1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * (C) Copyright 2008 Semihalf
4 *
5 * (C) Copyright 2000-2005
6 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
7 ********************************************************************
8 * NOTE: This header file defines an interface to U-Boot. Including
9 * this (unmodified) header file in another file is considered normal
10 * use of U-Boot, and does *not* fall under the heading of "derived
11 * work".
12 ********************************************************************
13 */
14
15#ifndef __IMAGE_H__
16#define __IMAGE_H__
17
18#include "compiler.h"
19#include <asm/byteorder.h>
20#include <stdbool.h>
21
22/* Define this to avoid #ifdefs later on */
23struct lmb;
24struct fdt_region;
25
26#ifdef USE_HOSTCC
27#include <sys/types.h>
28#include <linux/kconfig.h>
29
30#define IMAGE_INDENT_STRING	""
31
32#else
33
34#include <lmb.h>
35#include <asm/u-boot.h>
36#include <command.h>
37#include <linker_lists.h>
38
39#define IMAGE_INDENT_STRING	"   "
40
41#endif /* USE_HOSTCC */
42
43#include <hash.h>
44#include <linux/libfdt.h>
45#include <fdt_support.h>
46#include <u-boot/hash-checksum.h>
47
48extern ulong image_load_addr;		/* Default Load Address */
49extern ulong image_save_addr;		/* Default Save Address */
50extern ulong image_save_size;		/* Default Save Size */
51extern ulong image_load_offset;	/* Default Load Address Offset */
52
53/* An invalid size, meaning that the image size is not known */
54#define IMAGE_SIZE_INVAL	(-1UL)
55
56enum ih_category {
57	IH_ARCH,
58	IH_COMP,
59	IH_OS,
60	IH_TYPE,
61	IH_PHASE,
62
63	IH_COUNT,
64};
65
66/*
67 * Operating System Codes
68 *
69 * The following are exposed to uImage header.
70 * New IDs *MUST* be appended at the end of the list and *NEVER*
71 * inserted for backward compatibility.
72 */
73enum {
74	IH_OS_INVALID		= 0,	/* Invalid OS	*/
75	IH_OS_OPENBSD,			/* OpenBSD	*/
76	IH_OS_NETBSD,			/* NetBSD	*/
77	IH_OS_FREEBSD,			/* FreeBSD	*/
78	IH_OS_4_4BSD,			/* 4.4BSD	*/
79	IH_OS_LINUX,			/* Linux	*/
80	IH_OS_SVR4,			/* SVR4		*/
81	IH_OS_ESIX,			/* Esix		*/
82	IH_OS_SOLARIS,			/* Solaris	*/
83	IH_OS_IRIX,			/* Irix		*/
84	IH_OS_SCO,			/* SCO		*/
85	IH_OS_DELL,			/* Dell		*/
86	IH_OS_NCR,			/* NCR		*/
87	IH_OS_LYNXOS,			/* LynxOS	*/
88	IH_OS_VXWORKS,			/* VxWorks	*/
89	IH_OS_PSOS,			/* pSOS		*/
90	IH_OS_QNX,			/* QNX		*/
91	IH_OS_U_BOOT,			/* Firmware	*/
92	IH_OS_RTEMS,			/* RTEMS	*/
93	IH_OS_ARTOS,			/* ARTOS	*/
94	IH_OS_UNITY,			/* Unity OS	*/
95	IH_OS_INTEGRITY,		/* INTEGRITY	*/
96	IH_OS_OSE,			/* OSE		*/
97	IH_OS_PLAN9,			/* Plan 9	*/
98	IH_OS_OPENRTOS,		/* OpenRTOS	*/
99	IH_OS_ARM_TRUSTED_FIRMWARE,     /* ARM Trusted Firmware */
100	IH_OS_TEE,			/* Trusted Execution Environment */
101	IH_OS_OPENSBI,			/* RISC-V OpenSBI */
102	IH_OS_EFI,			/* EFI Firmware (e.g. GRUB2) */
103
104	IH_OS_COUNT,
105};
106
107/*
108 * CPU Architecture Codes (supported by Linux)
109 *
110 * The following are exposed to uImage header.
111 * New IDs *MUST* be appended at the end of the list and *NEVER*
112 * inserted for backward compatibility.
113 */
114enum {
115	IH_ARCH_INVALID		= 0,	/* Invalid CPU	*/
116	IH_ARCH_ALPHA,			/* Alpha	*/
117	IH_ARCH_ARM,			/* ARM		*/
118	IH_ARCH_I386,			/* Intel x86	*/
119	IH_ARCH_IA64,			/* IA64		*/
120	IH_ARCH_MIPS,			/* MIPS		*/
121	IH_ARCH_MIPS64,			/* MIPS	 64 Bit */
122	IH_ARCH_PPC,			/* PowerPC	*/
123	IH_ARCH_S390,			/* IBM S390	*/
124	IH_ARCH_SH,			/* SuperH	*/
125	IH_ARCH_SPARC,			/* Sparc	*/
126	IH_ARCH_SPARC64,		/* Sparc 64 Bit */
127	IH_ARCH_M68K,			/* M68K		*/
128	IH_ARCH_NIOS,			/* Nios-32	*/
129	IH_ARCH_MICROBLAZE,		/* MicroBlaze   */
130	IH_ARCH_NIOS2,			/* Nios-II	*/
131	IH_ARCH_BLACKFIN,		/* Blackfin	*/
132	IH_ARCH_AVR32,			/* AVR32	*/
133	IH_ARCH_ST200,			/* STMicroelectronics ST200  */
134	IH_ARCH_SANDBOX,		/* Sandbox architecture (test only) */
135	IH_ARCH_NDS32,			/* ANDES Technology - NDS32  */
136	IH_ARCH_OPENRISC,		/* OpenRISC 1000  */
137	IH_ARCH_ARM64,			/* ARM64	*/
138	IH_ARCH_ARC,			/* Synopsys DesignWare ARC */
139	IH_ARCH_X86_64,			/* AMD x86_64, Intel and Via */
140	IH_ARCH_XTENSA,			/* Xtensa	*/
141	IH_ARCH_RISCV,			/* RISC-V */
142
143	IH_ARCH_COUNT,
144};
145
146/*
147 * Image Types
148 *
149 * "Standalone Programs" are directly runnable in the environment
150 *	provided by U-Boot; it is expected that (if they behave
151 *	well) you can continue to work in U-Boot after return from
152 *	the Standalone Program.
153 * "OS Kernel Images" are usually images of some Embedded OS which
154 *	will take over control completely. Usually these programs
155 *	will install their own set of exception handlers, device
156 *	drivers, set up the MMU, etc. - this means, that you cannot
157 *	expect to re-enter U-Boot except by resetting the CPU.
158 * "RAMDisk Images" are more or less just data blocks, and their
159 *	parameters (address, size) are passed to an OS kernel that is
160 *	being started.
161 * "Multi-File Images" contain several images, typically an OS
162 *	(Linux) kernel image and one or more data images like
163 *	RAMDisks. This construct is useful for instance when you want
164 *	to boot over the network using BOOTP etc., where the boot
165 *	server provides just a single image file, but you want to get
166 *	for instance an OS kernel and a RAMDisk image.
167 *
168 *	"Multi-File Images" start with a list of image sizes, each
169 *	image size (in bytes) specified by an "uint32_t" in network
170 *	byte order. This list is terminated by an "(uint32_t)0".
171 *	Immediately after the terminating 0 follow the images, one by
172 *	one, all aligned on "uint32_t" boundaries (size rounded up to
173 *	a multiple of 4 bytes - except for the last file).
174 *
175 * "Firmware Images" are binary images containing firmware (like
176 *	U-Boot or FPGA images) which usually will be programmed to
177 *	flash memory.
178 *
179 * "Script files" are command sequences that will be executed by
180 *	U-Boot's command interpreter; this feature is especially
181 *	useful when you configure U-Boot to use a real shell (hush)
182 *	as command interpreter (=> Shell Scripts).
183 *
184 * The following are exposed to uImage header.
185 * New IDs *MUST* be appended at the end of the list and *NEVER*
186 * inserted for backward compatibility.
187 */
188enum image_type_t {
189	IH_TYPE_INVALID		= 0,	/* Invalid Image		*/
190	IH_TYPE_STANDALONE,		/* Standalone Program		*/
191	IH_TYPE_KERNEL,			/* OS Kernel Image		*/
192	IH_TYPE_RAMDISK,		/* RAMDisk Image		*/
193	IH_TYPE_MULTI,			/* Multi-File Image		*/
194	IH_TYPE_FIRMWARE,		/* Firmware Image		*/
195	IH_TYPE_SCRIPT,			/* Script file			*/
196	IH_TYPE_FILESYSTEM,		/* Filesystem Image (any type)	*/
197	IH_TYPE_FLATDT,			/* Binary Flat Device Tree Blob	*/
198	IH_TYPE_KWBIMAGE,		/* Kirkwood Boot Image		*/
199	IH_TYPE_IMXIMAGE,		/* Freescale IMXBoot Image	*/
200	IH_TYPE_UBLIMAGE,		/* Davinci UBL Image		*/
201	IH_TYPE_OMAPIMAGE,		/* TI OMAP Config Header Image	*/
202	IH_TYPE_AISIMAGE,		/* TI Davinci AIS Image		*/
203	/* OS Kernel Image, can run from any load address */
204	IH_TYPE_KERNEL_NOLOAD,
205	IH_TYPE_PBLIMAGE,		/* Freescale PBL Boot Image	*/
206	IH_TYPE_MXSIMAGE,		/* Freescale MXSBoot Image	*/
207	IH_TYPE_GPIMAGE,		/* TI Keystone GPHeader Image	*/
208	IH_TYPE_ATMELIMAGE,		/* ATMEL ROM bootable Image	*/
209	IH_TYPE_SOCFPGAIMAGE,		/* Altera SOCFPGA CV/AV Preloader */
210	IH_TYPE_X86_SETUP,		/* x86 setup.bin Image		*/
211	IH_TYPE_LPC32XXIMAGE,		/* x86 setup.bin Image		*/
212	IH_TYPE_LOADABLE,		/* A list of typeless images	*/
213	IH_TYPE_RKIMAGE,		/* Rockchip Boot Image		*/
214	IH_TYPE_RKSD,			/* Rockchip SD card		*/
215	IH_TYPE_RKSPI,			/* Rockchip SPI image		*/
216	IH_TYPE_ZYNQIMAGE,		/* Xilinx Zynq Boot Image */
217	IH_TYPE_ZYNQMPIMAGE,		/* Xilinx ZynqMP Boot Image */
218	IH_TYPE_ZYNQMPBIF,		/* Xilinx ZynqMP Boot Image (bif) */
219	IH_TYPE_FPGA,			/* FPGA Image */
220	IH_TYPE_VYBRIDIMAGE,	/* VYBRID .vyb Image */
221	IH_TYPE_TEE,            /* Trusted Execution Environment OS Image */
222	IH_TYPE_FIRMWARE_IVT,		/* Firmware Image with HABv4 IVT */
223	IH_TYPE_PMMC,            /* TI Power Management Micro-Controller Firmware */
224	IH_TYPE_STM32IMAGE,		/* STMicroelectronics STM32 Image */
225	IH_TYPE_SOCFPGAIMAGE_V1,	/* Altera SOCFPGA A10 Preloader	*/
226	IH_TYPE_MTKIMAGE,		/* MediaTek BootROM loadable Image */
227	IH_TYPE_IMX8MIMAGE,		/* Freescale IMX8MBoot Image	*/
228	IH_TYPE_IMX8IMAGE,		/* Freescale IMX8Boot Image	*/
229	IH_TYPE_COPRO,			/* Coprocessor Image for remoteproc*/
230	IH_TYPE_SUNXI_EGON,		/* Allwinner eGON Boot Image */
231	IH_TYPE_SUNXI_TOC0,		/* Allwinner TOC0 Boot Image */
232	IH_TYPE_FDT_LEGACY,		/* Binary Flat Device Tree Blob	in a Legacy Image */
233	IH_TYPE_RENESAS_SPKG,		/* Renesas SPKG image */
234	IH_TYPE_STARFIVE_SPL,		/* StarFive SPL image */
235
236	IH_TYPE_COUNT,			/* Number of image types */
237};
238
239/*
240 * Compression Types
241 *
242 * The following are exposed to uImage header.
