1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * (C) Copyright 2015
4 * Texas Instruments Incorporated - https://www.ti.com/
5 */
6
7#ifndef _RPROC_H_
8#define _RPROC_H_
9
10/*
11 * Note: The platform data support is not meant for use with newer
12 * platforms. This is meant only for legacy devices. This mode of
13 * initialization *will* be eventually removed once all necessary
14 * platforms have moved to dm/fdt.
15 */
16#include <dm/platdata.h>	/* For platform data support - non dt world */
17#include <linux/errno.h>
18
19/**
20 * struct fw_rsc_hdr - firmware resource entry header
21 * @type: resource type
22 * @data: resource data
23 *
24 * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
25 * its @type. The content of the entry itself will immediately follow
26 * this header, and it should be parsed according to the resource type.
27 */
28struct fw_rsc_hdr {
29	u32 type;
30	u8 data[0];
31};
32
33/**
34 * enum fw_resource_type - types of resource entries
35 *
36 * @RSC_CARVEOUT:   request for allocation of a physically contiguous
37 *		    memory region.
38 * @RSC_DEVMEM:     request to iommu_map a memory-based peripheral.
39 * @RSC_TRACE:	    announces the availability of a trace buffer into which
40 *		    the remote processor will be writing logs.
41 * @RSC_VDEV:       declare support for a virtio device, and serve as its
42 *		    virtio header.
43 * @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
44 *		    remoteproc implementations before loading
45 * @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
46 *		    remoteproc implementations after loading
47 * @RSC_LAST:       just keep this one at the end
48 *
49 * For more details regarding a specific resource type, please see its
50 * dedicated structure below.
51 *
52 * Please note that these values are used as indices to the rproc_handle_rsc
53 * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
54 * check the validity of an index before the lookup table is accessed, so
55 * please update it as needed.
56 */
57enum fw_resource_type {
58	RSC_CARVEOUT		= 0,
59	RSC_DEVMEM		= 1,
60	RSC_TRACE		= 2,
61	RSC_VDEV		= 3,
62	RSC_PRELOAD_VENDOR	= 4,
63	RSC_POSTLOAD_VENDOR	= 5,
64	RSC_LAST		= 6,
65};
66
67#define FW_RSC_ADDR_ANY (-1)
68
69/**
70 * struct fw_rsc_carveout - physically contiguous memory request
71 * @da: device address
72 * @pa: physical address
73 * @len: length (in bytes)
74 * @flags: iommu protection flags
75 * @reserved: reserved (must be zero)
76 * @name: human-readable name of the requested memory region
77 *
78 * This resource entry requests the host to allocate a physically contiguous
79 * memory region.
80 *
81 * These request entries should precede other firmware resource entries,
82 * as other entries might request placing other data objects inside
83 * these memory regions (e.g. data/code segments, trace resource entries, ...).
84 *
85 * Allocating memory this way helps utilizing the reserved physical memory
86 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
87 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
88 * pressure is important; it may have a substantial impact on performance.
89 *
90 * If the firmware is compiled with static addresses, then @da should specify
91 * the expected device address of this memory region. If @da is set to
92 * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
93 * overwrite @da with the dynamically allocated address.
94 *
95 * We will always use @da to negotiate the device addresses, even if it
96 * isn't using an iommu. In that case, though, it will obviously contain
97 * physical addresses.
98 *
99 * Some remote processors needs to know the allocated physical address
100 * even if they do use an iommu. This is needed, e.g., if they control
101 * hardware accelerators which access the physical memory directly (this
102 * is the case with OMAP4 for instance). In that case, the host will
103 * overwrite @pa with the dynamically allocated physical address.
104 * Generally we don't want to expose physical addresses if we don't have to
105 * (remote processors are generally _not_ trusted), so we might want to
106 * change this to happen _only_ when explicitly required by the hardware.
107 *
108 * @flags is used to provide IOMMU protection flags, and @name should
109 * (optionally) contain a human readable name of this carveout region
110 * (mainly for debugging purposes).
