1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Generic binary BCH encoding/decoding library
4 *
5 * Copyright �� 2011 Parrot S.A.
6 *
7 * Author: Ivan Djelic <ivan.djelic@parrot.com>
8 *
9 * Description:
10 *
11 * This library provides runtime configurable encoding/decoding of binary
12 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
13 *
14 * Call init_bch to get a pointer to a newly allocated bch_control structure for
15 * the given m (Galois field order), t (error correction capability) and
16 * (optional) primitive polynomial parameters.
17 *
18 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
19 * Call decode_bch to detect and locate errors in received data.
20 *
21 * On systems supporting hw BCH features, intermediate results may be provided
22 * to decode_bch in order to skip certain steps. See decode_bch() documentation
23 * for details.
24 *
25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
26 * parameters m and t; thus allowing extra compiler optimizations and providing
27 * better (up to 2x) encoding performance. Using this option makes sense when
28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
29 * on a particular NAND flash device.
30 *
31 * Algorithmic details:
32 *
33 * Encoding is performed by processing 32 input bits in parallel, using 4
34 * remainder lookup tables.
35 *
36 * The final stage of decoding involves the following internal steps:
37 * a. Syndrome computation
38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
39 * c. Error locator root finding (by far the most expensive step)
40 *
41 * In this implementation, step c is not performed using the usual Chien search.
42 * Instead, an alternative approach described in [1] is used. It consists in
43 * factoring the error locator polynomial using the Berlekamp Trace algorithm
44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
46 * much better performance than Chien search for usual (m,t) values (typically
47 * m >= 13, t < 32, see [1]).
48 *
49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
50 * of characteristic 2, in: Western European Workshop on Research in Cryptology
51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
54 */
55
56#ifndef USE_HOSTCC
57#include <log.h>
58#include <malloc.h>
59#include <ubi_uboot.h>
60#include <dm/devres.h>
61
62#include <linux/bitops.h>
63#include <linux/printk.h>
64#else
65#include <errno.h>
66#if defined(__FreeBSD__)
67#include <sys/endian.h>
68#elif defined(__APPLE__)
69#include <machine/endian.h>
70#include <libkern/OSByteOrder.h>
71#else
72#include <endian.h>
73#endif
74#include <stdint.h>
75#include <stdlib.h>
76#include <string.h>
77
78#undef cpu_to_be32
79#if defined(__APPLE__)
80#define cpu_to_be32 OSSwapHostToBigInt32
81#else
82#define cpu_to_be32 htobe32
83#endif
84#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
85#define kmalloc(size, flags)	malloc(size)
86#define kzalloc(size, flags)	calloc(1, size)
87#define kfree free
88#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
89#endif
90
91#include <asm/byteorder.h>
92#include <linux/bch.h>
93
94#if defined(CONFIG_BCH_CONST_PARAMS)
95#define GF_M(_p)               (CONFIG_BCH_CONST_M)
96#define GF_T(_p)               (CONFIG_BCH_CONST_T)
97#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
98#else
99#define GF_M(_p)               ((_p)->m)
100#define GF_T(_p)               ((_p)->t)
101#define GF_N(_p)               ((_p)->n)
102#endif
103
104#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
105#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
106
107#ifndef dbg
108#define dbg(_fmt, args...)     do {} while (0)
109#endif
110
111/*
112 * represent a polynomial over GF(2^m)
113 */
114struct gf_poly {
115	unsigned int deg;    /* polynomial degree */
116	unsigned int c[0];   /* polynomial terms */
117};
118
119/* given its degree, compute a polynomial size in bytes */
120#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
121
122/* polynomial of degree 1 */
123struct gf_poly_deg1 {
124	struct gf_poly poly;
125	unsigned int   c[2];
126};
127
128#ifdef USE_HOSTCC
129#if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__)
130static int fls(int x)
131{
132	int r = 32;
133
134	if (!x)
135		return 0;
136	if (!(x & 0xffff0000u)) {
137		x <<= 16;
138		r -= 16;
139	}
140	if (!(x & 0xff000000u)) {
141		x <<= 8;
142		r -= 8;
143	}
144	if (!(x & 0xf0000000u)) {
145		x <<= 4;
146		r -= 4;
147	}
148	if (!(x & 0xc0000000u)) {
149		x <<= 2;
150		r -= 2;
151	}
152	if (!(x & 0x80000000u)) {
153		x <<= 1;
154		r -= 1;
155	}
156	return r;
157}
158#endif
159#endif
160
161/*
162 * same as encode_bch(), but process input data one byte at a time
163 */
164static void encode_bch_unaligned(struct bch_control *bch,
165				 const unsigned char *data, unsigned int len,