243 * New IDs *MUST* be appended at the end of the list and *NEVER*
244 * inserted for backward compatibility.
245 */
246enum {
247	IH_COMP_NONE		= 0,	/*  No	 Compression Used	*/
248	IH_COMP_GZIP,			/* gzip	 Compression Used	*/
249	IH_COMP_BZIP2,			/* bzip2 Compression Used	*/
250	IH_COMP_LZMA,			/* lzma  Compression Used	*/
251	IH_COMP_LZO,			/* lzo   Compression Used	*/
252	IH_COMP_LZ4,			/* lz4   Compression Used	*/
253	IH_COMP_ZSTD,			/* zstd   Compression Used	*/
254
255	IH_COMP_COUNT,
256};
257
258/**
259 * Phases - images intended for particular U-Boot phases (SPL, etc.)
260 *
261 * @IH_PHASE_NONE: No phase information, can be loaded by any phase
262 * @IH_PHASE_U_BOOT: Only for U-Boot proper
263 * @IH_PHASE_SPL: Only for SPL
264 */
265enum image_phase_t {
266	IH_PHASE_NONE		= 0,
267	IH_PHASE_U_BOOT,
268	IH_PHASE_SPL,
269
270	IH_PHASE_COUNT,
271};
272
273#define IMAGE_PHASE_SHIFT	8
274#define IMAGE_PHASE_MASK	(0xff << IMAGE_PHASE_SHIFT)
275#define IMAGE_TYPE_MASK		0xff
276
277/**
278 * image_ph() - build a composite value combining and type
279 *
280 * @phase: Image phase value
281 * @type: Image type value
282 * Returns: Composite value containing both
283 */
284static inline int image_ph(enum image_phase_t phase, enum image_type_t type)
285{
286	return type | (phase << IMAGE_PHASE_SHIFT);
287}
288
289/**
290 * image_ph_phase() - obtain the phase from a composite phase/type value
291 *
292 * @image_ph_type: Composite value to convert
293 * Returns: Phase value taken from the composite value
294 */
295static inline int image_ph_phase(int image_ph_type)
296{
297	return (image_ph_type & IMAGE_PHASE_MASK) >> IMAGE_PHASE_SHIFT;
298}
299
300/**
301 * image_ph_type() - obtain the type from a composite phase/type value
302 *
303 * @image_ph_type: Composite value to convert
304 * Returns: Type value taken from the composite value
305 */
306static inline int image_ph_type(int image_ph_type)
307{
308	return image_ph_type & IMAGE_TYPE_MASK;
309}
310
311#define LZ4F_MAGIC	0x184D2204	/* LZ4 Magic Number		*/
312#define IH_MAGIC	0x27051956	/* Image Magic Number		*/
313#define IH_NMLEN		32	/* Image Name Length		*/
314
315/* Reused from common.h */
316#define ROUND(a, b)		(((a) + (b) - 1) & ~((b) - 1))
317
318/*
319 * Legacy format image header,
320 * all data in network byte order (aka natural aka bigendian).
321 */
322struct legacy_img_hdr {
323	uint32_t	ih_magic;	/* Image Header Magic Number	*/
324	uint32_t	ih_hcrc;	/* Image Header CRC Checksum	*/
325	uint32_t	ih_time;	/* Image Creation Timestamp	*/
326	uint32_t	ih_size;	/* Image Data Size		*/
327	uint32_t	ih_load;	/* Data	 Load  Address		*/
328	uint32_t	ih_ep;		/* Entry Point Address		*/
329	uint32_t	ih_dcrc;	/* Image Data CRC Checksum	*/
330	uint8_t		ih_os;		/* Operating System		*/
331	uint8_t		ih_arch;	/* CPU architecture		*/
332	uint8_t		ih_type;	/* Image Type			*/
333	uint8_t		ih_comp;	/* Compression Type		*/
334	uint8_t		ih_name[IH_NMLEN];	/* Image Name		*/
335};
336
337struct image_info {
338	ulong		start, end;		/* start/end of blob */
339	ulong		image_start, image_len; /* start of image within blob, len of image */
340	ulong		load;			/* load addr for the image */
341	uint8_t		comp, type, os;		/* compression, type of image, os type */
342	uint8_t		arch;			/* CPU architecture */
343};
344
345/*
346 * Legacy and FIT format headers used by do_bootm() and do_bootm_<os>()
347 * routines.
348 */
349struct bootm_headers {
350	/*
351	 * Legacy os image header, if it is a multi component image
352	 * then boot_get_ramdisk() and get_fdt() will attempt to get
353	 * data from second and third component accordingly.
354	 */
355	struct legacy_img_hdr	*legacy_hdr_os;		/* image header pointer */
356	struct legacy_img_hdr	legacy_hdr_os_copy;	/* header copy */
357	ulong		legacy_hdr_valid;
358
359	/*
360	 * The fit_ members are only used with FIT, but it involves a lot of
361	 * #ifdefs to avoid compiling that code. Since FIT is the standard
362	 * format, even for SPL, this extra data size seems worth it.
363	 */
364	const char	*fit_uname_cfg;	/* configuration node unit name */
365
366	void		*fit_hdr_os;	/* os FIT image header */
367	const char	*fit_uname_os;	/* os subimage node unit name */
368	int		fit_noffset_os;	/* os subimage node offset */
369
370	void		*fit_hdr_rd;	/* init ramdisk FIT image header */
371	const char	*fit_uname_rd;	/* init ramdisk subimage node unit name */
372	int		fit_noffset_rd;	/* init ramdisk subimage node offset */
373
374	void		*fit_hdr_fdt;	/* FDT blob FIT image header */
375	const char	*fit_uname_fdt;	/* FDT blob subimage node unit name */
376	int		fit_noffset_fdt;/* FDT blob subimage node offset */
377
378	void		*fit_hdr_setup;	/* x86 setup FIT image header */
379	const char	*fit_uname_setup; /* x86 setup subimage node name */
380	int		fit_noffset_setup;/* x86 setup subimage node offset */
381
382#ifndef USE_HOSTCC
383	struct image_info	os;		/* os image info */
384	ulong		ep;		/* entry point of OS */
385
386	ulong		rd_start, rd_end;/* ramdisk start/end */
387
388	char		*ft_addr;	/* flat dev tree address */
389	ulong		ft_len;		/* length of flat device tree */
390
391	ulong		initrd_start;
392	ulong		initrd_end;
393	ulong		cmdline_start;
394	ulong		cmdline_end;
395	struct bd_info		*kbd;
396#endif
397
398	int		verify;		/* env_get("verify")[0] != 'n' */
399
400#define BOOTM_STATE_START	0x00000001
401#define BOOTM_STATE_FINDOS	0x00000002
402#define BOOTM_STATE_FINDOTHER	0x00000004
403#define BOOTM_STATE_LOADOS	0x00000008
404#define BOOTM_STATE_RAMDISK	0x00000010
405#define BOOTM_STATE_FDT		0x00000020
406#define BOOTM_STATE_OS_CMDLINE	0x00000040
407#define BOOTM_STATE_OS_BD_T	0x00000080
408#define BOOTM_STATE_OS_PREP	0x00000100
409#define BOOTM_STATE_OS_FAKE_GO	0x00000200	/* 'Almost' run the OS */
410#define BOOTM_STATE_OS_GO	0x00000400
411#define BOOTM_STATE_PRE_LOAD	0x00000800
412#define BOOTM_STATE_MEASURE	0x00001000
413	int		state;
414
415#if defined(CONFIG_LMB) && !defined(USE_HOSTCC)
416	struct lmb	lmb;		/* for memory mgmt */
417#endif
418};
419
420#ifdef CONFIG_LMB
421#define images_lmb(_images)	(&(_images)->lmb)
422#else
423#define images_lmb(_images)	NULL
424#endif
425
426extern struct bootm_headers images;
427
428/*
429 * Some systems (for example LWMON) have very short watchdog periods;
430 * we must make sure to split long operations like memmove() or
431 * checksum calculations into reasonable chunks.
432 */
433#ifndef CHUNKSZ
434#define CHUNKSZ (64 * 1024)
435#endif
436
437#ifndef CHUNKSZ_CRC32
438#define CHUNKSZ_CRC32 (64 * 1024)
439#endif
440
441#ifndef CHUNKSZ_MD5
442#define CHUNKSZ_MD5 (64 * 1024)
443#endif
444
445#ifndef CHUNKSZ_SHA1
446#define CHUNKSZ_SHA1 (64 * 1024)
447#endif
448
449#define uimage_to_cpu(x)		be32_to_cpu(x)
450#define cpu_to_uimage(x)		cpu_to_be32(x)
451
452/*
453 * Translation table for entries of a specific type; used by
454 * get_table_entry_id() and get_table_entry_name().
455 */
456typedef struct table_entry {
457	int	id;
458	char	*sname;		/* short (input) name to find table entry */
459	char	*lname;		/* long (output) name to print for messages */
460} table_entry_t;
461
462/*
463 * Compression type and magic number mapping table.