111 */
112struct fw_rsc_carveout {
113	u32 da;
114	u32 pa;
115	u32 len;
116	u32 flags;
117	u32 reserved;
118	u8 name[32];
119};
120
121/**
122 * struct fw_rsc_devmem - iommu mapping request
123 * @da: device address
124 * @pa: physical address
125 * @len: length (in bytes)
126 * @flags: iommu protection flags
127 * @reserved: reserved (must be zero)
128 * @name: human-readable name of the requested region to be mapped
129 *
130 * This resource entry requests the host to iommu map a physically contiguous
131 * memory region. This is needed in case the remote processor requires
132 * access to certain memory-based peripherals; _never_ use it to access
133 * regular memory.
134 *
135 * This is obviously only needed if the remote processor is accessing memory
136 * via an iommu.
137 *
138 * @da should specify the required device address, @pa should specify
139 * the physical address we want to map, @len should specify the size of
140 * the mapping and @flags is the IOMMU protection flags. As always, @name may
141 * (optionally) contain a human readable name of this mapping (mainly for
142 * debugging purposes).
143 *
144 * Note: at this point we just "trust" those devmem entries to contain valid
145 * physical addresses, but this isn't safe and will be changed: eventually we
146 * want remoteproc implementations to provide us ranges of physical addresses
147 * the firmware is allowed to request, and not allow firmwares to request
148 * access to physical addresses that are outside those ranges.
149 */
150struct fw_rsc_devmem {
151	u32 da;
152	u32 pa;
153	u32 len;
154	u32 flags;
155	u32 reserved;
156	u8 name[32];
157};
158
159/**
160 * struct fw_rsc_trace - trace buffer declaration
161 * @da: device address
162 * @len: length (in bytes)
163 * @reserved: reserved (must be zero)
164 * @name: human-readable name of the trace buffer
165 *
166 * This resource entry provides the host information about a trace buffer
167 * into which the remote processor will write log messages.
168 *
169 * @da specifies the device address of the buffer, @len specifies
170 * its size, and @name may contain a human readable name of the trace buffer.
171 *
172 * After booting the remote processor, the trace buffers are exposed to the
173 * user via debugfs entries (called trace0, trace1, etc..).
174 */
175struct fw_rsc_trace {
176	u32 da;
177	u32 len;
178	u32 reserved;
179	u8 name[32];
180};
181
182/**
183 * struct fw_rsc_vdev_vring - vring descriptor entry
184 * @da: device address
185 * @align: the alignment between the consumer and producer parts of the vring
186 * @num: num of buffers supported by this vring (must be power of two)
187 * @notifyid is a unique rproc-wide notify index for this vring. This notify
188 * index is used when kicking a remote processor, to let it know that this
189 * vring is triggered.
190 * @pa: physical address
191 *
192 * This descriptor is not a resource entry by itself; it is part of the
193 * vdev resource type (see below).
194 *
195 * Note that @da should either contain the device address where
196 * the remote processor is expecting the vring, or indicate that
197 * dynamically allocation of the vring's device address is supported.
198 */
199struct fw_rsc_vdev_vring {
200	u32 da;
201	u32 align;
202	u32 num;
203	u32 notifyid;
204	u32 pa;
205};
206
207/**
208 * struct fw_rsc_vdev - virtio device header
209 * @id: virtio device id (as in virtio_ids.h)
210 * @notifyid is a unique rproc-wide notify index for this vdev. This notify
211 * index is used when kicking a remote processor, to let it know that the
212 * status/features of this vdev have changes.
213 * @dfeatures specifies the virtio device features supported by the firmware
214 * @gfeatures is a place holder used by the host to write back the
215 * negotiated features that are supported by both sides.
216 * @config_len is the size of the virtio config space of this vdev. The config
217 * space lies in the resource table immediate after this vdev header.
218 * @status is a place holder where the host will indicate its virtio progress.
