
352
353	if (overlap_only_ram && (carved_pages != pages)) {
354		/*
355		 * The payload wanted to have RAM overlaps, but we overlapped
356		 * with an unallocated region. Error out.
357		 */
358		free(newlist);
359		return EFI_NO_MAPPING;
360	}
361
362	/* Add our new map */
363        list_add_tail(&newlist->link, &efi_mem);
364
365	/* And make sure memory is listed in descending order */
366	efi_mem_sort();
367
368	/* Notify that the memory map was changed */
369	list_for_each_entry(evt, &efi_events, link) {
370		if (evt->group &&
371		    !guidcmp(evt->group,
372			     &efi_guid_event_group_memory_map_change)) {
373			efi_signal_event(evt);
374			break;
375		}
376	}
377
378	return EFI_SUCCESS;
379}
380
381/**
382 * efi_add_memory_map() - add memory area to the memory map
383 *
384 * @start:		start address of the memory area
385 * @size:		length in bytes of the memory area
386 * @memory_type:	type of memory added
387 *
388 * Return:		status code
389 *
390 * This function automatically aligns the start and size of the memory area
391 * to EFI_PAGE_SIZE.
392 */
393efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
394{
395	u64 pages;
396
397	pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
398	start &= ~EFI_PAGE_MASK;
399
400	return efi_add_memory_map_pg(start, pages, memory_type, false);
401}
402
403/**
404 * efi_check_allocated() - validate address to be freed
405 *
406 * Check that the address is within allocated memory:
407 *
408 * * The address must be in a range of the memory map.
409 * * The address may not point to EFI_CONVENTIONAL_MEMORY.
410 *
411 * Page alignment is not checked as this is not a requirement of
412 * efi_free_pool().
413 *
414 * @addr:		address of page to be freed
415 * @must_be_allocated:	return success if the page is allocated
416 * Return:		status code
417 */
418static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
419{
420	struct efi_mem_list *item;
421
422	list_for_each_entry(item, &efi_mem, link) {
423		u64 start = item->desc.physical_start;
424		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
425
426		if (addr >= start && addr < end) {
427			if (must_be_allocated ^
428			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
429				return EFI_SUCCESS;
430			else
431				return EFI_NOT_FOUND;
432		}
433	}
434
435	return EFI_NOT_FOUND;
436}
437
438/**
439 * efi_find_free_memory() - find free memory pages
440 *
441 * @len:	size of memory area needed
442 * @max_addr:	highest address to allocate
443 * Return:	pointer to free memory area or 0
444 */
445static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
446{
447	struct list_head *lhandle;
448
449	/*
450	 * Prealign input max address, so we simplify our matching
451	 * logic below and can just reuse it as return pointer.
452	 */
453	max_addr &= ~EFI_PAGE_MASK;
454
455	list_for_each(lhandle, &efi_mem) {
456		struct efi_mem_list *lmem = list_entry(lhandle,
457			struct efi_mem_list, link);
458		struct efi_mem_desc *desc = &lmem->desc;
459		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
460		uint64_t desc_end = desc->physical_start + desc_len;
461		uint64_t curmax = min(max_addr, desc_end);
462		uint64_t ret = curmax - len;
463
464		/* We only take memory from free RAM */
465		if (desc->type != EFI_CONVENTIONAL_MEMORY)
466			continue;
467
468		/* Out of bounds for max_addr */
469		if ((ret + len) > max_addr)
470			continue;
471
472		/* Out of bounds for upper map limit */
473		if ((ret + len) > desc_end)
474			continue;
475
476		/* Out of bounds for lower map limit */
477		if (ret < desc->physical_start)
478			continue;
479
480		/* Return the highest address in this map within bounds */
481		return ret;
482	}
483
484	return 0;
485}
486
487/**
488 * efi_allocate_pages - allocate memory pages
489 *
490 * @type:		type of allocation to be performed
491 * @memory_type:	usage type of the allocated memory
492 * @pages:		number of pages to be allocated
493 * @memory:		allocated memory
494 * Return:		status code
495 */
496efi_status_t efi_allocate_pages(enum efi_allocate_type type,
497				enum efi_memory_type memory_type,
498				efi_uintn_t pages, uint64_t *memory)
499{
500	u64 len;
501	efi_status_t ret;
502	uint64_t addr;
503
504	/* Check import parameters */
505	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
506	    memory_type <= 0x6FFFFFFF)
507		return EFI_INVALID_PARAMETER;
508	if (!memory)
509		return EFI_INVALID_PARAMETER;
510	len = (u64)pages << EFI_PAGE_SHIFT;