464 */
465struct comp_magic_map {
466	int		comp_id;
467	const char	*name;
468	unsigned char	magic[2];
469};
470
471/*
472 * get_table_entry_id() scans the translation table trying to find an
473 * entry that matches the given short name. If a matching entry is
474 * found, it's id is returned to the caller.
475 */
476int get_table_entry_id(const table_entry_t *table,
477		const char *table_name, const char *name);
478/*
479 * get_table_entry_name() scans the translation table trying to find
480 * an entry that matches the given id. If a matching entry is found,
481 * its long name is returned to the caller.
482 */
483char *get_table_entry_name(const table_entry_t *table, char *msg, int id);
484
485const char *genimg_get_os_name(uint8_t os);
486
487/**
488 * genimg_get_os_short_name() - get the short name for an OS
489 *
490 * @param os	OS (IH_OS_...)
491 * Return: OS short name, or "unknown" if unknown
492 */
493const char *genimg_get_os_short_name(uint8_t comp);
494
495const char *genimg_get_arch_name(uint8_t arch);
496
497/**
498 * genimg_get_phase_name() - Get the friendly name for a phase
499 *
500 * @phase: Phase value to look up
501 * Returns: Friendly name for the phase (e.g. "U-Boot phase")
502 */
503const char *genimg_get_phase_name(enum image_phase_t phase);
504
505/**
506 * genimg_get_phase_id() - Convert a phase name to an ID
507 *
508 * @name: Name to convert (e.g. "u-boot")
509 * Returns: ID for that phase (e.g. IH_PHASE_U_BOOT)
510 */
511int genimg_get_phase_id(const char *name);
512
513/**
514 * genimg_get_arch_short_name() - get the short name for an architecture
515 *
516 * @param arch	Architecture type (IH_ARCH_...)
517 * Return: architecture short name, or "unknown" if unknown
518 */
519const char *genimg_get_arch_short_name(uint8_t arch);
520
521const char *genimg_get_type_name(uint8_t type);
522
523/**
524 * genimg_get_type_short_name() - get the short name for an image type
525 *
526 * @param type	Image type (IH_TYPE_...)
527 * Return: image short name, or "unknown" if unknown
528 */
529const char *genimg_get_type_short_name(uint8_t type);
530
531const char *genimg_get_comp_name(uint8_t comp);
532
533/**
534 * genimg_get_comp_short_name() - get the short name for a compression method
535 *
536 * @param comp	compression method (IH_COMP_...)
537 * Return: compression method short name, or "unknown" if unknown
538 */
539const char *genimg_get_comp_short_name(uint8_t comp);
540
541/**
542 * genimg_get_cat_name() - Get the name of an item in a category
543 *
544 * @category:	Category of item
545 * @id:		Item ID
546 * Return: name of item, or "Unknown ..." if unknown
547 */
548const char *genimg_get_cat_name(enum ih_category category, uint id);
549
550/**
551 * genimg_get_cat_short_name() - Get the short name of an item in a category
552 *
553 * @category:	Category of item
554 * @id:		Item ID
555 * Return: short name of item, or "Unknown ..." if unknown
556 */
557const char *genimg_get_cat_short_name(enum ih_category category, uint id);
558
559/**
560 * genimg_get_cat_count() - Get the number of items in a category
561 *
562 * @category:	Category to check
563 * Return: the number of items in the category (IH_xxx_COUNT)
564 */
565int genimg_get_cat_count(enum ih_category category);
566
567/**
568 * genimg_get_cat_desc() - Get the description of a category
569 *
570 * @category:	Category to check
571 * Return: the description of a category, e.g. "architecture". This
572 * effectively converts the enum to a string.
573 */
574const char *genimg_get_cat_desc(enum ih_category category);
575
576/**
577 * genimg_cat_has_id() - Check whether a category has an item
578 *
579 * @category:	Category to check
580 * @id:		Item ID
581 * Return: true or false as to whether a category has an item
582 */
583bool genimg_cat_has_id(enum ih_category category, uint id);
584
585int genimg_get_os_id(const char *name);
586int genimg_get_arch_id(const char *name);
587int genimg_get_type_id(const char *name);
588int genimg_get_comp_id(const char *name);
589void genimg_print_size(uint32_t size);
590
591#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
592#define IMAGE_ENABLE_TIMESTAMP 1
593#else
594#define IMAGE_ENABLE_TIMESTAMP 0
595#endif
596void genimg_print_time(time_t timestamp);
597
598/* What to do with a image load address ('load = <> 'in the FIT) */
599enum fit_load_op {
600	FIT_LOAD_IGNORED,	/* Ignore load address */
601	FIT_LOAD_OPTIONAL,	/* Can be provided, but optional */
602	FIT_LOAD_OPTIONAL_NON_ZERO,	/* Optional, a value of 0 is ignored */
603	FIT_LOAD_REQUIRED,	/* Must be provided */
604};
605
606int boot_get_setup(struct bootm_headers *images, uint8_t arch, ulong *setup_start,
607		   ulong *setup_len);
608
609/* Image format types, returned by _get_format() routine */
610#define IMAGE_FORMAT_INVALID	0x00
611#define IMAGE_FORMAT_LEGACY	0x01	/* legacy image_header based format */
612#define IMAGE_FORMAT_FIT	0x02	/* new, libfdt based format */
613#define IMAGE_FORMAT_ANDROID	0x03	/* Android boot image */
614
615/**
616 * genimg_get_kernel_addr_fit() - Parse FIT specifier
617 *
618 * Get the real kernel start address from a string which is normally the first
619 * argv of bootm/bootz
620 *
621 * These cases are dealt with, based on the value of @img_addr:
622 *    NULL: Returns image_load_addr, does not set last two args
623 *    "<addr>": Returns address
624 *
625 * For FIT:
626 *    "[<addr>]#<conf>": Returns address (or image_load_addr),
627 *	sets fit_uname_config to config name
628 *    "[<addr>]:<subimage>": Returns address (or image_load_addr) and sets
629 *	fit_uname_kernel to the subimage name
630 *
631 * @img_addr: a string might contain real image address (or NULL)
632 * @fit_uname_config: Returns configuration unit name
633 * @fit_uname_kernel: Returns subimage name
634 *
635 * Returns: kernel start address
636 */
637ulong genimg_get_kernel_addr_fit(const char *const img_addr,
638				 const char **fit_uname_config,
639				 const char **fit_uname_kernel);
640
641ulong genimg_get_kernel_addr(char * const img_addr);
642int genimg_get_format(const void *img_addr);
643int genimg_has_config(struct bootm_headers *images);
644
645/**
646 * boot_get_fpga() - Locate the FPGA image
647 *
648 * @images: Information about images being loaded
649 * Return 0 if OK, non-zero on failure
650 */
651int boot_get_fpga(struct bootm_headers *images);
652
653/**
654 * boot_get_ramdisk() - Locate the ramdisk
655 *
656 * @select: address or name of ramdisk to use, or NULL for default
657 * @images: pointer to the bootm images structure
658 * @arch: expected ramdisk architecture
659 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
660 * @rd_end: pointer to a ulong variable, will hold ramdisk end
661 *
662 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
663 * Currently supported are the following ramdisk sources:
664 *      - multicomponent kernel/ramdisk image,
665 *      - commandline provided address of decicated ramdisk image.
666 *
667 * returns:
668 *     0, if ramdisk image was found and valid, or skiped
669 *     rd_start and rd_end are set to ramdisk start/end addresses if
670 *     ramdisk image is found and valid
671 *
672 *     1, if ramdisk image is found but corrupted, or invalid
673 *     rd_start and rd_end are set to 0 if no ramdisk exists
674 */
675int boot_get_ramdisk(char const *select, struct bootm_headers *images,
676		     uint arch, ulong *rd_start, ulong *rd_end);
677
678/**
679 * boot_get_loadable() - load a list of binaries to memory
680 *
681 * @images: pointer to the bootm images structure
682 *
683 * Takes the given FIT configuration, then looks for a field named
684 * "loadables", a list of elements in the FIT given as strings, e.g.:
685 *   loadables = "linux_kernel", "fdt-2";
686 *
687 * Each string is parsed, loading the corresponding element from the FIT into
688 * memory.  Once placed, no additional actions are taken.
689 *
690 * Return:
691 *     0, if only valid images or no images are found
692 *     error code, if an error occurs during fit_image_load
693 */
694int boot_get_loadable(struct bootm_headers *images);
695
696int boot_get_setup_fit(struct bootm_headers *images, uint8_t arch,
697		       ulong *setup_start, ulong *setup_len);
698
699/**
700 * boot_get_fdt_fit() - load a DTB from a FIT file (applying overlays)
701 *
702 * This deals with all aspects of loading an DTB from a FIT.
703 * The correct base image based on configuration will be selected, and
704 * then any overlays specified will be applied (as present in fit_uname_configp).
705 *
706 * @param images	Boot images structure
707 * @param addr		Address of FIT in memory
708 * @param fit_unamep	On entry this is the requested image name
709 *			(e.g. "kernel") or NULL to use the default. On exit
710 *			points to the selected image name
711 * @param fit_uname_configp	On entry this is the requested configuration
712 *			name (e.g. "conf-1") or NULL to use the default. On
713 *			exit points to the selected configuration name.
714 * @param arch		Expected architecture (IH_ARCH_...)
715 * @param datap		Returns address of loaded image
716 * @param lenp		Returns length of loaded image
717 *
718 * Return: node offset of base image, or -ve error code on error
719 */
720int boot_get_fdt_fit(struct bootm_headers *images, ulong addr,
721		     const char **fit_unamep, const char **fit_uname_configp,
722		     int arch, ulong *datap, ulong *lenp);
723
724/**
725 * fit_image_load() - load an image from a FIT
726 *
727 * This deals with all aspects of loading an image from a FIT, including
728 * selecting the right image based on configuration, verifying it, printing
729 * out progress messages, checking the type/arch/os and optionally copying it
730 * to the right load address.
731 *
732 * The property to look up is defined by image_type.
733 *
734 * @param images	Boot images structure
735 * @param addr		Address of FIT in memory
736 * @param fit_unamep	On entry this is the requested image name
737 *			(e.g. "kernel") or NULL to use the default. On exit
738 *			points to the selected image name
739 * @param fit_uname_configp	On entry this is the requested configuration
740 *			name (e.g. "conf-1") or NULL to use the default. On
741 *			exit points to the selected configuration name.
742 * @param arch		Expected architecture (IH_ARCH_...)