219 * @num_of_vrings indicates how many vrings are described in this vdev header
220 * @reserved: reserved (must be zero)
221 * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
222 *
223 * This resource is a virtio device header: it provides information about
224 * the vdev, and is then used by the host and its peer remote processors
225 * to negotiate and share certain virtio properties.
226 *
227 * By providing this resource entry, the firmware essentially asks remoteproc
228 * to statically allocate a vdev upon registration of the rproc (dynamic vdev
229 * allocation is not yet supported).
230 *
231 * Note: unlike virtualization systems, the term 'host' here means
232 * the Linux side which is running remoteproc to control the remote
233 * processors. We use the name 'gfeatures' to comply with virtio's terms,
234 * though there isn't really any virtualized guest OS here: it's the host
235 * which is responsible for negotiating the final features.
236 * Yeah, it's a bit confusing.
237 *
238 * Note: immediately following this structure is the virtio config space for
239 * this vdev (which is specific to the vdev; for more info, read the virtio
240 * spec). the size of the config space is specified by @config_len.
241 */
242struct fw_rsc_vdev {
243	u32 id;
244	u32 notifyid;
245	u32 dfeatures;
246	u32 gfeatures;
247	u32 config_len;
248	u8 status;
249	u8 num_of_vrings;
250	u8 reserved[2];
251	struct fw_rsc_vdev_vring vring[0];
252};
253
254/**
255 * struct rproc_mem_entry - memory entry descriptor
256 * @va:	virtual address
257 * @dma: dma address
258 * @len: length, in bytes
259 * @da: device address
260 * @priv: associated data
261 * @name: associated memory region name (optional)
262 * @node: list node
263 */
264struct rproc_mem_entry {
265	void *va;
266	dma_addr_t dma;
267	int len;
268	u32 da;
269	void *priv;
270	char name[32];
271	struct list_head node;
272};
273
274struct rproc;
275
276typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
277
278struct l3_map {
279	u32 priv_addr;
280	u32 l3_addr;
281	u32 len;
282};
283
284struct rproc_intmem_to_l3_mapping {
285	u32 num_entries;
286	struct l3_map mappings[16];
287};
288
289/**
290 * enum rproc_crash_type - remote processor crash types
291 * @RPROC_MMUFAULT:	iommu fault
292 * @RPROC_WATCHDOG:	watchdog bite
293 * @RPROC_FATAL_ERROR	fatal error
294 *
295 * Each element of the enum is used as an array index. So that, the value of
296 * the elements should be always something sane.
297 *
298 * Feel free to add more types when needed.
299 */
300enum rproc_crash_type {
301	RPROC_MMUFAULT,
302	RPROC_WATCHDOG,
303	RPROC_FATAL_ERROR,
304};
305
306/* we currently support only two vrings per rvdev */
307#define RVDEV_NUM_VRINGS 2
308
309#define RPMSG_NUM_BUFS         (512)
310#define RPMSG_BUF_SIZE         (512)
311#define RPMSG_TOTAL_BUF_SPACE  (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
312
313/**
314 * struct rproc_vring - remoteproc vring state
315 * @va:	virtual address
316 * @dma: dma address
317 * @len: length, in bytes
318 * @da: device address
319 * @align: vring alignment
320 * @notifyid: rproc-specific unique vring index
321 * @rvdev: remote vdev
322 * @vq: the virtqueue of this vring
323 */
324struct rproc_vring {
325	void *va;
326	dma_addr_t dma;
327	int len;
328	u32 da;
329	u32 align;
330	int notifyid;
331	struct rproc_vdev *rvdev;
332	struct virtqueue *vq;
333};
334
335/** struct rproc - structure with all processor specific information for
336 * loading remotecore from boot loader.
337 *
338 * @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
339 * processor does not have an IOMMU.
340 *
341 * @cma_base: Base address of the carveout for this remotecore.
342 *
343 * @cma_size: Length of the carveout in bytes.