166				 uint32_t *ecc)
167{
168	int i;
169	const uint32_t *p;
170	const int l = BCH_ECC_WORDS(bch)-1;
171
172	while (len--) {
173		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
174
175		for (i = 0; i < l; i++)
176			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
177
178		ecc[l] = (ecc[l] << 8)^(*p);
179	}
180}
181
182/*
183 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
184 */
185static void load_ecc8(struct bch_control *bch, uint32_t *dst,
186		      const uint8_t *src)
187{
188	uint8_t pad[4] = {0, 0, 0, 0};
189	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
190
191	for (i = 0; i < nwords; i++, src += 4)
192		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
193
194	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
195	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
196}
197
198/*
199 * convert 32-bit ecc words to ecc bytes
200 */
201static void store_ecc8(struct bch_control *bch, uint8_t *dst,
202		       const uint32_t *src)
203{
204	uint8_t pad[4];
205	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
206
207	for (i = 0; i < nwords; i++) {
208		*dst++ = (src[i] >> 24);
209		*dst++ = (src[i] >> 16) & 0xff;
210		*dst++ = (src[i] >>  8) & 0xff;
211		*dst++ = (src[i] >>  0) & 0xff;
212	}
213	pad[0] = (src[nwords] >> 24);
214	pad[1] = (src[nwords] >> 16) & 0xff;
215	pad[2] = (src[nwords] >>  8) & 0xff;
216	pad[3] = (src[nwords] >>  0) & 0xff;
217	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
218}
219
220/**
221 * encode_bch - calculate BCH ecc parity of data
222 * @bch:   BCH control structure
223 * @data:  data to encode
224 * @len:   data length in bytes
225 * @ecc:   ecc parity data, must be initialized by caller
226 *
227 * The @ecc parity array is used both as input and output parameter, in order to
228 * allow incremental computations. It should be of the size indicated by member
229 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
230 *
231 * The exact number of computed ecc parity bits is given by member @ecc_bits of
232 * @bch; it may be less than m*t for large values of t.
233 */
234void encode_bch(struct bch_control *bch, const uint8_t *data,
235		unsigned int len, uint8_t *ecc)
236{
237	const unsigned int l = BCH_ECC_WORDS(bch)-1;
238	unsigned int i, mlen;
239	unsigned long m;
240	uint32_t w, r[l+1];
241	const uint32_t * const tab0 = bch->mod8_tab;
242	const uint32_t * const tab1 = tab0 + 256*(l+1);
243	const uint32_t * const tab2 = tab1 + 256*(l+1);
244	const uint32_t * const tab3 = tab2 + 256*(l+1);
245	const uint32_t *pdata, *p0, *p1, *p2, *p3;
246
247	if (ecc) {
248		/* load ecc parity bytes into internal 32-bit buffer */
249		load_ecc8(bch, bch->ecc_buf, ecc);
250	} else {
251		memset(bch->ecc_buf, 0, sizeof(r));
252	}
253
254	/* process first unaligned data bytes */
255	m = ((unsigned long)data) & 3;
256	if (m) {
257		mlen = (len < (4-m)) ? len : 4-m;
258		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
259		data += mlen;
260		len  -= mlen;
261	}
262
263	/* process 32-bit aligned data words */
264	pdata = (uint32_t *)data;
265	mlen  = len/4;
266	data += 4*mlen;
267	len  -= 4*mlen;
268	memcpy(r, bch->ecc_buf, sizeof(r));
269
270	/*
271	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
272	 *
273	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
274	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
275	 *                               tttttttt  mod g = r0 (precomputed)
276	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
277	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
278	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
279	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
280	 */
281	while (mlen--) {
282		/* input data is read in big-endian format */
283		w = r[0]^cpu_to_be32(*pdata++);
284		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
285		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
286		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
287		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
288
289		for (i = 0; i < l; i++)
290			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
291
292		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
293	}
294	memcpy(bch->ecc_buf, r, sizeof(r));
295
296	/* process last unaligned bytes */
297	if (len)
298		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
299
300	/* store ecc parity bytes into original parity buffer */
301	if (ecc)
302		store_ecc8(bch, ecc, bch->ecc_buf);
303}
304
305static inline int modulo(struct bch_control *bch, unsigned int v)
306{
307	const unsigned int n = GF_N(bch);
308	while (v >= n) {
309		v -= n;
310		v = (v & n) + (v >> GF_M(bch));
311	}
312	return v;
313}
314
315/*
316 * shorter and faster modulo function, only works when v < 2N.