743 * @param image_ph_type	Required image type (IH_TYPE_...). If this is
744 *			IH_TYPE_KERNEL then we allow IH_TYPE_KERNEL_NOLOAD
745 *			also. If a phase is required, this is included also,
746 *			see image_phase_and_type()
747 * @param bootstage_id	ID of starting bootstage to use for progress updates.
748 *			This will be added to the BOOTSTAGE_SUB values when
749 *			calling bootstage_mark()
750 * @param load_op	Decribes what to do with the load address
751 * @param datap		Returns address of loaded image
752 * @param lenp		Returns length of loaded image
753 * Return: node offset of image, or -ve error code on error:
754 *   -ENOEXEC - unsupported architecture
755 *   -ENOENT - could not find image / subimage
756 *   -EACCES - hash, signature or decryptions failure
757 *   -EBADF - invalid OS or image type, or cannot get image load-address
758 *   -EXDEV - memory overwritten / overlap
759 *   -NOEXEC - image decompression error, or invalid FDT
760 */
761int fit_image_load(struct bootm_headers *images, ulong addr,
762		   const char **fit_unamep, const char **fit_uname_configp,
763		   int arch, int image_ph_type, int bootstage_id,
764		   enum fit_load_op load_op, ulong *datap, ulong *lenp);
765
766/**
767 * image_locate_script() - Locate the raw script in an image
768 *
769 * @buf: Address of image
770 * @size: Size of image in bytes
771 * @fit_uname: Node name of FIT image to read
772 * @confname: Node name of FIT config to read
773 * @datap: Returns pointer to raw script on success
774 * @lenp: Returns size of raw script on success
775 * @return 0 if OK, non-zero on error
776 */
777int image_locate_script(void *buf, int size, const char *fit_uname,
778			const char *confname, char **datap, uint *lenp);
779
780/**
781 * fit_get_node_from_config() - Look up an image a FIT by type
782 *
783 * This looks in the selected conf- node (images->fit_uname_cfg) for a
784 * particular image type (e.g. "kernel") and then finds the image that is
785 * referred to.
786 *
787 * For example, for something like:
788 *
789 * images {
790 *	kernel {
791 *		...
792 *	};
793 * };
794 * configurations {
795 *	conf-1 {
796 *		kernel = "kernel";
797 *	};
798 * };
799 *
800 * the function will return the node offset of the kernel@1 node, assuming
801 * that conf-1 is the chosen configuration.
802 *
803 * @param images	Boot images structure
804 * @param prop_name	Property name to look up (FIT_..._PROP)
805 * @param addr		Address of FIT in memory
806 */
807int fit_get_node_from_config(struct bootm_headers *images,
808			     const char *prop_name, ulong addr);
809
810/**
811 * boot_get_fdt() - locate FDT devicetree to use for booting
812 *
813 * @buf: Pointer to image
814 * @select: FDT to select (this is normally argv[2] of the bootm command)
815 * @arch: architecture (IH_ARCH_...)
816 * @images: pointer to the bootm images structure
817 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
818 * @of_size: pointer to a ulong variable, will hold fdt length
819 *
820 * boot_get_fdt() is responsible for finding a valid flat device tree image.
821 * Currently supported are the following FDT sources:
822 *      - multicomponent kernel/ramdisk/FDT image,
823 *      - commandline provided address of decicated FDT image.
824 *
825 * Return:
826 *     0, if fdt image was found and valid, or skipped
827 *     of_flat_tree and of_size are set to fdt start address and length if
828 *     fdt image is found and valid
829 *
830 *     1, if fdt image is found but corrupted
831 *     of_flat_tree and of_size are set to 0 if no fdt exists
832 */
833int boot_get_fdt(void *buf, const char *select, uint arch,
834		 struct bootm_headers *images, char **of_flat_tree,
835		 ulong *of_size);
836
837void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob);
838int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size);
839
840int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
841		  ulong *initrd_start, ulong *initrd_end);
842int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end);
843int boot_get_kbd(struct lmb *lmb, struct bd_info **kbd);
844
845/*******************************************************************/
846/* Legacy format specific code (prefixed with image_) */
847/*******************************************************************/
848static inline uint32_t image_get_header_size(void)
849{
850	return sizeof(struct legacy_img_hdr);
851}
852
853#define image_get_hdr_l(f) \
854	static inline uint32_t image_get_##f(const struct legacy_img_hdr *hdr) \
855	{ \
856		return uimage_to_cpu(hdr->ih_##f); \
857	}
858image_get_hdr_l(magic)		/* image_get_magic */
859image_get_hdr_l(hcrc)		/* image_get_hcrc */
860image_get_hdr_l(time)		/* image_get_time */
861image_get_hdr_l(size)		/* image_get_size */
862image_get_hdr_l(load)		/* image_get_load */
863image_get_hdr_l(ep)		/* image_get_ep */
864image_get_hdr_l(dcrc)		/* image_get_dcrc */
865
866#define image_get_hdr_b(f) \
867	static inline uint8_t image_get_##f(const struct legacy_img_hdr *hdr) \
868	{ \
869		return hdr->ih_##f; \
870	}
871image_get_hdr_b(os)		/* image_get_os */
872image_get_hdr_b(arch)		/* image_get_arch */
873image_get_hdr_b(type)		/* image_get_type */
874image_get_hdr_b(comp)		/* image_get_comp */
875
876static inline char *image_get_name(const struct legacy_img_hdr *hdr)
877{
878	return (char *)hdr->ih_name;
879}
880
881static inline uint32_t image_get_data_size(const struct legacy_img_hdr *hdr)
882{
883	return image_get_size(hdr);
884}
885
886/**
887 * image_get_data - get image payload start address
888 * @hdr: image header
889 *
890 * image_get_data() returns address of the image payload. For single
891 * component images it is image data start. For multi component
892 * images it points to the null terminated table of sub-images sizes.
893 *
894 * returns:
895 *     image payload data start address
896 */
897static inline ulong image_get_data(const struct legacy_img_hdr *hdr)
898{
899	return ((ulong)hdr + image_get_header_size());
900}
901
902static inline uint32_t image_get_image_size(const struct legacy_img_hdr *hdr)
903{
904	return (image_get_size(hdr) + image_get_header_size());
905}
906
907static inline ulong image_get_image_end(const struct legacy_img_hdr *hdr)
908{
909	return ((ulong)hdr + image_get_image_size(hdr));
910}
911
912#define image_set_hdr_l(f) \
913	static inline void image_set_##f(struct legacy_img_hdr *hdr, uint32_t val) \
914	{ \
915		hdr->ih_##f = cpu_to_uimage(val); \
916	}
917image_set_hdr_l(magic)		/* image_set_magic */
918image_set_hdr_l(hcrc)		/* image_set_hcrc */
919image_set_hdr_l(time)		/* image_set_time */
920image_set_hdr_l(size)		/* image_set_size */
921image_set_hdr_l(load)		/* image_set_load */
922image_set_hdr_l(ep)		/* image_set_ep */
923image_set_hdr_l(dcrc)		/* image_set_dcrc */
924
925#define image_set_hdr_b(f) \
926	static inline void image_set_##f(struct legacy_img_hdr *hdr, uint8_t val) \
927	{ \
928		hdr->ih_##f = val; \
929	}
930image_set_hdr_b(os)		/* image_set_os */
931image_set_hdr_b(arch)		/* image_set_arch */
932image_set_hdr_b(type)		/* image_set_type */
933image_set_hdr_b(comp)		/* image_set_comp */
934
935static inline void image_set_name(struct legacy_img_hdr *hdr, const char *name)
936{
937	/*
938	 * This is equivalent to: strncpy(image_get_name(hdr), name, IH_NMLEN);
939	 *
940	 * Use the tortured code below to avoid a warning with gcc 12. We do not
941	 * want to include a nul terminator if the name is of length IH_NMLEN
942	 */
943	memcpy(image_get_name(hdr), name, strnlen(name, IH_NMLEN));
944}
945
946int image_check_hcrc(const struct legacy_img_hdr *hdr);
947int image_check_dcrc(const struct legacy_img_hdr *hdr);
948#ifndef USE_HOSTCC
949phys_addr_t env_get_bootm_low(void);
950phys_size_t env_get_bootm_size(void);
951phys_size_t env_get_bootm_mapsize(void);
952#endif
953void memmove_wd(void *to, void *from, size_t len, ulong chunksz);
954
955static inline int image_check_magic(const struct legacy_img_hdr *hdr)
956{
957	return (image_get_magic(hdr) == IH_MAGIC);
958}
959
960static inline int image_check_type(const struct legacy_img_hdr *hdr, uint8_t type)
961{
962	return (image_get_type(hdr) == type);
963}
964
965static inline int image_check_arch(const struct legacy_img_hdr *hdr, uint8_t arch)
966{
967	/* Let's assume that sandbox can load any architecture */
968	if (!tools_build() && IS_ENABLED(CONFIG_SANDBOX))
969		return true;
970	return (image_get_arch(hdr) == arch) ||
971		(image_get_arch(hdr) == IH_ARCH_ARM && arch == IH_ARCH_ARM64);
972}
973
974static inline int image_check_os(const struct legacy_img_hdr *hdr, uint8_t os)
975{
976	return (image_get_os(hdr) == os);
977}
978
979ulong image_multi_count(const struct legacy_img_hdr *hdr);
980void image_multi_getimg(const struct legacy_img_hdr *hdr, ulong idx,
981			ulong *data, ulong *len);
982
983void image_print_contents(const void *hdr);
984
985#ifndef USE_HOSTCC
986static inline int image_check_target_arch(const struct legacy_img_hdr *hdr)
987{
988#ifndef IH_ARCH_DEFAULT
989# error "please define IH_ARCH_DEFAULT in your arch asm/u-boot.h"
990#endif
991	return image_check_arch(hdr, IH_ARCH_DEFAULT);
992}
993#endif /* USE_HOSTCC */
994
995/**
996 * image_decomp_type() - Find out compression type of an image
997 *
998 * @buf:	Address in U-Boot memory where image is loaded.
999 * @len:	Length of the compressed image.
1000 * Return:	compression type or IH_COMP_NONE if not compressed.
1001 *
1002 * Note: Only following compression types are supported now.
1003 * lzo, lzma, gzip, bzip2
1004 */
1005int image_decomp_type(const unsigned char *buf, ulong len);
1006
1007/**
1008 * image_decomp() - decompress an image
1009 *
1010 * @comp:	Compression algorithm that is used (IH_COMP_...)
1011 * @load:	Destination load address in U-Boot memory
1012 * @image_start Image start address (where we are decompressing from)
1013 * @type:	OS type (IH_OS_...)