344 *
345 * @page_table_addr: array with the physical address of the page table. We are
346 * using the same page table for both IOMMU's. There is currently no strong
347 * usecase for maintaining different page tables for different MMU's servicing
348 * the same CPU.
349 *
350 * @mmu_base_addr: base address of the MMU
351 *
352 * @entry_point: address that is the entry point for the remote core. This
353 * address is in the memory view of the remotecore.
354 *
355 * @load_addr: Address to which the bootloader loads the firmware from
356 * persistent storage before invoking the ELF loader. Keeping this address
357 * configurable allows future optimizations such as loading the firmware from
358 * storage for remotecore2 via EDMA while the CPU is processing the ELF image
359 * of remotecore1. This address is in the memory view of the A15.
360 *
361 * @firmware_name: Name of the file that is expected to contain the ELF image.
362 *
363 * @has_rsc_table: Flag populated after parsing the ELF binary on target.
364 */
365
366struct rproc {
367	u32 num_iommus;
368	unsigned long cma_base;
369	u32 cma_size;
370	unsigned long page_table_addr;
371	unsigned long mmu_base_addr[2];
372	unsigned long load_addr;
373	unsigned long entry_point;
374	char *core_name;
375	char *firmware_name;
376	char *ptn;
377	init_func_proto start_clocks;
378	init_func_proto config_mmu;
379	init_func_proto config_peripherals;
380	init_func_proto start_core;
381	u32 has_rsc_table;
382	struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
383	u32 trace_pa;
384	u32 trace_len;
385};
386
387extern struct rproc *rproc_cfg_arr[2];
388/**
389 * enum rproc_mem_type - What type of memory model does the rproc use
390 * @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
391 *	mapped to the host processor over an address range.
392 *
393 * Please note that this is an enumeration of memory model of different types
394 * of remote processors. Few of the remote processors do have own internal
395 * memories, while others use external memory for instruction and data.
396 */
397enum rproc_mem_type {
398	RPROC_INTERNAL_MEMORY_MAPPED	= 0,
399};
400
401/**
402 * struct dm_rproc_uclass_pdata - platform data for a CPU
403 * @name: Platform-specific way of naming the Remote proc
404 * @mem_type: one of 'enum rproc_mem_type'
405 * @driver_plat_data: driver specific platform data that may be needed.
406 * @fw_name: firmware name
407 *
408 * This can be accessed with dev_get_uclass_plat() for any UCLASS_REMOTEPROC
409 * device.
410 *
411 */
412struct dm_rproc_uclass_pdata {
413	const char *name;
414	enum rproc_mem_type mem_type;
415	void *driver_plat_data;
416	char *fw_name;
417};
418
419/**
420 * struct dm_rproc_ops - Driver model remote proc operations.
421 *
422 * This defines the operations provided by remote proc driver.
423 */
424struct dm_rproc_ops {
425	/**
426	 * init() - Initialize the remoteproc device (optional)
427	 *
428	 * This is called after the probe is completed allowing the remote
429	 * processor drivers to split up the initializations between probe and
430	 * init if needed.
431	 *
432	 * @dev:	Remote proc device
433	 * @return 0 if all ok, else appropriate error value.
434	 */
435	int (*init)(struct udevice *dev);
436
437	/**
438	 * load() - Load the remoteproc device using data provided (mandatory)
439	 *
440	 * Load the remoteproc device with an image, do not start the device.
441	 *
442	 * @dev:	Remote proc device
443	 * @addr:	Address of the image to be loaded
444	 * @size:	Size of the image to be loaded
445	 * @return 0 if all ok, else appropriate error value.
446	 */
447	int (*load)(struct udevice *dev, ulong addr, ulong size);
448
449	/**
450	 * start() - Start the remoteproc device (mandatory)
451	 *
452	 * @dev:	Remote proc device
453	 * @return 0 if all ok, else appropriate error value.