317 */
318static inline int mod_s(struct bch_control *bch, unsigned int v)
319{
320	const unsigned int n = GF_N(bch);
321	return (v < n) ? v : v-n;
322}
323
324static inline int deg(unsigned int poly)
325{
326	/* polynomial degree is the most-significant bit index */
327	return fls(poly)-1;
328}
329
330static inline int parity(unsigned int x)
331{
332	/*
333	 * public domain code snippet, lifted from
334	 * http://www-graphics.stanford.edu/~seander/bithacks.html
335	 */
336	x ^= x >> 1;
337	x ^= x >> 2;
338	x = (x & 0x11111111U) * 0x11111111U;
339	return (x >> 28) & 1;
340}
341
342/* Galois field basic operations: multiply, divide, inverse, etc. */
343
344static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
345				  unsigned int b)
346{
347	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
348					       bch->a_log_tab[b])] : 0;
349}
350
351static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
352{
353	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
354}
355
356static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
357				  unsigned int b)
358{
359	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
360					GF_N(bch)-bch->a_log_tab[b])] : 0;
361}
362
363static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
364{
365	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
366}
367
368static inline unsigned int a_pow(struct bch_control *bch, int i)
369{
370	return bch->a_pow_tab[modulo(bch, i)];
371}
372
373static inline int a_log(struct bch_control *bch, unsigned int x)
374{
375	return bch->a_log_tab[x];
376}
377
378static inline int a_ilog(struct bch_control *bch, unsigned int x)
379{
380	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
381}
382
383/*
384 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
385 */
386static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
387			      unsigned int *syn)
388{
389	int i, j, s;
390	unsigned int m;
391	uint32_t poly;
392	const int t = GF_T(bch);
393
394	s = bch->ecc_bits;
395
396	/* make sure extra bits in last ecc word are cleared */
397	m = ((unsigned int)s) & 31;
398	if (m)
399		ecc[s/32] &= ~((1u << (32-m))-1);
400	memset(syn, 0, 2*t*sizeof(*syn));
401
402	/* compute v(a^j) for j=1 .. 2t-1 */
403	do {
404		poly = *ecc++;
405		s -= 32;
406		while (poly) {
407			i = deg(poly);
408			for (j = 0; j < 2*t; j += 2)
409				syn[j] ^= a_pow(bch, (j+1)*(i+s));
410
411			poly ^= (1 << i);
412		}
413	} while (s > 0);
414
415	/* v(a^(2j)) = v(a^j)^2 */
416	for (j = 0; j < t; j++)
417		syn[2*j+1] = gf_sqr(bch, syn[j]);
418}
419
420static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
421{
422	memcpy(dst, src, GF_POLY_SZ(src->deg));
423}
424
425static int compute_error_locator_polynomial(struct bch_control *bch,
426					    const unsigned int *syn)
427{
428	const unsigned int t = GF_T(bch);
429	const unsigned int n = GF_N(bch);
430	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
431	struct gf_poly *elp = bch->elp;
432	struct gf_poly *pelp = bch->poly_2t[0];
433	struct gf_poly *elp_copy = bch->poly_2t[1];
434	int k, pp = -1;
435
436	memset(pelp, 0, GF_POLY_SZ(2*t));
437	memset(elp, 0, GF_POLY_SZ(2*t));
438
439	pelp->deg = 0;
440	pelp->c[0] = 1;
441	elp->deg = 0;
442	elp->c[0] = 1;
443
444	/* use simplified binary Berlekamp-Massey algorithm */
445	for (i = 0; (i < t) && (elp->deg <= t); i++) {
446		if (d) {
447			k = 2*i-pp;
448			gf_poly_copy(elp_copy, elp);
449			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
450			tmp = a_log(bch, d)+n-a_log(bch, pd);
451			for (j = 0; j <= pelp->deg; j++) {
452				if (pelp->c[j]) {
453					l = a_log(bch, pelp->c[j]);
454					elp->c[j+k] ^= a_pow(bch, tmp+l);
455				}
456			}
457			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
458			tmp = pelp->deg+k;
459			if (tmp > elp->deg) {
460				elp->deg = tmp;
461				gf_poly_copy(pelp, elp_copy);
462				pd = d;
463				pp = 2*i;
464			}
465		}
466		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
467		if (i < t-1) {
468			d = syn[2*i+2];
469			for (j = 1; j <= elp->deg; j++)
470				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
471		}
472	}
473	dbg("elp=%s\n", gf_poly_str(elp));
474	return (elp->deg > t) ? -1 : (int)elp->deg;
475}
476
477/*
478 * solve a m x m linear system in GF(2) with an expected number of solutions,
479 * and return the number of found solutions
480 */
481static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
482			       unsigned int *sol, int nsol)
483{
484	const int m = GF_M(bch);
485	unsigned int tmp, mask;
486	int rem, c, r, p, k, param[m];
487
488	k = 0;
489	mask = 1 << m;
490
491	/* Gaussian elimination */
492	for (c = 0; c < m; c++) {
493		rem = 0;
494		p = c-k;
495		/* find suitable row for elimination */
496		for (r = p; r < m; r++) {
497			if (rows[r] & mask) {
498				if (r != p) {
499					tmp = rows[r];
500					rows[r] = rows[p];
501					rows[p] = tmp;
502				}
503				rem = r+1;
504				break;
505			}
506		}
507		if (rem) {
508			/* perform elimination on remaining rows */
509			tmp = rows[p];
510			for (r = rem; r < m; r++) {
511				if (rows[r] & mask)
512					rows[r] ^= tmp;
513			}
514		} else {
515			/* elimination not needed, store defective row index */
516			param[k++] = c;
517		}
518		mask >>= 1;
519	}
520	/* rewrite system, inserting fake parameter rows */
521	if (k > 0) {
522		p = k;
523		for (r = m-1; r >= 0; r--) {
524			if ((r > m-1-k) && rows[r])
525				/* system has no solution */
526				return 0;
527
528			rows[r] = (p && (r == param[p-1])) ?