1014 * @load_buf:	Place to decompress to
1015 * @image_buf:	Address to decompress from
1016 * @image_len:	Number of bytes in @image_buf to decompress
1017 * @unc_len:	Available space for decompression
1018 * Return: 0 if OK, -ve on error (BOOTM_ERR_...)
1019 */
1020int image_decomp(int comp, ulong load, ulong image_start, int type,
1021		 void *load_buf, void *image_buf, ulong image_len,
1022		 uint unc_len, ulong *load_end);
1023
1024/**
1025 * Set up properties in the FDT
1026 *
1027 * This sets up properties in the FDT that is to be passed to linux.
1028 *
1029 * @images:	Images information
1030 * @blob:	FDT to update
1031 * @lmb:	Points to logical memory block structure
1032 * Return: 0 if ok, <0 on failure
1033 */
1034int image_setup_libfdt(struct bootm_headers *images, void *blob,
1035		       struct lmb *lmb);
1036
1037/**
1038 * Set up the FDT to use for booting a kernel
1039 *
1040 * This performs ramdisk setup, sets up the FDT if required, and adds
1041 * paramters to the FDT if libfdt is available.
1042 *
1043 * @param images	Images information
1044 * Return: 0 if ok, <0 on failure
1045 */
1046int image_setup_linux(struct bootm_headers *images);
1047
1048/**
1049 * bootz_setup() - Extract stat and size of a Linux xImage
1050 *
1051 * @image: Address of image
1052 * @start: Returns start address of image
1053 * @end : Returns end address of image
1054 * Return: 0 if OK, 1 if the image was not recognised
1055 */
1056int bootz_setup(ulong image, ulong *start, ulong *end);
1057
1058/**
1059 * Return the correct start address and size of a Linux aarch64 Image.
1060 *
1061 * @image: Address of image
1062 * @start: Returns start address of image
1063 * @size : Returns size image
1064 * @force_reloc: Ignore image->ep field, always place image to RAM start
1065 * Return: 0 if OK, 1 if the image was not recognised
1066 */
1067int booti_setup(ulong image, ulong *relocated_addr, ulong *size,
1068		bool force_reloc);
1069
1070/*******************************************************************/
1071/* New uImage format specific code (prefixed with fit_) */
1072/*******************************************************************/
1073
1074#define FIT_IMAGES_PATH		"/images"
1075#define FIT_CONFS_PATH		"/configurations"
1076
1077/* hash/signature/key node */
1078#define FIT_HASH_NODENAME	"hash"
1079#define FIT_ALGO_PROP		"algo"
1080#define FIT_VALUE_PROP		"value"
1081#define FIT_IGNORE_PROP		"uboot-ignore"
1082#define FIT_SIG_NODENAME	"signature"
1083#define FIT_KEY_REQUIRED	"required"
1084#define FIT_KEY_HINT		"key-name-hint"
1085
1086/* cipher node */
1087#define FIT_CIPHER_NODENAME	"cipher"
1088#define FIT_ALGO_PROP		"algo"
1089
1090/* image node */
1091#define FIT_DATA_PROP		"data"
1092#define FIT_DATA_POSITION_PROP	"data-position"
1093#define FIT_DATA_OFFSET_PROP	"data-offset"
1094#define FIT_DATA_SIZE_PROP	"data-size"
1095#define FIT_TIMESTAMP_PROP	"timestamp"
1096#define FIT_DESC_PROP		"description"
1097#define FIT_ARCH_PROP		"arch"
1098#define FIT_TYPE_PROP		"type"
1099#define FIT_OS_PROP		"os"
1100#define FIT_COMP_PROP		"compression"
1101#define FIT_ENTRY_PROP		"entry"
1102#define FIT_LOAD_PROP		"load"
1103
1104/* configuration node */
1105#define FIT_KERNEL_PROP		"kernel"
1106#define FIT_RAMDISK_PROP	"ramdisk"
1107#define FIT_FDT_PROP		"fdt"
1108#define FIT_LOADABLE_PROP	"loadables"
1109#define FIT_DEFAULT_PROP	"default"
1110#define FIT_SETUP_PROP		"setup"
1111#define FIT_FPGA_PROP		"fpga"
1112#define FIT_FIRMWARE_PROP	"firmware"
1113#define FIT_STANDALONE_PROP	"standalone"
1114#define FIT_SCRIPT_PROP		"script"
1115#define FIT_PHASE_PROP		"phase"
1116
1117#define FIT_MAX_HASH_LEN	HASH_MAX_DIGEST_SIZE
1118
1119/* cmdline argument format parsing */
1120int fit_parse_conf(const char *spec, ulong addr_curr,
1121		ulong *addr, const char **conf_name);
1122int fit_parse_subimage(const char *spec, ulong addr_curr,
1123		ulong *addr, const char **image_name);
1124
1125int fit_get_subimage_count(const void *fit, int images_noffset);
1126void fit_print_contents(const void *fit);
1127void fit_image_print(const void *fit, int noffset, const char *p);
1128
1129/**
1130 * fit_get_end - get FIT image size
1131 * @fit: pointer to the FIT format image header
1132 *
1133 * returns:
1134 *     size of the FIT image (blob) in memory
1135 */
1136static inline ulong fit_get_size(const void *fit)
1137{
1138	return fdt_totalsize(fit);
1139}
1140
1141/**
1142 * fit_get_end - get FIT image end
1143 * @fit: pointer to the FIT format image header
1144 *
1145 * returns:
1146 *     end address of the FIT image (blob) in memory
1147 */
1148ulong fit_get_end(const void *fit);
1149
1150/**
1151 * fit_get_name - get FIT node name
1152 * @fit: pointer to the FIT format image header
1153 *
1154 * returns:
1155 *     NULL, on error
1156 *     pointer to node name, on success
1157 */
1158static inline const char *fit_get_name(const void *fit_hdr,
1159		int noffset, int *len)
1160{
1161	return fdt_get_name(fit_hdr, noffset, len);
1162}
1163
1164int fit_get_desc(const void *fit, int noffset, char **desc);
1165int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp);
1166
1167int fit_image_get_node(const void *fit, const char *image_uname);
1168int fit_image_get_os(const void *fit, int noffset, uint8_t *os);
1169int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch);
1170int fit_image_get_type(const void *fit, int noffset, uint8_t *type);
1171int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp);
1172int fit_image_get_load(const void *fit, int noffset, ulong *load);
1173int fit_image_get_entry(const void *fit, int noffset, ulong *entry);
1174int fit_image_get_data(const void *fit, int noffset,
1175				const void **data, size_t *size);
1176int fit_image_get_data_offset(const void *fit, int noffset, int *data_offset);
1177int fit_image_get_data_position(const void *fit, int noffset,
1178				int *data_position);
1179int fit_image_get_data_size(const void *fit, int noffset, int *data_size);
1180int fit_image_get_data_size_unciphered(const void *fit, int noffset,
1181				       size_t *data_size);
1182int fit_image_get_data_and_size(const void *fit, int noffset,
1183				const void **data, size_t *size);
1184
1185/**
1186 * fit_get_data_node() - Get verified image data for an image
1187 * @fit: Pointer to the FIT format image header
1188 * @image_uname: The name of the image node
1189 * @data: A pointer which will be filled with the location of the image data
1190 * @size: A pointer which will be filled with the size of the image data
1191 *
1192 * This function looks up the location and size of an image specified by its
1193 * name. For example, if you had a FIT like::
1194 *
1195 *     images {
1196 *         my-firmware {
1197 *             ...
1198 *	   };
1199 *      };
1200 *
1201 * Then you could look up the data location and size of the my-firmware image
1202 * by calling this function with @image_uname set to "my-firmware". This
1203 * function also verifies the image data (if enabled) before returning. The
1204 * image description is printed out on success. @data and @size will not be
1205 * modified on faulure.
1206 *
1207 * Return:
1208 * * 0 on success
1209 * * -EINVAL if the image could not be verified
1210 * * -ENOENT if there was a problem getting the data/size
1211 * * Another negative error if there was a problem looking up the image node.
1212 */
1213int fit_get_data_node(const void *fit, const char *image_uname,
1214		      const void **data, size_t *size);
1215
1216/**
1217 * fit_get_data_conf_prop() - Get verified image data for a property in /conf
1218 * @fit: Pointer to the FIT format image header
1219 * @prop_name: The name of the property in /conf referencing the image
1220 * @data: A pointer which will be filled with the location of the image data
1221 * @size: A pointer which will be filled with the size of the image data
1222 *
1223 * This function looks up the location and size of an image specified by a
1224 * property in /conf. For example, if you had a FIT like::
1225 *
1226 *     images {
1227 *         my-firmware {
1228 *             ...
1229 *	   };
1230 *      };
1231 *
1232 *      configurations {
1233 *          default = "conf-1";
1234 *          conf-1 {
1235 *              some-firmware = "my-firmware";
1236 *          };
1237 *      };
1238 *
1239 * Then you could look up the data location and size of the my-firmware image
1240 * by calling this function with @prop_name set to "some-firmware". This
1241 * function also verifies the image data (if enabled) before returning. The
1242 * image description is printed out on success. @data and @size will not be
1243 * modified on faulure.
1244 *
1245 * Return:
1246 * * 0 on success
1247 * * -EINVAL if the image could not be verified
1248 * * -ENOENT if there was a problem getting the data/size
1249 * * Another negative error if there was a problem looking up the configuration
1250 *   or image node.
1251 */
1252int fit_get_data_conf_prop(const void *fit, const char *prop_name,
1253			   const void **data, size_t *size);
1254
1255int fit_image_hash_get_algo(const void *fit, int noffset, const char **algo);
1256int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
1257				int *value_len);
1258
1259int fit_set_timestamp(void *fit, int noffset, time_t timestamp);
1260
1261/**
1262 * fit_pre_load_data() - add public key to fdt blob
1263 *
1264 * Adds public key to the node pre load.