454	 */
455	int (*start)(struct udevice *dev);
456
457	/**
458	 * stop() - Stop the remoteproc device (optional)
459	 *
460	 * @dev:	Remote proc device
461	 * @return 0 if all ok, else appropriate error value.
462	 */
463	int (*stop)(struct udevice *dev);
464
465	/**
466	 * reset() - Reset the remoteproc device (optional)
467	 *
468	 * @dev:	Remote proc device
469	 * @return 0 if all ok, else appropriate error value.
470	 */
471	int (*reset)(struct udevice *dev);
472
473	/**
474	 * is_running() - Check if the remote processor is running (optional)
475	 *
476	 * @dev:	Remote proc device
477	 * @return 0 if running, 1 if not running, -ve on error.
478	 */
479	int (*is_running)(struct udevice *dev);
480
481	/**
482	 * ping() - Ping the remote device for basic communication (optional)
483	 *
484	 * @dev:	Remote proc device
485	 * @return 0 on success, 1 if not responding, -ve on other errors.
486	 */
487	int (*ping)(struct udevice *dev);
488
489	/**
490	 * device_to_virt() - Return translated virtual address (optional)
491	 *
492	 * Translate a device address (remote processor view) to virtual
493	 * address (main processor view).
494	 *
495	 * @dev:	Remote proc device
496	 * @da:		Device address
497	 * @size:	Size of the memory region @da is pointing to
498	 * @return virtual address.
499	 */
500	void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
501	int (*add_res)(struct udevice *dev,
502		       struct rproc_mem_entry *mapping);
503	void * (*alloc_mem)(struct udevice *dev, unsigned long len,
504			    unsigned long align);
505	unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
506					 unsigned int phys, unsigned int len);
507};
508
509/* Accessor */
510#define rproc_get_ops(dev) ((struct dm_rproc_ops *)(dev)->driver->ops)
511
512#if CONFIG_IS_ENABLED(REMOTEPROC)
513/**
514 * rproc_init() - Initialize all bound remote proc devices
515 * Return: 0 if all ok, else appropriate error value.
516 */
517int rproc_init(void);
518
519/**
520 * rproc_dev_init() - Initialize a remote proc device based on id
521 * @id:		id of the remote processor
522 * Return: 0 if all ok, else appropriate error value.
523 */
524int rproc_dev_init(int id);
525
526/**
527 * rproc_is_initialized() - check to see if remoteproc devices are initialized
528 * Return: true if all devices are initialized, false otherwise.
529 */
530bool rproc_is_initialized(void);
531
532/**
533 * rproc_load() - load binary or elf to a remote processor
534 * @id:		id of the remote processor
535 * @addr:	address in memory where the image is located
536 * @size:	size of the image
537 * Return: 0 if all ok, else appropriate error value.
538 */
539int rproc_load(int id, ulong addr, ulong size);
540
541/**
542 * rproc_start() - Start a remote processor
543 * @id:		id of the remote processor
544 * Return: 0 if all ok, else appropriate error value.
545 */
546int rproc_start(int id);
547
548/**
549 * rproc_stop() - Stop a remote processor
550 * @id:		id of the remote processor
551 * Return: 0 if all ok, else appropriate error value.
552 */
553int rproc_stop(int id);
554
555/**
556 * rproc_reset() - reset a remote processor
557 * @id:		id of the remote processor
558 * Return: 0 if all ok, else appropriate error value.
559 */
560int rproc_reset(int id);
561
562/**
563 * rproc_ping() - ping a remote processor to check if it can communicate
564 * @id:		id of the remote processor
565 * Return: 0 if all ok, else appropriate error value.
566 *
567 * NOTE: this might need communication path available, which is not implemented
568 * as part of remoteproc framework - hook on to appropriate bus architecture to
569 * do the same
570 */
571int rproc_ping(int id);
572
573/**
574 * rproc_is_running() - check to see if remote processor is running
575 * @id:		id of the remote processor
576 * Return: 0 if running, 1 if not running, -ve on error.