511	/* Catch possible overflow on 64bit systems */
512	if (sizeof(efi_uintn_t) == sizeof(u64) &&
513	    (len >> EFI_PAGE_SHIFT) != (u64)pages)
514		return EFI_OUT_OF_RESOURCES;
515
516	switch (type) {
517	case EFI_ALLOCATE_ANY_PAGES:
518		/* Any page */
519		addr = efi_find_free_memory(len, -1ULL);
520		if (!addr)
521			return EFI_OUT_OF_RESOURCES;
522		break;
523	case EFI_ALLOCATE_MAX_ADDRESS:
524		/* Max address */
525		addr = efi_find_free_memory(len, *memory);
526		if (!addr)
527			return EFI_OUT_OF_RESOURCES;
528		break;
529	case EFI_ALLOCATE_ADDRESS:
530		if (*memory & EFI_PAGE_MASK)
531			return EFI_NOT_FOUND;
532		/* Exact address, reserve it. The addr is already in *memory. */
533		ret = efi_check_allocated(*memory, false);
534		if (ret != EFI_SUCCESS)
535			return EFI_NOT_FOUND;
536		addr = *memory;
537		break;
538	default:
539		/* UEFI doesn't specify other allocation types */
540		return EFI_INVALID_PARAMETER;
541	}
542
543	/* Reserve that map in our memory maps */
544	ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
545	if (ret != EFI_SUCCESS)
546		/* Map would overlap, bail out */
547		return  EFI_OUT_OF_RESOURCES;
548
549	*memory = addr;
550
551	return EFI_SUCCESS;
552}
553
554/**
555 * efi_free_pages() - free memory pages
556 *
557 * @memory:	start of the memory area to be freed
558 * @pages:	number of pages to be freed
559 * Return:	status code
560 */
561efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
562{
563	efi_status_t ret;
564
565	ret = efi_check_allocated(memory, true);
566	if (ret != EFI_SUCCESS)
567		return ret;
568
569	/* Sanity check */
570	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
571		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
572		       memory, pages);
573		return EFI_INVALID_PARAMETER;
574	}
575
576	ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
577				    false);
578	if (ret != EFI_SUCCESS)
579		return EFI_NOT_FOUND;
580
581	return ret;
582}
583
584/**
585 * efi_alloc_aligned_pages() - allocate aligned memory pages
586 *
587 * @len:		len in bytes
588 * @memory_type:	usage type of the allocated memory
589 * @align:		alignment in bytes
590 * Return:		aligned memory or NULL
591 */
592void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
593{
594	u64 req_pages = efi_size_in_pages(len);
595	u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
596	u64 free_pages;
597	u64 aligned_mem;
598	efi_status_t r;
599	u64 mem;
600
601	/* align must be zero or a power of two */
602	if (align & (align - 1))
603		return NULL;
604
605	/* Check for overflow */
606	if (true_pages < req_pages)
607		return NULL;
608
609	if (align < EFI_PAGE_SIZE) {
610		r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
611				       req_pages, &mem);
612		return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
613	}
614
615	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
616			       true_pages, &mem);
617	if (r != EFI_SUCCESS)
618		return NULL;
619
620	aligned_mem = ALIGN(mem, align);
621	/* Free pages before alignment */
622	free_pages = efi_size_in_pages(aligned_mem - mem);
623	if (free_pages)
624		efi_free_pages(mem, free_pages);
625
626	/* Free trailing pages */
627	free_pages = true_pages - (req_pages + free_pages);
628	if (free_pages) {
629		mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
630		efi_free_pages(mem, free_pages);
631	}
632
633	return (void *)(uintptr_t)aligned_mem;
634}
635
636/**
637 * efi_allocate_pool - allocate memory from pool
638 *
639 * @pool_type:	type of the pool from which memory is to be allocated
640 * @size:	number of bytes to be allocated
641 * @buffer:	allocated memory
642 * Return:	status code
643 */
644efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
645{
646	efi_status_t r;
647	u64 addr;
648	struct efi_pool_allocation *alloc;
649	u64 num_pages = efi_size_in_pages(size +
650					  sizeof(struct efi_pool_allocation));
651
652	if (!buffer)
653		return EFI_INVALID_PARAMETER;
654
655	if (size == 0) {
656		*buffer = NULL;
657		return EFI_SUCCESS;
658	}
659
660	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
661			       &addr);
662	if (r == EFI_SUCCESS) {
663		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
664		alloc->num_pages = num_pages;
665		alloc->checksum = checksum(alloc);
666		*buffer = alloc->data;
667	}
668
669	return r;
670}
671
672/**
673 * efi_alloc() - allocate boot services data pool memory
674 *
675 * Allocate memory from pool and zero it out.