1265 *
1266 * @keydir:	Directory containing keys
1267 * @keydest:	FDT blob to write public key
1268 * @fit:	Pointer to the FIT format image header
1269 *
1270 * returns:
1271 *	0, on success
1272 *	< 0, on failure
1273 */
1274int fit_pre_load_data(const char *keydir, void *keydest, void *fit);
1275
1276int fit_cipher_data(const char *keydir, void *keydest, void *fit,
1277		    const char *comment, int require_keys,
1278		    const char *engine_id, const char *cmdname);
1279
1280#define NODE_MAX_NAME_LEN	80
1281
1282/**
1283 * struct image_summary  - Provides information about signing info added
1284 *
1285 * @sig_offset: Offset of the node in the blob devicetree where the signature
1286 *	was wriiten
1287 * @sig_path: Path to @sig_offset
1288 * @keydest_offset: Offset of the node in the keydest devicetree where the
1289 *	public key was written (-1 if none)
1290 * @keydest_path: Path to @keydest_offset
1291 */
1292struct image_summary {
1293	int sig_offset;
1294	char sig_path[NODE_MAX_NAME_LEN];
1295	int keydest_offset;
1296	char keydest_path[NODE_MAX_NAME_LEN];
1297};
1298
1299/**
1300 * fit_add_verification_data() - add verification data to FIT image nodes
1301 *
1302 * @keydir:	Directory containing keys
1303 * @kwydest:	FDT blob to write public key information to (NULL if none)
1304 * @fit:	Pointer to the FIT format image header
1305 * @comment:	Comment to add to signature nodes
1306 * @require_keys: Mark all keys as 'required'
1307 * @engine_id:	Engine to use for signing
1308 * @cmdname:	Command name used when reporting errors
1309 * @algo_name:	Algorithm name, or NULL if to be read from FIT
1310 * @summary:	Returns information about what data was written
1311 *
1312 * Adds hash values for all component images in the FIT blob.
1313 * Hashes are calculated for all component images which have hash subnodes
1314 * with algorithm property set to one of the supported hash algorithms.
1315 *
1316 * Also add signatures if signature nodes are present.
1317 *
1318 * returns
1319 *     0, on success
1320 *     libfdt error code, on failure
1321 */
1322int fit_add_verification_data(const char *keydir, const char *keyfile,
1323			      void *keydest, void *fit, const char *comment,
1324			      int require_keys, const char *engine_id,
1325			      const char *cmdname, const char *algo_name,
1326			      struct image_summary *summary);
1327
1328/**
1329 * fit_image_verify_with_data() - Verify an image with given data
1330 *
1331 * @fit:	Pointer to the FIT format image header
1332 * @image_offset: Offset in @fit of image to verify
1333 * @key_blob:	FDT containing public keys
1334 * @data:	Image data to verify
1335 * @size:	Size of image data
1336 */
1337int fit_image_verify_with_data(const void *fit, int image_noffset,
1338			       const void *key_blob, const void *data,
1339			       size_t size);
1340
1341int fit_image_verify(const void *fit, int noffset);
1342#if CONFIG_IS_ENABLED(FIT_SIGNATURE)
1343int fit_config_verify(const void *fit, int conf_noffset);
1344#else
1345static inline int fit_config_verify(const void *fit, int conf_noffset)
1346{
1347	return 0;
1348}
1349#endif
1350int fit_all_image_verify(const void *fit);
1351int fit_config_decrypt(const void *fit, int conf_noffset);
1352int fit_image_check_os(const void *fit, int noffset, uint8_t os);
1353int fit_image_check_arch(const void *fit, int noffset, uint8_t arch);
1354int fit_image_check_type(const void *fit, int noffset, uint8_t type);
1355int fit_image_check_comp(const void *fit, int noffset, uint8_t comp);
1356
1357/**
1358 * fit_check_format() - Check that the FIT is valid
1359 *
1360 * This performs various checks on the FIT to make sure it is suitable for
1361 * use, looking for mandatory properties, nodes, etc.
1362 *
1363 * If FIT_FULL_CHECK is enabled, it also runs it through libfdt to make
1364 * sure that there are no strange tags or broken nodes in the FIT.
1365 *
1366 * @fit: pointer to the FIT format image header
1367 * Return: 0 if OK, -ENOEXEC if not an FDT file, -EINVAL if the full FDT check
1368 *	failed (e.g. due to bad structure), -ENOMSG if the description is
1369 *	missing, -EBADMSG if the timestamp is missing, -ENOENT if the /images
1370 *	path is missing
1371 */
1372int fit_check_format(const void *fit, ulong size);
1373
1374/**
1375 * fit_conf_find_compat() - find most compatible configuration
1376 * @fit: pointer to the FIT format image header
1377 * @fdt: pointer to the device tree to compare against
1378 *
1379 * Attempts to find the configuration whose fdt is the most compatible with the
1380 * passed in device tree
1381 *
1382 * Example::
1383 *
1384 *    / o image-tree
1385 *      |-o images
1386 *      | |-o fdt-1
1387 *      | |-o fdt-2
1388 *      |
1389 *      |-o configurations
1390 *        |-o config-1
1391 *        | |-fdt = fdt-1
1392 *        |
1393 *        |-o config-2
1394 *          |-fdt = fdt-2
1395 *
1396 *    / o U-Boot fdt
1397 *      |-compatible = "foo,bar", "bim,bam"
1398 *
1399 *    / o kernel fdt1
1400 *      |-compatible = "foo,bar",
1401 *
1402 *    / o kernel fdt2
1403 *      |-compatible = "bim,bam", "baz,biz"
1404 *
1405 * Configuration 1 would be picked because the first string in U-Boot's
1406 * compatible list, "foo,bar", matches a compatible string in the root of fdt1.
1407 * "bim,bam" in fdt2 matches the second string which isn't as good as fdt1.
1408 *
1409 * As an optimization, the compatible property from the FDT's root node can be
1410 * copied into the configuration node in the FIT image. This is required to
1411 * match configurations with compressed FDTs.
1412 *
1413 * Returns: offset to the configuration to use if one was found, -1 otherwise
1414 */
1415int fit_conf_find_compat(const void *fit, const void *fdt);
1416
1417/**
1418 * fit_conf_get_node - get node offset for configuration of a given unit name
1419 * @fit: pointer to the FIT format image header
1420 * @conf_uname: configuration node unit name (NULL to use default)
1421 *
1422 * fit_conf_get_node() finds a configuration (within the '/configurations'
1423 * parent node) of a provided unit name. If configuration is found its node
1424 * offset is returned to the caller.
1425 *
1426 * When NULL is provided in second argument fit_conf_get_node() will search
1427 * for a default configuration node instead. Default configuration node unit
1428 * name is retrieved from FIT_DEFAULT_PROP property of the '/configurations'
1429 * node.
1430 *
1431 * returns:
1432 *     configuration node offset when found (>=0)
1433 *     negative number on failure (FDT_ERR_* code)
1434 */
1435int fit_conf_get_node(const void *fit, const char *conf_uname);
1436
1437int fit_conf_get_prop_node_count(const void *fit, int noffset,
1438		const char *prop_name);
1439int fit_conf_get_prop_node_index(const void *fit, int noffset,
1440		const char *prop_name, int index);
1441
1442/**
1443 * fit_conf_get_prop_node() - Get node refered to by a configuration
1444 * @fit:	FIT to check
1445 * @noffset:	Offset of conf@xxx node to check
1446 * @prop_name:	Property to read from the conf node
1447 * @phase:	Image phase to use, IH_PHASE_NONE for any
1448 *
1449 * The conf- nodes contain references to other nodes, using properties
1450 * like 'kernel = "kernel"'. Given such a property name (e.g. "kernel"),
1451 * return the offset of the node referred to (e.g. offset of node
1452 * "/images/kernel".
1453 */
1454int fit_conf_get_prop_node(const void *fit, int noffset, const char *prop_name,
1455			   enum image_phase_t phase);
1456
1457int fit_check_ramdisk(const void *fit, int os_noffset,
1458		uint8_t arch, int verify);
1459
1460int calculate_hash(const void *data, int data_len, const char *algo,
1461			uint8_t *value, int *value_len);
1462
1463/*
1464 * At present we only support signing on the host, and verification on the
1465 * device
1466 */
1467#if defined(USE_HOSTCC)
1468# if CONFIG_IS_ENABLED(FIT_SIGNATURE)
1469#  define IMAGE_ENABLE_SIGN	1
1470#  define FIT_IMAGE_ENABLE_VERIFY	1
1471#  include <openssl/evp.h>
1472# else
1473#  define IMAGE_ENABLE_SIGN	0
1474#  define FIT_IMAGE_ENABLE_VERIFY	0
1475# endif
1476#else
1477# define IMAGE_ENABLE_SIGN	0
1478# define FIT_IMAGE_ENABLE_VERIFY	CONFIG_IS_ENABLED(FIT_SIGNATURE)
1479#endif
1480
1481#ifdef USE_HOSTCC
1482void *image_get_host_blob(void);
1483void image_set_host_blob(void *host_blob);
1484# define gd_fdt_blob()		image_get_host_blob()
1485#else
1486# define gd_fdt_blob()		(gd->fdt_blob)
1487#endif
1488
1489/*
1490 * Information passed to the signing routines
1491 *
1492 * Either 'keydir',  'keyname', or 'keyfile' can be NULL. However, either
1493 * 'keyfile', or both 'keydir' and 'keyname' should have valid values. If
1494 * neither are valid, some operations might fail with EINVAL.
1495 */
1496struct image_sign_info {
1497	const char *keydir;		/* Directory conaining keys */
1498	const char *keyname;		/* Name of key to use */
1499	const char *keyfile;		/* Filename of private or public key */
1500	const void *fit;		/* Pointer to FIT blob */
1501	int node_offset;		/* Offset of signature node */
1502	const char *name;		/* Algorithm name */
1503	struct checksum_algo *checksum;	/* Checksum algorithm information */
1504	struct padding_algo *padding;	/* Padding algorithm information */
1505	struct crypto_algo *crypto;	/* Crypto algorithm information */
1506	const void *fdt_blob;		/* FDT containing public keys */
1507	int required_keynode;		/* Node offset of key to use: -1=any */
1508	const char *require_keys;	/* Value for 'required' property */
1509	const char *engine_id;		/* Engine to use for signing */
1510	/*
1511	 * Note: the following two fields are always valid even w/o
1512	 * RSA_VERIFY_WITH_PKEY in order to make sure this structure is
1513	 * the same on target and host. Otherwise, vboot test may fail.
1514	 */
1515	const void *key;		/* Pointer to public key in DER */
1516	int keylen;			/* Length of public key */
1517};
1518
1519/* A part of an image, used for hashing */
1520struct image_region {
1521	const void *data;
1522	int size;
1523};
1524
1525struct checksum_algo {
1526	const char *name;
1527	const int checksum_len;
1528	const int der_len;
1529	const uint8_t *der_prefix;
1530#if IMAGE_ENABLE_SIGN
1531	const EVP_MD *(*calculate_sign)(void);
1532#endif
1533	int (*calculate)(const char *name,
1534			 const struct image_region *region,
1535			 int region_count, uint8_t *checksum);
1536};
1537
1538struct crypto_algo {
1539	const char *name;		/* Name of algorithm */
1540	const int key_len;
1541
1542	/**
1543	 * sign() - calculate and return signature for given input data
1544	 *
1545	 * @info:	Specifies key and FIT information
1546	 * @data:	Pointer to the input data
1547	 * @data_len:	Data length
1548	 * @sigp:	Set to an allocated buffer holding the signature
1549	 * @sig_len:	Set to length of the calculated hash
1550	 *
1551	 * This computes input data signature according to selected algorithm.