577 *
578 * NOTE: this may not involve actual communication capability of the remote
579 * processor, but just ensures that it is out of reset and executing code.
580 */
581int rproc_is_running(int id);
582
583/**
584 * rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one
585 *
586 * Check if a valid ELF32 image exists at the given memory location. Verify
587 * basic ELF32 format requirements like magic number and sections size.
588 *
589 * @addr:	address of the image to verify
590 * @size:	size of the image
591 * Return: 0 if the image looks good, else appropriate error value.
592 */
593int rproc_elf32_sanity_check(ulong addr, ulong size);
594
595/**
596 * rproc_elf64_sanity_check() - Verify if an image is a valid ELF32 one
597 *
598 * Check if a valid ELF64 image exists at the given memory location. Verify
599 * basic ELF64 format requirements like magic number and sections size.
600 *
601 * @addr:	address of the image to verify
602 * @size:	size of the image
603 * Return: 0 if the image looks good, else appropriate error value.
604 */
605int rproc_elf64_sanity_check(ulong addr, ulong size);
606
607/**
608 * rproc_elf32_load_image() - load an ELF32 image
609 * @dev:	device loading the ELF32 image
610 * @addr:	valid ELF32 image address
611 * @size:	size of the image
612 * Return: 0 if the image is successfully loaded, else appropriate error value.
613 */
614int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size);
615
616/**
617 * rproc_elf64_load_image() - load an ELF64 image
618 * @dev:	device loading the ELF64 image
619 * @addr:	valid ELF64 image address
620 * @size:	size of the image
621 * Return: 0 if the image is successfully loaded, else appropriate error value.
622 */
623int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size);
624
625/**
626 * rproc_elf_load_image() - load an ELF image
627 * @dev:	device loading the ELF image
628 * @addr:	valid ELF image address
629 * @size:	size of the image
630 *
631 * Auto detects if the image is ELF32 or ELF64 image and load accordingly.
632 * Return: 0 if the image is successfully loaded, else appropriate error value.
633 */
634int rproc_elf_load_image(struct udevice *dev, unsigned long addr, ulong size);
635
636/**
637 * rproc_elf_get_boot_addr() - Get rproc's boot address.
638 * @dev:	device loading the ELF image
639 * @addr:	valid ELF image address
640 *
641 * This function returns the entry point address of the ELF
642 * image.
643 */
644ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr);
645
646/**
647 * rproc_elf32_load_rsc_table() - load the resource table from an ELF32 image
648 *
649 * Search for the resource table in an ELF32 image, and if found, copy it to
650 * device memory.
651 *
652 * @dev:	device loading the resource table
653 * @fw_addr:	ELF image address
654 * @fw_size:	size of the ELF image
655 * @rsc_addr:	pointer to the found resource table address. Updated on
656 *		operation success
657 * @rsc_size:	pointer to the found resource table size. Updated on operation
658 *		success
659 *
660 * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
661 * is no resource table (which is optional), or another appropriate error value.
662 */
663int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
664			       ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
665/**
666 * rproc_elf64_load_rsc_table() - load the resource table from an ELF64 image
667 *
668 * Search for the resource table in an ELF64 image, and if found, copy it to
669 * device memory.
670 *
671 * @dev:	device loading the resource table
672 * @fw_addr:	ELF image address
673 * @fw_size:	size of the ELF image
674 * @rsc_addr:	pointer to the found resource table address. Updated on
675 *		operation success
676 * @rsc_size:	pointer to the found resource table size. Updated on operation
677 *		success
678 *
679 * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
680 * is no resource table (which is optional), or another appropriate error value.
681 */
682int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
683			       ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
684/**
685 * rproc_elf_load_rsc_table() - load the resource table from an ELF image
686 *
687 * Auto detects if the image is ELF32 or ELF64 image and search accordingly for
688 * the resource table, and if found, copy it to device memory.