529				p--, 1u << (m-r) : rows[r-p];
530		}
531	}
532
533	if (nsol != (1 << k))
534		/* unexpected number of solutions */
535		return 0;
536
537	for (p = 0; p < nsol; p++) {
538		/* set parameters for p-th solution */
539		for (c = 0; c < k; c++)
540			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
541
542		/* compute unique solution */
543		tmp = 0;
544		for (r = m-1; r >= 0; r--) {
545			mask = rows[r] & (tmp|1);
546			tmp |= parity(mask) << (m-r);
547		}
548		sol[p] = tmp >> 1;
549	}
550	return nsol;
551}
552
553/*
554 * this function builds and solves a linear system for finding roots of a degree
555 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
556 */
557static int find_affine4_roots(struct bch_control *bch, unsigned int a,
558			      unsigned int b, unsigned int c,
559			      unsigned int *roots)
560{
561	int i, j, k;
562	const int m = GF_M(bch);
563	unsigned int mask = 0xff, t, rows[16] = {0,};
564
565	j = a_log(bch, b);
566	k = a_log(bch, a);
567	rows[0] = c;
568
569	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
570	for (i = 0; i < m; i++) {
571		rows[i+1] = bch->a_pow_tab[4*i]^
572			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
573			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
574		j++;
575		k += 2;
576	}
577	/*
578	 * transpose 16x16 matrix before passing it to linear solver
579	 * warning: this code assumes m < 16
580	 */
581	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
582		for (k = 0; k < 16; k = (k+j+1) & ~j) {
583			t = ((rows[k] >> j)^rows[k+j]) & mask;
584			rows[k] ^= (t << j);
585			rows[k+j] ^= t;
586		}
587	}
588	return solve_linear_system(bch, rows, roots, 4);
589}
590
591/*
592 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
593 */
594static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
595				unsigned int *roots)
596{
597	int n = 0;
598
599	if (poly->c[0])
600		/* poly[X] = bX+c with c!=0, root=c/b */
601		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
602				   bch->a_log_tab[poly->c[1]]);
603	return n;
604}
605
606/*
607 * compute roots of a degree 2 polynomial over GF(2^m)
608 */
609static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
610				unsigned int *roots)
611{
612	int n = 0, i, l0, l1, l2;
613	unsigned int u, v, r;
614
615	if (poly->c[0] && poly->c[1]) {
616
617		l0 = bch->a_log_tab[poly->c[0]];
618		l1 = bch->a_log_tab[poly->c[1]];
619		l2 = bch->a_log_tab[poly->c[2]];
620
621		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
622		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
623		/*
624		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
625		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
626		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
627		 * i.e. r and r+1 are roots iff Tr(u)=0
628		 */
629		r = 0;
630		v = u;
631		while (v) {
632			i = deg(v);
633			r ^= bch->xi_tab[i];
634			v ^= (1 << i);
635		}
636		/* verify root */
637		if ((gf_sqr(bch, r)^r) == u) {
638			/* reverse z=a/bX transformation and compute log(1/r) */
639			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
640					    bch->a_log_tab[r]+l2);
641			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
642					    bch->a_log_tab[r^1]+l2);
643		}
644	}
645	return n;
646}
647
648/*
649 * compute roots of a degree 3 polynomial over GF(2^m)
650 */
651static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
652				unsigned int *roots)
653{
654	int i, n = 0;
655	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
656
657	if (poly->c[0]) {
658		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
659		e3 = poly->c[3];
660		c2 = gf_div(bch, poly->c[0], e3);
661		b2 = gf_div(bch, poly->c[1], e3);
662		a2 = gf_div(bch, poly->c[2], e3);
663
664		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
665		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
666		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
667		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
668
669		/* find the 4 roots of this affine polynomial */
670		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
671			/* remove a2 from final list of roots */
672			for (i = 0; i < 4; i++) {
673				if (tmp[i] != a2)
674					roots[n++] = a_ilog(bch, tmp[i]);
675			}
676		}
677	}
678	return n;
679}
680
681/*
682 * compute roots of a degree 4 polynomial over GF(2^m)
683 */
684static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
685				unsigned int *roots)
686{
687	int i, l, n = 0;
688	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
689
690	if (poly->c[0] == 0)
691		return 0;
692
693	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
694	e4 = poly->c[4];
695	d = gf_div(bch, poly->c[0], e4);
696	c = gf_div(bch, poly->c[1], e4);
697	b = gf_div(bch, poly->c[2], e4);
698	a = gf_div(bch, poly->c[3], e4);
699