1552	 * Resulting signature value is placed in an allocated buffer, the
1553	 * pointer is returned as *sigp. The length of the calculated
1554	 * signature is returned via the sig_len pointer argument. The caller
1555	 * should free *sigp.
1556	 *
1557	 * @return: 0, on success, -ve on error
1558	 */
1559	int (*sign)(struct image_sign_info *info,
1560		    const struct image_region region[],
1561		    int region_count, uint8_t **sigp, uint *sig_len);
1562
1563	/**
1564	 * add_verify_data() - Add verification information to FDT
1565	 *
1566	 * Add public key information to the FDT node, suitable for
1567	 * verification at run-time. The information added depends on the
1568	 * algorithm being used.
1569	 *
1570	 * @info:	Specifies key and FIT information
1571	 * @keydest:	Destination FDT blob for public key data
1572	 * @return: node offset within the FDT blob where the data was written,
1573	 *	or -ve on error
1574	 */
1575	int (*add_verify_data)(struct image_sign_info *info, void *keydest);
1576
1577	/**
1578	 * verify() - Verify a signature against some data
1579	 *
1580	 * @info:	Specifies key and FIT information
1581	 * @data:	Pointer to the input data
1582	 * @data_len:	Data length
1583	 * @sig:	Signature
1584	 * @sig_len:	Number of bytes in signature
1585	 * @return 0 if verified, -ve on error
1586	 */
1587	int (*verify)(struct image_sign_info *info,
1588		      const struct image_region region[], int region_count,
1589		      uint8_t *sig, uint sig_len);
1590};
1591
1592/* Declare a new U-Boot crypto algorithm handler */
1593#define U_BOOT_CRYPTO_ALGO(__name)						\
1594ll_entry_declare(struct crypto_algo, __name, cryptos)
1595
1596struct padding_algo {
1597	const char *name;
1598	int (*verify)(struct image_sign_info *info,
1599		      const uint8_t *pad, int pad_len,
1600		      const uint8_t *hash, int hash_len);
1601};
1602
1603/* Declare a new U-Boot padding algorithm handler */
1604#define U_BOOT_PADDING_ALGO(__name)						\
1605ll_entry_declare(struct padding_algo, __name, paddings)
1606
1607/**
1608 * image_get_checksum_algo() - Look up a checksum algorithm
1609 *
1610 * @param full_name	Name of algorithm in the form "checksum,crypto"
1611 * Return: pointer to algorithm information, or NULL if not found
1612 */
1613struct checksum_algo *image_get_checksum_algo(const char *full_name);
1614
1615/**
1616 * image_get_crypto_algo() - Look up a cryptosystem algorithm
1617 *
1618 * @param full_name	Name of algorithm in the form "checksum,crypto"
1619 * Return: pointer to algorithm information, or NULL if not found
1620 */
1621struct crypto_algo *image_get_crypto_algo(const char *full_name);
1622
1623/**
1624 * image_get_padding_algo() - Look up a padding algorithm
1625 *
1626 * @param name		Name of padding algorithm
1627 * Return: pointer to algorithm information, or NULL if not found
1628 */
1629struct padding_algo *image_get_padding_algo(const char *name);
1630
1631#define IMAGE_PRE_LOAD_SIG_MAGIC		0x55425348
1632#define IMAGE_PRE_LOAD_SIG_OFFSET_MAGIC		0
1633#define IMAGE_PRE_LOAD_SIG_OFFSET_IMG_LEN	4
1634#define IMAGE_PRE_LOAD_SIG_OFFSET_SIG		8
1635
1636#define IMAGE_PRE_LOAD_PATH			"/image/pre-load/sig"
1637#define IMAGE_PRE_LOAD_PROP_ALGO_NAME		"algo-name"
1638#define IMAGE_PRE_LOAD_PROP_PADDING_NAME	"padding-name"
1639#define IMAGE_PRE_LOAD_PROP_SIG_SIZE		"signature-size"
1640#define IMAGE_PRE_LOAD_PROP_PUBLIC_KEY		"public-key"
1641#define IMAGE_PRE_LOAD_PROP_MANDATORY		"mandatory"
1642
1643/*
1644 * Information in the device-tree about the signature in the header
1645 */
1646struct image_sig_info {
1647	char *algo_name;	/* Name of the algo (eg: sha256,rsa2048) */
1648	char *padding_name;	/* Name of the padding */
1649	uint8_t *key;		/* Public signature key */
1650	int key_len;		/* Length of the public key */
1651	uint32_t sig_size;		/* size of the signature (in the header) */
1652	int mandatory;		/* Set if the signature is mandatory */
1653
1654	struct image_sign_info sig_info; /* Signature info */
1655};
1656
1657/*
1658 * Header of the signature header
1659 */
1660struct sig_header_s {
1661	uint32_t magic;
1662	uint32_t version;
1663	uint32_t header_size;
1664	uint32_t image_size;
1665	uint32_t offset_img_sig;
1666	uint32_t flags;
1667	uint32_t reserved0;
1668	uint32_t reserved1;
1669	uint8_t sha256_img_sig[SHA256_SUM_LEN];
1670};
1671
1672#define SIG_HEADER_LEN			(sizeof(struct sig_header_s))
1673
1674/**
1675 * image_pre_load() - Manage pre load header
1676 *
1677 * Manage the pre-load header before launching the image.
1678 * It checks the signature of the image. It also set the
1679 * variable image_load_offset to skip this header before
1680 * launching the image.
1681 *
1682 * @param addr		Address of the image
1683 * @return: 0 on success, -ve on error
1684 */
1685int image_pre_load(ulong addr);
1686
1687/**
1688 * fit_image_verify_required_sigs() - Verify signatures marked as 'required'
1689 *
1690 * @fit:		FIT to check
1691 * @image_noffset:	Offset of image node to check
1692 * @data:		Image data to check
1693 * @size:		Size of image data
1694 * @key_blob:		FDT containing public keys
1695 * @no_sigsp:		Returns 1 if no signatures were required, and
1696 *			therefore nothing was checked. The caller may wish
1697 *			to fall back to other mechanisms, or refuse to
1698 *			boot.
1699 * Return: 0 if all verified ok, <0 on error
1700 */
1701int fit_image_verify_required_sigs(const void *fit, int image_noffset,
1702		const char *data, size_t size, const void *key_blob,
1703		int *no_sigsp);
1704
1705/**
1706 * fit_image_check_sig() - Check a single image signature node
1707 *
1708 * @fit:		FIT to check
1709 * @noffset:		Offset of signature node to check
1710 * @data:		Image data to check
1711 * @size:		Size of image data
1712 * @keyblob:		Key blob to check (typically the control FDT)
1713 * @required_keynode:	Offset in the keyblob of the required key node,
1714 *			if any. If this is given, then the image wil not
1715 *			pass verification unless that key is used. If this is
1716 *			-1 then any signature will do.
1717 * @err_msgp:		In the event of an error, this will be pointed to a
1718 *			help error string to display to the user.
1719 * Return: 0 if all verified ok, <0 on error
1720 */
1721int fit_image_check_sig(const void *fit, int noffset, const void *data,
1722			size_t size, const void *key_blob, int required_keynode,
1723			char **err_msgp);
1724
1725int fit_image_decrypt_data(const void *fit,
1726			   int image_noffset, int cipher_noffset,
1727			   const void *data, size_t size,
1728			   void **data_unciphered, size_t *size_unciphered);
1729
1730/**
1731 * fit_region_make_list() - Make a list of regions to hash
1732 *
1733 * Given a list of FIT regions (offset, size) provided by libfdt, create
1734 * a list of regions (void *, size) for use by the signature creationg
1735 * and verification code.
1736 *
1737 * @fit:		FIT image to process
1738 * @fdt_regions:	Regions as returned by libfdt
1739 * @count:		Number of regions returned by libfdt
1740 * @region:		Place to put list of regions (NULL to allocate it)
1741 * Return: pointer to list of regions, or NULL if out of memory
1742 */
1743struct image_region *fit_region_make_list(const void *fit,
1744		struct fdt_region *fdt_regions, int count,
1745		struct image_region *region);
1746
1747static inline int fit_image_check_target_arch(const void *fdt, int node)
1748{
1749#ifndef USE_HOSTCC
1750	return fit_image_check_arch(fdt, node, IH_ARCH_DEFAULT);
1751#else
1752	return 0;
1753#endif
1754}
1755
1756/*
1757 * At present we only support ciphering on the host, and unciphering on the
1758 * device
1759 */
1760#if defined(USE_HOSTCC)
1761# if defined(CONFIG_FIT_CIPHER)
1762#  define IMAGE_ENABLE_ENCRYPT	1
1763#  define IMAGE_ENABLE_DECRYPT	1
1764#  include <openssl/evp.h>
1765# else
1766#  define IMAGE_ENABLE_ENCRYPT	0
1767#  define IMAGE_ENABLE_DECRYPT	0
1768# endif
1769#else
1770# define IMAGE_ENABLE_ENCRYPT	0
1771# define IMAGE_ENABLE_DECRYPT	CONFIG_IS_ENABLED(FIT_CIPHER)
1772#endif
1773
1774/* Information passed to the ciphering routines */
1775struct image_cipher_info {
1776	const char *keydir;		/* Directory containing keys */
1777	const char *keyname;		/* Name of key to use */
1778	const char *ivname;		/* Name of IV to use */
1779	const void *fit;		/* Pointer to FIT blob */
1780	int node_noffset;		/* Offset of the cipher node */
1781	const char *name;		/* Algorithm name */
1782	struct cipher_algo *cipher;	/* Cipher algorithm information */
1783	const void *fdt_blob;		/* FDT containing key and IV */
1784	const void *key;		/* Value of the key */
1785	const void *iv;			/* Value of the IV */
1786	size_t size_unciphered;		/* Size of the unciphered data */
1787};
1788
1789struct cipher_algo {
1790	const char *name;		/* Name of algorithm */
1791	int key_len;			/* Length of the key */
1792	int iv_len;			/* Length of the IV */
1793
1794#if IMAGE_ENABLE_ENCRYPT
1795	const EVP_CIPHER * (*calculate_type)(void);
1796#endif
1797
1798	int (*encrypt)(struct image_cipher_info *info,
1799		       const unsigned char *data, int data_len,
1800		       unsigned char **cipher, int *cipher_len);
1801
1802	int (*add_cipher_data)(struct image_cipher_info *info,
1803			       void *keydest, void *fit, int node_noffset);
1804
1805	int (*decrypt)(struct image_cipher_info *info,
1806		       const void *cipher, size_t cipher_len,
1807		       void **data, size_t *data_len);
1808};
1809
1810int fit_image_cipher_get_algo(const void *fit, int noffset, char **algo);
1811
1812struct cipher_algo *image_get_cipher_algo(const char *full_name);
1813struct andr_image_data;
1814
1815/**
1816 * android_image_get_data() - Parse Android boot images
1817 *
1818 * This is used to parse boot and vendor-boot header into
1819 * andr_image_data generic structure.