689 *
690 * @dev:	device loading the resource table
691 * @fw_addr:	ELF image address
692 * @fw_size:	size of the ELF image
693 * @rsc_addr:	pointer to the found resource table address. Updated on
694 *		operation success
695 * @rsc_size:	pointer to the found resource table size. Updated on operation
696 *		success
697 *
698 * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
699 * is no resource table (which is optional), or another appropriate error value.
700 */
701int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
702			     ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
703
704unsigned long rproc_parse_resource_table(struct udevice *dev,
705					 struct rproc *cfg);
706
707struct resource_table *rproc_find_resource_table(struct udevice *dev,
708						 unsigned int addr,
709						 int *tablesz);
710/**
711 * rproc_set_firmware() - assign a new firmware name
712 * @rproc_dev: device for which new firmware name is being assigned
713 * @fw_name: new firmware name to be assigned
714 *
715 * This function allows remoteproc drivers or clients to configure a custom
716 * firmware name. The function does not trigger a remote processor boot,
717 * only sets the firmware name used for a subsequent boot.
718 *
719 * This function sets the fw_name field in uclass pdata of the Remote proc
720 *
721 * Return: 0 on success or a negative value upon failure
722 */
723int rproc_set_firmware(struct udevice *rproc_dev, const char *fw_name);
724
725/**
726 * rproc_boot() - boot a remote processor
727 * @rproc_dev: rproc device to boot
728 *
729 * Boot a remote processor (i.e. load its firmware, power it on, ...).
730 *
731 * This function first loads the firmware set in the uclass pdata of Remote
732 * processor to a buffer and then loads firmware to the remote processor
733 * using rproc_load().
734 *
735 * Return: 0 on success, and an appropriate error value otherwise
736 */
737int rproc_boot(struct udevice *rproc_dev);
738#else
739static inline int rproc_init(void) { return -ENOSYS; }
740static inline int rproc_dev_init(int id) { return -ENOSYS; }
741static inline bool rproc_is_initialized(void) { return false; }
742static inline int rproc_load(int id, ulong addr, ulong size) { return -ENOSYS; }
743static inline int rproc_start(int id) { return -ENOSYS; }
744static inline int rproc_stop(int id) { return -ENOSYS; }
745static inline int rproc_reset(int id) { return -ENOSYS; }
746static inline int rproc_ping(int id) { return -ENOSYS; }
747static inline int rproc_is_running(int id) { return -ENOSYS; }
748static inline int rproc_elf32_sanity_check(ulong addr,
749					   ulong size) { return -ENOSYS; }
750static inline int rproc_elf64_sanity_check(ulong addr,
751					   ulong size) { return -ENOSYS; }
752static inline int rproc_elf_sanity_check(ulong addr,
753					 ulong size) { return -ENOSYS; }
754static inline int rproc_elf32_load_image(struct udevice *dev,
755					 unsigned long addr, ulong size)
756{ return -ENOSYS; }
757static inline int rproc_elf64_load_image(struct udevice *dev, ulong addr,
758					 ulong size)
759{ return -ENOSYS; }
760static inline int rproc_elf_load_image(struct udevice *dev, ulong addr,
761				       ulong size)
762{ return -ENOSYS; }
763static inline ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr)
764{ return 0; }
765static inline int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
766					     ulong fw_size, ulong *rsc_addr,
767					     ulong *rsc_size)
768{ return -ENOSYS; }
769static inline int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
770					     ulong fw_size, ulong *rsc_addr,
771					     ulong *rsc_size)
772{ return -ENOSYS; }
773static inline int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
774					   ulong fw_size, ulong *rsc_addr,
775					   ulong *rsc_size)
776{ return -ENOSYS; }
777static inline int rproc_set_firmware(struct udevice *rproc_dev, const char *fw_name)
778{ return -ENOSYS; }
779static inline int rproc_boot(struct udevice *rproc_dev)
780{ return -ENOSYS; }
781#endif
782
783#endif	/* _RPROC_H_ */
784