700	/* use Y=1/X transformation to get an affine polynomial */
701	if (a) {
702		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
703		if (c) {
704			/* compute e such that e^2 = c/a */
705			f = gf_div(bch, c, a);
706			l = a_log(bch, f);
707			l += (l & 1) ? GF_N(bch) : 0;
708			e = a_pow(bch, l/2);
709			/*
710			 * use transformation z=X+e:
711			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
712			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
713			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
714			 * z^4 + az^3 +     b'z^2 + d'
715			 */
716			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
717			b = gf_mul(bch, a, e)^b;
718		}
719		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
720		if (d == 0)
721			/* assume all roots have multiplicity 1 */
722			return 0;
723
724		c2 = gf_inv(bch, d);
725		b2 = gf_div(bch, a, d);
726		a2 = gf_div(bch, b, d);
727	} else {
728		/* polynomial is already affine */
729		c2 = d;
730		b2 = c;
731		a2 = b;
732	}
733	/* find the 4 roots of this affine polynomial */
734	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
735		for (i = 0; i < 4; i++) {
736			/* post-process roots (reverse transformations) */
737			f = a ? gf_inv(bch, roots[i]) : roots[i];
738			roots[i] = a_ilog(bch, f^e);
739		}
740		n = 4;
741	}
742	return n;
743}
744
745/*
746 * build monic, log-based representation of a polynomial
747 */
748static void gf_poly_logrep(struct bch_control *bch,
749			   const struct gf_poly *a, int *rep)
750{
751	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
752
753	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
754	for (i = 0; i < d; i++)
755		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
756}
757
758/*
759 * compute polynomial Euclidean division remainder in GF(2^m)[X]
760 */
761static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
762			const struct gf_poly *b, int *rep)
763{
764	int la, p, m;
765	unsigned int i, j, *c = a->c;
766	const unsigned int d = b->deg;
767
768	if (a->deg < d)
769		return;
770
771	/* reuse or compute log representation of denominator */
772	if (!rep) {
773		rep = bch->cache;
774		gf_poly_logrep(bch, b, rep);
775	}
776
777	for (j = a->deg; j >= d; j--) {
778		if (c[j]) {
779			la = a_log(bch, c[j]);
780			p = j-d;
781			for (i = 0; i < d; i++, p++) {
782				m = rep[i];
783				if (m >= 0)
784					c[p] ^= bch->a_pow_tab[mod_s(bch,
785								     m+la)];
786			}
787		}
788	}
789	a->deg = d-1;
790	while (!c[a->deg] && a->deg)
791		a->deg--;
792}
793
794/*
795 * compute polynomial Euclidean division quotient in GF(2^m)[X]
796 */
797static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
798			const struct gf_poly *b, struct gf_poly *q)
799{
800	if (a->deg >= b->deg) {
801		q->deg = a->deg-b->deg;
802		/* compute a mod b (modifies a) */
803		gf_poly_mod(bch, a, b, NULL);
804		/* quotient is stored in upper part of polynomial a */
805		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
806	} else {
807		q->deg = 0;
808		q->c[0] = 0;
809	}
810}
811
812/*
813 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
814 */
815static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
816				   struct gf_poly *b)
817{
818	struct gf_poly *tmp;
819
820	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
821
822	if (a->deg < b->deg) {
823		tmp = b;
824		b = a;
825		a = tmp;
826	}
827
828	while (b->deg > 0) {
829		gf_poly_mod(bch, a, b, NULL);
830		tmp = b;
831		b = a;
832		a = tmp;
833	}
834
835	dbg("%s\n", gf_poly_str(a));
836
837	return a;
838}
839
840/*
841 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
842 * This is used in Berlekamp Trace algorithm for splitting polynomials
843 */
844static void compute_trace_bk_mod(struct bch_control *bch, int k,
845				 const struct gf_poly *f, struct gf_poly *z,
846				 struct gf_poly *out)
847{
848	const int m = GF_M(bch);
849	int i, j;
850
851	/* z contains z^2j mod f */
852	z->deg = 1;
853	z->c[0] = 0;
854	z->c[1] = bch->a_pow_tab[k];
855
856	out->deg = 0;
857	memset(out, 0, GF_POLY_SZ(f->deg));
858
859	/* compute f log representation only once */
860	gf_poly_logrep(bch, f, bch->cache);
861
862	for (i = 0; i < m; i++) {
863		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
864		for (j = z->deg; j >= 0; j--) {
865			out->c[j] ^= z->c[j];
866			z->c[2*j] = gf_sqr(bch, z->c[j]);
867			z->c[2*j+1] = 0;
868		}
869		if (z->deg > out->deg)
870			out->deg = z->deg;
871
872		if (i < m-1) {
873			z->deg *= 2;
874			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
875			gf_poly_mod(bch, z, f, bch->cache);
876		}
877	}
878	while (!out->c[out->deg] && out->deg)
879		out->deg--;
880
881	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
882}
883
884/*
885 * factor a polynomial using Berlekamp Trace algorithm (BTA)
886 */