1820 *
1821 * @boot_hdr: Pointer to boot image header
1822 * @vendor_boot_hdr: Pointer to vendor boot image header
1823 * @data: Pointer to generic boot format structure
1824 * Return: true if succeeded, false otherwise
1825 */
1826bool android_image_get_data(const void *boot_hdr, const void *vendor_boot_hdr,
1827			    struct andr_image_data *data);
1828
1829struct andr_boot_img_hdr_v0;
1830
1831/**
1832 * android_image_get_kernel() - Processes kernel part of Android boot images
1833 *
1834 * This function returns the os image's start address and length. Also,
1835 * it appends the kernel command line to the bootargs env variable.
1836 *
1837 * @hdr:	Pointer to image header, which is at the start
1838 *			of the image.
1839 * @vendor_boot_img : Pointer to vendor boot image header
1840 * @verify:	Checksum verification flag. Currently unimplemented.
1841 * @os_data:	Pointer to a ulong variable, will hold os data start
1842 *			address.
1843 * @os_len:	Pointer to a ulong variable, will hold os data length.
1844 * Return: Zero, os start address and length on success,
1845 *		otherwise on failure.
1846 */
1847int android_image_get_kernel(const void *hdr,
1848			     const void *vendor_boot_img, int verify,
1849			     ulong *os_data, ulong *os_len);
1850
1851/**
1852 * android_image_get_ramdisk() - Extracts the ramdisk load address and its size
1853 *
1854 * This extracts the load address of the ramdisk and its size
1855 *
1856 * @hdr:	Pointer to image header
1857 * @vendor_boot_img : Pointer to vendor boot image header
1858 * @rd_data:	Pointer to a ulong variable, will hold ramdisk address
1859 * @rd_len:	Pointer to a ulong variable, will hold ramdisk length
1860 * Return: 0 if succeeded, -1 if ramdisk size is 0
1861 */
1862int android_image_get_ramdisk(const void *hdr, const void *vendor_boot_img,
1863			      ulong *rd_data, ulong *rd_len);
1864
1865/**
1866 * android_image_get_second() - Extracts the secondary bootloader address
1867 * and its size
1868 *
1869 * This extracts the address of the secondary bootloader and its size
1870 *
1871 * @hdr:	 Pointer to image header
1872 * @second_data: Pointer to a ulong variable, will hold secondary bootloader address
1873 * @second_len : Pointer to a ulong variable, will hold secondary bootloader length
1874 * Return: 0 if succeeded, -1 if secondary bootloader size is 0
1875 */
1876int android_image_get_second(const void *hdr, ulong *second_data, ulong *second_len);
1877bool android_image_get_dtbo(ulong hdr_addr, ulong *addr, u32 *size);
1878
1879/**
1880 * android_image_get_dtb_by_index() - Get address and size of blob in DTB area.
1881 * @hdr_addr: Boot image header address
1882 * @vendor_boot_img: Pointer to vendor boot image header, which is at the start of the image.
1883 * @index: Index of desired DTB in DTB area (starting from 0)
1884 * @addr: If not NULL, will contain address to specified DTB
1885 * @size: If not NULL, will contain size of specified DTB
1886 *
1887 * Get the address and size of DTB blob by its index in DTB area of Android
1888 * Boot Image in RAM.
1889 *
1890 * Return: true on success or false on error.
1891 */
1892bool android_image_get_dtb_by_index(ulong hdr_addr, ulong vendor_boot_img,
1893				    u32 index, ulong *addr, u32 *size);
1894
1895/**
1896 * android_image_get_end() - Get the end of Android boot image
1897 *
1898 * This returns the end address of Android boot image address
1899 *
1900 * @hdr: Pointer to image header
1901 * @vendor_boot_img : Pointer to vendor boot image header
1902 * Return: The end address of Android boot image
1903 */
1904ulong android_image_get_end(const struct andr_boot_img_hdr_v0 *hdr,
1905			    const void *vendor_boot_img);
1906
1907/**
1908 * android_image_get_kload() - Get the kernel load address
1909 *
1910 * This returns the kernel load address. The load address is extracted
1911 * from the boot image header or the "kernel_addr_r" environment variable
1912 *
1913 * @hdr: Pointer to image header
1914 * @vendor_boot_img : Pointer to vendor boot image header
1915 * Return: The kernel load address
1916 */
1917ulong android_image_get_kload(const void *hdr,
1918			      const void *vendor_boot_img);
1919
1920/**
1921 * android_image_get_kcomp() - Get kernel compression type
1922 *
1923 * This gets the kernel compression type from the boot image header
1924 *
1925 * @hdr: Pointer to image header
1926 * @vendor_boot_img : Pointer to vendor boot image header
1927 * Return: Kernel compression type
1928 */
1929ulong android_image_get_kcomp(const void *hdr,
1930			      const void *vendor_boot_img);
1931
1932/**
1933 * android_print_contents() - Prints out the contents of the Android format image
1934 *
1935 * This formats a multi line Android image contents description.
1936 * The routine prints out Android image properties
1937 *
1938 * @hdr: Pointer to the Android format image header
1939 * Return: no returned results
1940 */
1941void android_print_contents(const struct andr_boot_img_hdr_v0 *hdr);
1942bool android_image_print_dtb_contents(ulong hdr_addr);
1943
1944/**
1945 * is_android_boot_image_header() - Check the magic of boot image
1946 *
1947 * This checks the header of Android boot image and verifies the
1948 * magic is "ANDROID!"
1949 *
1950 * @hdr: Pointer to boot image
1951 * Return: non-zero if the magic is correct, zero otherwise
1952 */
1953bool is_android_boot_image_header(const void *hdr);
1954
1955/**
1956 * is_android_vendor_boot_image_header() - Check the magic of vendor boot image
1957 *
1958 * This checks the header of Android vendor boot image and verifies the magic
1959 * is "VNDRBOOT"
1960 *
1961 * @vendor_boot_img: Pointer to boot image
1962 * Return: non-zero if the magic is correct, zero otherwise
1963 */
1964bool is_android_vendor_boot_image_header(const void *vendor_boot_img);
1965
1966/**
1967 * get_abootimg_addr() - Get Android boot image address
1968 *
1969 * Return: Android boot image address
1970 */
1971ulong get_abootimg_addr(void);
1972
1973/**
1974 * get_avendor_bootimg_addr() - Get Android vendor boot image address
1975 *
1976 * Return: Android vendor boot image address
1977 */
1978ulong get_avendor_bootimg_addr(void);
1979
1980/**
1981 * board_fit_config_name_match() - Check for a matching board name
1982 *
1983 * This is used when SPL loads a FIT containing multiple device tree files
1984 * and wants to work out which one to use. The description of each one is
1985 * passed to this function. The description comes from the 'description' field
1986 * in each (FDT) image node.
1987 *
1988 * @name: Device tree description
1989 * Return: 0 if this device tree should be used, non-zero to try the next
1990 */
1991int board_fit_config_name_match(const char *name);
1992
1993/**
1994 * board_fit_image_post_process() - Do any post-process on FIT binary data
1995 *
1996 * This is used to do any sort of image manipulation, verification, decryption
1997 * etc. in a platform or board specific way. Obviously, anything done here would
1998 * need to be comprehended in how the images were prepared before being injected
1999 * into the FIT creation (i.e. the binary blobs would have been pre-processed
2000 * before being added to the FIT image).
2001 *
2002 * @fit: pointer to fit image
2003 * @node: offset of image node
2004 * @image: pointer to the image start pointer
2005 * @size: pointer to the image size
2006 * Return: no return value (failure should be handled internally)
2007 */
2008void board_fit_image_post_process(const void *fit, int node, void **p_image,
2009				  size_t *p_size);
2010
2011#define FDT_ERROR	((ulong)(-1))
2012
2013ulong fdt_getprop_u32(const void *fdt, int node, const char *prop);
2014
2015/**
2016 * fit_find_config_node() - Find the node for the best DTB in a FIT image
2017 *
2018 * A FIT image contains one or more DTBs. This function parses the
2019 * configurations described in the FIT images and returns the node of
2020 * the first matching DTB. To check if a DTB matches a board, this function
2021 * calls board_fit_config_name_match(). If no matching DTB is found, it returns
2022 * the node described by the default configuration if it exists.
2023 *
2024 * @fdt: pointer to flat device tree
2025 * Return: the node if found, -ve otherwise
2026 */
2027int fit_find_config_node(const void *fdt);
2028
2029/**
2030 * Mapping of image types to function handlers to be invoked on the associated
2031 * loaded images
2032 *
2033 * @type: Type of image, I.E. IH_TYPE_*
2034 * @handler: Function to call on loaded image
2035 */
2036struct fit_loadable_tbl {
2037	int type;
2038	/**
2039	 * handler() - Process a loaded image
2040	 *
2041	 * @data: Pointer to start of loaded image data
2042	 * @size: Size of loaded image data
2043	 */
2044	void (*handler)(ulong data, size_t size);
2045};
2046
2047/*
2048 * Define a FIT loadable image type handler
2049 *
2050 * _type is a valid uimage_type ID as defined in the "Image Type" enum above
2051 * _handler is the handler function to call after this image type is loaded
2052 */
2053#define U_BOOT_FIT_LOADABLE_HANDLER(_type, _handler) \
2054	ll_entry_declare(struct fit_loadable_tbl, _function, fit_loadable) = { \
2055		.type = _type, \
2056		.handler = _handler, \
2057	}
2058
2059/**
2060 * fit_update - update storage with FIT image
2061 * @fit:        Pointer to FIT image
2062 *
2063 * Update firmware on storage using FIT image as input.
2064 * The storage area to be update will be identified by the name
2065 * in FIT and matching it to "dfu_alt_info" variable.
2066 *
2067 * Return:      0 on success, non-zero otherwise
2068 */
2069int fit_update(const void *fit);
2070
2071#endif	/* __IMAGE_H__ */
2072