676 *
677 * @size:	number of bytes to allocate
678 * Return:	pointer to allocated memory or NULL
679 */
680void *efi_alloc(size_t size)
681{
682	void *buf;
683
684	if (efi_allocate_pool(EFI_BOOT_SERVICES_DATA, size, &buf) !=
685	    EFI_SUCCESS) {
686		log_err("out of memory");
687		return NULL;
688	}
689	memset(buf, 0, size);
690
691	return buf;
692}
693
694/**
695 * efi_free_pool() - free memory from pool
696 *
697 * @buffer:	start of memory to be freed
698 * Return:	status code
699 */
700efi_status_t efi_free_pool(void *buffer)
701{
702	efi_status_t ret;
703	struct efi_pool_allocation *alloc;
704
705	if (!buffer)
706		return EFI_INVALID_PARAMETER;
707
708	ret = efi_check_allocated((uintptr_t)buffer, true);
709	if (ret != EFI_SUCCESS)
710		return ret;
711
712	alloc = container_of(buffer, struct efi_pool_allocation, data);
713
714	/* Check that this memory was allocated by efi_allocate_pool() */
715	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
716	    alloc->checksum != checksum(alloc)) {
717		printf("%s: illegal free 0x%p\n", __func__, buffer);
718		return EFI_INVALID_PARAMETER;
719	}
720	/* Avoid double free */
721	alloc->checksum = 0;
722
723	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
724
725	return ret;
726}
727
728/**
729 * efi_get_memory_map() - get map describing memory usage.
730 *
731 * @memory_map_size:	on entry the size, in bytes, of the memory map buffer,
732 *			on exit the size of the copied memory map
733 * @memory_map:		buffer to which the memory map is written
734 * @map_key:		key for the memory map
735 * @descriptor_size:	size of an individual memory descriptor
736 * @descriptor_version:	version number of the memory descriptor structure
737 * Return:		status code
738 */
739efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
740				struct efi_mem_desc *memory_map,
741				efi_uintn_t *map_key,
742				efi_uintn_t *descriptor_size,
743				uint32_t *descriptor_version)
744{
745	efi_uintn_t map_size = 0;
746	int map_entries = 0;
747	struct list_head *lhandle;
748	efi_uintn_t provided_map_size;
749
750	if (!memory_map_size)
751		return EFI_INVALID_PARAMETER;
752
753	provided_map_size = *memory_map_size;
754
755	list_for_each(lhandle, &efi_mem)
756		map_entries++;
757
758	map_size = map_entries * sizeof(struct efi_mem_desc);
759
760	*memory_map_size = map_size;
761
762	if (descriptor_size)
763		*descriptor_size = sizeof(struct efi_mem_desc);
764
765	if (descriptor_version)
766		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
767
768	if (provided_map_size < map_size)
769		return EFI_BUFFER_TOO_SMALL;
770
771	if (!memory_map)
772		return EFI_INVALID_PARAMETER;
773
774	/* Copy list into array */
775	/* Return the list in ascending order */
776	memory_map = &memory_map[map_entries - 1];
777	list_for_each(lhandle, &efi_mem) {
778		struct efi_mem_list *lmem;
779
780		lmem = list_entry(lhandle, struct efi_mem_list, link);
781		*memory_map = lmem->desc;
782		memory_map--;
783	}
784
785	if (map_key)
786		*map_key = efi_memory_map_key;
787
788	return EFI_SUCCESS;
789}
790
791/**
792 * efi_get_memory_map_alloc() - allocate map describing memory usage
793 *
794 * The caller is responsible for calling FreePool() if the call succeeds.