887static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
888			      struct gf_poly **g, struct gf_poly **h)
889{
890	struct gf_poly *f2 = bch->poly_2t[0];
891	struct gf_poly *q  = bch->poly_2t[1];
892	struct gf_poly *tk = bch->poly_2t[2];
893	struct gf_poly *z  = bch->poly_2t[3];
894	struct gf_poly *gcd;
895
896	dbg("factoring %s...\n", gf_poly_str(f));
897
898	*g = f;
899	*h = NULL;
900
901	/* tk = Tr(a^k.X) mod f */
902	compute_trace_bk_mod(bch, k, f, z, tk);
903
904	if (tk->deg > 0) {
905		/* compute g = gcd(f, tk) (destructive operation) */
906		gf_poly_copy(f2, f);
907		gcd = gf_poly_gcd(bch, f2, tk);
908		if (gcd->deg < f->deg) {
909			/* compute h=f/gcd(f,tk); this will modify f and q */
910			gf_poly_div(bch, f, gcd, q);
911			/* store g and h in-place (clobbering f) */
912			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
913			gf_poly_copy(*g, gcd);
914			gf_poly_copy(*h, q);
915		}
916	}
917}
918
919/*
920 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
921 * file for details
922 */
923static int find_poly_roots(struct bch_control *bch, unsigned int k,
924			   struct gf_poly *poly, unsigned int *roots)
925{
926	int cnt;
927	struct gf_poly *f1, *f2;
928
929	switch (poly->deg) {
930		/* handle low degree polynomials with ad hoc techniques */
931	case 1:
932		cnt = find_poly_deg1_roots(bch, poly, roots);
933		break;
934	case 2:
935		cnt = find_poly_deg2_roots(bch, poly, roots);
936		break;
937	case 3:
938		cnt = find_poly_deg3_roots(bch, poly, roots);
939		break;
940	case 4:
941		cnt = find_poly_deg4_roots(bch, poly, roots);
942		break;
943	default:
944		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
945		cnt = 0;
946		if (poly->deg && (k <= GF_M(bch))) {
947			factor_polynomial(bch, k, poly, &f1, &f2);
948			if (f1)
949				cnt += find_poly_roots(bch, k+1, f1, roots);
950			if (f2)
951				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
952		}
953		break;
954	}
955	return cnt;
956}
957
958#if defined(USE_CHIEN_SEARCH)
959/*
960 * exhaustive root search (Chien) implementation - not used, included only for
961 * reference/comparison tests
962 */
963static int chien_search(struct bch_control *bch, unsigned int len,
964			struct gf_poly *p, unsigned int *roots)
965{
966	int m;
967	unsigned int i, j, syn, syn0, count = 0;
968	const unsigned int k = 8*len+bch->ecc_bits;
969
970	/* use a log-based representation of polynomial */
971	gf_poly_logrep(bch, p, bch->cache);
972	bch->cache[p->deg] = 0;
973	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
974
975	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
976		/* compute elp(a^i) */
977		for (j = 1, syn = syn0; j <= p->deg; j++) {
978			m = bch->cache[j];
979			if (m >= 0)
980				syn ^= a_pow(bch, m+j*i);
981		}
982		if (syn == 0) {
983			roots[count++] = GF_N(bch)-i;
984			if (count == p->deg)
985				break;
986		}
987	}
988	return (count == p->deg) ? count : 0;
989}
990#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
991#endif /* USE_CHIEN_SEARCH */
992
993/**
994 * decode_bch - decode received codeword and find bit error locations
995 * @bch:      BCH control structure
996 * @data:     received data, ignored if @calc_ecc is provided
997 * @len:      data length in bytes, must always be provided
998 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
999 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
1000 * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
1001 * @errloc:   output array of error locations
1002 *
1003 * Returns:
1004 *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1005 *  invalid parameters were provided
1006 *
1007 * Depending on the available hw BCH support and the need to compute @calc_ecc
1008 * separately (using encode_bch()), this function should be called with one of
1009 * the following parameter configurations -
1010 *
1011 * by providing @data and @recv_ecc only:
1012 *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1013 *
1014 * by providing @recv_ecc and @calc_ecc:
1015 *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1016 *
1017 * by providing ecc = recv_ecc XOR calc_ecc:
1018 *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1019 *
1020 * by providing syndrome results @syn:
1021 *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1022 *
1023 * Once decode_bch() has successfully returned with a positive value, error
1024 * locations returned in array @errloc should be interpreted as follows -
1025 *
1026 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1027 * data correction)
1028 *
1029 * if (errloc[n] < 8*len), then n-th error is located in data and can be
1030 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1031 *
1032 * Note that this function does not perform any data correction by itself, it
1033 * merely indicates error locations.
1034 */
1035int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1036	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1037	       const unsigned int *syn, unsigned int *errloc)
1038{
1039	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1040	unsigned int nbits;
1041	int i, err, nroots;
1042	uint32_t sum;
1043
1044	/* sanity check: make sure data length can be handled */
1045	if (8*len > (bch->n-bch->ecc_bits))
1046		return -EINVAL;
1047
1048	/* if caller does not provide syndromes, compute them */
1049	if (!syn) {
1050		if (!calc_ecc) {
1051			/* compute received data ecc into an internal buffer */
1052			if (!data || !recv_ecc)
1053				return -EINVAL;
1054			encode_bch(bch, data, len, NULL);
1055		} else {
1056			/* load provided calculated ecc */
1057			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1058		}
1059		/* load received ecc or assume it was XORed in calc_ecc */
1060		if (recv_ecc) {
1061			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1062			/* XOR received and calculated ecc */
1063			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1064				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1065				sum |= bch->ecc_buf[i];
1066			}
1067			if (!sum)
1068				/* no error found */
1069				return 0;
1070		}
1071		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1072		syn = bch->syn;
1073	}
1074
1075	err = compute_error_locator_polynomial(bch, syn);
1076	if (err > 0) {
1077		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1078		if (err != nroots)
1079			err = -1;
1080	}
1081	if (err > 0) {
1082		/* post-process raw error locations for easier correction */
1083		nbits = (len*8)+bch->ecc_bits;
1084		for (i = 0; i < err; i++) {
1085			if (errloc[i] >= nbits) {
1086				err = -1;
1087				break;
1088			}
1089			errloc[i] = nbits-1-errloc[i];
1090			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1091		}
1092	}
1093	return (err >= 0) ? err : -EBADMSG;
1094}
1095
1096/*
1097 * generate Galois field lookup tables
1098 */
1099static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1100{
1101	unsigned int i, x = 1;
1102	const unsigned int k = 1 << deg(poly);
1103
1104	/* primitive polynomial must be of degree m */
1105	if (k != (1u << GF_M(bch)))
1106		return -1;
1107
1108	for (i = 0; i < GF_N(bch); i++) {
1109		bch->a_pow_tab[i] = x;
1110		bch->a_log_tab[x] = i;
1111		if (i && (x == 1))
1112			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1113			return -1;
1114		x <<= 1;
1115		if (x & k)
1116			x ^= poly;
1117	}
1118	bch->a_pow_tab[GF_N(bch)] = 1;
1119	bch->a_log_tab[0] = 0;
1120
1121	return 0;
1122}
1123
1124/*
1125 * compute generator polynomial remainder tables for fast encoding
1126 */
1127static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1128{
1129	int i, j, b, d;
1130	uint32_t data, hi, lo, *tab;
1131	const int l = BCH_ECC_WORDS(bch);
1132	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1133	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1134
1135	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1136
1137	for (i = 0; i < 256; i++) {
1138		/* p(X)=i is a small polynomial of weight <= 8 */
1139		for (b = 0; b < 4; b++) {
1140			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1141			tab = bch->mod8_tab + (b*256+i)*l;
1142			data = i << (8*b);
1143			while (data) {
1144				d = deg(data);
1145				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1146				data ^= g[0] >> (31-d);
1147				for (j = 0; j < ecclen; j++) {
1148					hi = (d < 31) ? g[j] << (d+1) : 0;
1149					lo = (j+1 < plen) ?
1150						g[j+1] >> (31-d) : 0;
1151					tab[j] ^= hi|lo;
1152				}
1153			}
1154		}
1155	}
1156}
1157
1158/*
1159 * build a base for factoring degree 2 polynomials
1160 */
1161static int build_deg2_base(struct bch_control *bch)
1162{
1163	const int m = GF_M(bch);
1164	int i, j, r;
1165	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1166
1167	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1168	for (i = 0; i < m; i++) {
1169		for (j = 0, sum = 0; j < m; j++)
1170			sum ^= a_pow(bch, i*(1 << j));
1171
1172		if (sum) {
1173			ak = bch->a_pow_tab[i];
1174			break;
1175		}
1176	}
1177	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1178	remaining = m;
1179	memset(xi, 0, sizeof(xi));
1180
1181	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1182		y = gf_sqr(bch, x)^x;
1183		for (i = 0; i < 2; i++) {
1184			r = a_log(bch, y);
1185			if (y && (r < m) && !xi[r]) {
1186				bch->xi_tab[r] = x;
1187				xi[r] = 1;
1188				remaining--;
1189				dbg("x%d = %x\n", r, x);
1190				break;
1191			}
1192			y ^= ak;
1193		}
1194	}
1195	/* should not happen but check anyway */
1196	return remaining ? -1 : 0;
1197}
1198
1199static void *bch_alloc(size_t size, int *err)
1200{
1201	void *ptr;
1202
1203	ptr = kmalloc(size, GFP_KERNEL);
1204	if (ptr == NULL)
1205		*err = 1;
1206	return ptr;
1207}
1208
1209/*
1210 * compute generator polynomial for given (m,t) parameters.