795 *
796 * @map_size:		size of the memory map
797 * @memory_map:		buffer to which the memory map is written
798 * Return:		status code
799 */
800efi_status_t efi_get_memory_map_alloc(efi_uintn_t *map_size,
801				      struct efi_mem_desc **memory_map)
802{
803	efi_status_t ret;
804
805	*memory_map = NULL;
806	*map_size = 0;
807	ret = efi_get_memory_map(map_size, *memory_map, NULL, NULL, NULL);
808	if (ret == EFI_BUFFER_TOO_SMALL) {
809		*map_size += sizeof(struct efi_mem_desc); /* for the map */
810		ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, *map_size,
811					(void **)memory_map);
812		if (ret != EFI_SUCCESS)
813			return ret;
814		ret = efi_get_memory_map(map_size, *memory_map,
815					 NULL, NULL, NULL);
816		if (ret != EFI_SUCCESS) {
817			efi_free_pool(*memory_map);
818			*memory_map = NULL;
819		}
820	}
821
822	return ret;
823}
824
825/**
826 * efi_add_conventional_memory_map() - add a RAM memory area to the map
827 *
828 * @ram_start:		start address of a RAM memory area
829 * @ram_end:		end address of a RAM memory area
830 * @ram_top:		max address to be used as conventional memory
831 * Return:		status code
832 */
833efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
834					     u64 ram_top)
835{
836	u64 pages;
837
838	/* Remove partial pages */
839	ram_end &= ~EFI_PAGE_MASK;
840	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
841
842	if (ram_end <= ram_start) {
843		/* Invalid mapping */
844		return EFI_INVALID_PARAMETER;
845	}
846
847	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
848
849	efi_add_memory_map_pg(ram_start, pages,
850			      EFI_CONVENTIONAL_MEMORY, false);
851
852	/*
853	 * Boards may indicate to the U-Boot memory core that they
854	 * can not support memory above ram_top. Let's honor this
855	 * in the efi_loader subsystem too by declaring any memory
856	 * above ram_top as "already occupied by firmware".
857	 */
858	if (ram_top < ram_start) {
859		/* ram_top is before this region, reserve all */
860		efi_add_memory_map_pg(ram_start, pages,
861				      EFI_BOOT_SERVICES_DATA, true);
862	} else if (ram_top < ram_end) {
863		/* ram_top is inside this region, reserve parts */
864		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
865
866		efi_add_memory_map_pg(ram_top, pages,
867				      EFI_BOOT_SERVICES_DATA, true);
868	}
869
870	return EFI_SUCCESS;
871}
872
873/**
874 * efi_add_known_memory() - add memory banks to map
875 *
876 * This function may be overridden for specific architectures.
877 */
878__weak void efi_add_known_memory(void)
879{
880	u64 ram_top = gd->ram_top & ~EFI_PAGE_MASK;
881	int i;
882
883	/*
884	 * ram_top is just outside mapped memory. So use an offset of one for
885	 * mapping the sandbox address.
886	 */
887	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
888
889	/* Fix for 32bit targets with ram_top at 4G */
890	if (!ram_top)
891		ram_top = 0x100000000ULL;
892
893	/* Add RAM */
894	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
895		u64 ram_end, ram_start;
896
897		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
898		ram_end = ram_start + gd->bd->bi_dram[i].size;
899
900		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
901	}
902}
903
904/**
905 * add_u_boot_and_runtime() - add U-Boot code to memory map
906 *
907 * Add memory regions for U-Boot's memory and for the runtime services code.
908 */
909static void add_u_boot_and_runtime(void)
910{
911	unsigned long runtime_start, runtime_end, runtime_pages;
912	unsigned long runtime_mask = EFI_PAGE_MASK;
913	unsigned long uboot_start, uboot_pages;
914	unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
915
916	/* Add U-Boot */
917	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
918		       uboot_stack_size) & ~EFI_PAGE_MASK;
919	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
920		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
921	efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_BOOT_SERVICES_CODE,
922			      false);
923
924#if defined(__aarch64__)
925	/*
926	 * Runtime Services must be 64KiB aligned according to the
927	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
928	 */
929
930	runtime_mask = SZ_64K - 1;
931#endif
932
933	/*
934	 * Add Runtime Services. We mark surrounding boottime code as runtime as
935	 * well to fulfill the runtime alignment constraints but avoid padding.
936	 */
937	runtime_start = (uintptr_t)__efi_runtime_start & ~runtime_mask;
938	runtime_end = (uintptr_t)__efi_runtime_stop;
939	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
940	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
941	efi_add_memory_map_pg(runtime_start, runtime_pages,
942			      EFI_RUNTIME_SERVICES_CODE, false);
943}
944
945int efi_memory_init(void)
946{
947	efi_add_known_memory();
948
949	add_u_boot_and_runtime();
950
951#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
952	/* Request a 32bit 64MB bounce buffer region */
953	uint64_t efi_bounce_buffer_addr = 0xffffffff;
954
955	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_BOOT_SERVICES_DATA,
956			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
957			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
958		return -1;
959
960	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
961#endif
962
963	return 0;
964}
965