1211 */
1212static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1213{
1214	const unsigned int m = GF_M(bch);
1215	const unsigned int t = GF_T(bch);
1216	int n, err = 0;
1217	unsigned int i, j, nbits, r, word, *roots;
1218	struct gf_poly *g;
1219	uint32_t *genpoly;
1220
1221	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1222	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1223	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1224
1225	if (err) {
1226		kfree(genpoly);
1227		genpoly = NULL;
1228		goto finish;
1229	}
1230
1231	/* enumerate all roots of g(X) */
1232	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1233	for (i = 0; i < t; i++) {
1234		for (j = 0, r = 2*i+1; j < m; j++) {
1235			roots[r] = 1;
1236			r = mod_s(bch, 2*r);
1237		}
1238	}
1239	/* build generator polynomial g(X) */
1240	g->deg = 0;
1241	g->c[0] = 1;
1242	for (i = 0; i < GF_N(bch); i++) {
1243		if (roots[i]) {
1244			/* multiply g(X) by (X+root) */
1245			r = bch->a_pow_tab[i];
1246			g->c[g->deg+1] = 1;
1247			for (j = g->deg; j > 0; j--)
1248				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1249
1250			g->c[0] = gf_mul(bch, g->c[0], r);
1251			g->deg++;
1252		}
1253	}
1254	/* store left-justified binary representation of g(X) */
1255	n = g->deg+1;
1256	i = 0;
1257
1258	while (n > 0) {
1259		nbits = (n > 32) ? 32 : n;
1260		for (j = 0, word = 0; j < nbits; j++) {
1261			if (g->c[n-1-j])
1262				word |= 1u << (31-j);
1263		}
1264		genpoly[i++] = word;
1265		n -= nbits;
1266	}
1267	bch->ecc_bits = g->deg;
1268
1269finish:
1270	kfree(g);
1271	kfree(roots);
1272
1273	return genpoly;
1274}
1275
1276/**
1277 * init_bch - initialize a BCH encoder/decoder
1278 * @m:          Galois field order, should be in the range 5-15
1279 * @t:          maximum error correction capability, in bits
1280 * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1281 *
1282 * Returns:
1283 *  a newly allocated BCH control structure if successful, NULL otherwise
1284 *
1285 * This initialization can take some time, as lookup tables are built for fast
1286 * encoding/decoding; make sure not to call this function from a time critical
1287 * path. Usually, init_bch() should be called on module/driver init and
1288 * free_bch() should be called to release memory on exit.
1289 *
1290 * You may provide your own primitive polynomial of degree @m in argument
1291 * @prim_poly, or let init_bch() use its default polynomial.
1292 *
1293 * Once init_bch() has successfully returned a pointer to a newly allocated
1294 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1295 * the structure.
1296 */
1297struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1298{
1299	int err = 0;
1300	unsigned int i, words;
1301	uint32_t *genpoly;
1302	struct bch_control *bch = NULL;
1303
1304	const int min_m = 5;
1305	const int max_m = 15;
1306
1307	/* default primitive polynomials */
1308	static const unsigned int prim_poly_tab[] = {
1309		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1310		0x402b, 0x8003,
1311	};
1312
1313#if defined(CONFIG_BCH_CONST_PARAMS)
1314	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1315		printk(KERN_ERR "bch encoder/decoder was configured to support "
1316		       "parameters m=%d, t=%d only!\n",
1317		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1318		goto fail;
1319	}
1320#endif
1321	if ((m < min_m) || (m > max_m))
1322		/*
1323		 * values of m greater than 15 are not currently supported;
1324		 * supporting m > 15 would require changing table base type
1325		 * (uint16_t) and a small patch in matrix transposition
1326		 */
1327		goto fail;
1328
1329	/* sanity checks */
1330	if ((t < 1) || (m*t >= ((1 << m)-1)))
1331		/* invalid t value */
1332		goto fail;
1333
1334	/* select a primitive polynomial for generating GF(2^m) */
1335	if (prim_poly == 0)
1336		prim_poly = prim_poly_tab[m-min_m];
1337
1338	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1339	if (bch == NULL)
1340		goto fail;
1341
1342	bch->m = m;
1343	bch->t = t;
1344	bch->n = (1 << m)-1;
1345	words  = DIV_ROUND_UP(m*t, 32);
1346	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1347	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1348	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1349	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1350	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1351	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1352	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1353	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1354	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1355	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1356
1357	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1358		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1359
1360	if (err)
1361		goto fail;
1362
1363	err = build_gf_tables(bch, prim_poly);
1364	if (err)
1365		goto fail;
1366
1367	/* use generator polynomial for computing encoding tables */
1368	genpoly = compute_generator_polynomial(bch);
1369	if (genpoly == NULL)
1370		goto fail;
1371
1372	build_mod8_tables(bch, genpoly);
1373	kfree(genpoly);
1374
1375	err = build_deg2_base(bch);
1376	if (err)
1377		goto fail;
1378
1379	return bch;
1380
1381fail:
1382	free_bch(bch);
1383	return NULL;
1384}
1385
1386/**
1387 *  free_bch - free the BCH control structure
1388 *  @bch:    BCH control structure to release
1389 */
1390void free_bch(struct bch_control *bch)
1391{
1392	unsigned int i;
1393
1394	if (bch) {
1395		kfree(bch->a_pow_tab);
1396		kfree(bch->a_log_tab);
1397		kfree(bch->mod8_tab);
1398		kfree(bch->ecc_buf);
1399		kfree(bch->ecc_buf2);
1400		kfree(bch->xi_tab);
1401		kfree(bch->syn);
1402		kfree(bch->cache);
1403		kfree(bch->elp);
1404
1405		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1406			kfree(bch->poly_2t[i]);
1407
1408		kfree(bch);
1409	}
1410}
1411