1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file contains journal replay code. It runs when the file-system is being
13 * mounted and requires no locking.
14 *
15 * The larger is the journal, the longer it takes to scan it, so the longer it
16 * takes to mount UBIFS. This is why the journal has limited size which may be
17 * changed depending on the system requirements. But a larger journal gives
18 * faster I/O speed because it writes the index less frequently. So this is a
19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20 * larger is the journal, the more memory its index may consume.
21 */
22
23#ifdef __UBOOT__
24#include <log.h>
25#include <dm/devres.h>
26#include <linux/compat.h>
27#include <linux/err.h>
28#endif
29#include "ubifs.h"
30#include <linux/bug.h>
31#include <linux/list_sort.h>
32
33/**
34 * struct replay_entry - replay list entry.
35 * @lnum: logical eraseblock number of the node
36 * @offs: node offset
37 * @len: node length
38 * @deletion: non-zero if this entry corresponds to a node deletion
39 * @sqnum: node sequence number
40 * @list: links the replay list
41 * @key: node key
42 * @nm: directory entry name
43 * @old_size: truncation old size
44 * @new_size: truncation new size
45 *
46 * The replay process first scans all buds and builds the replay list, then
47 * sorts the replay list in nodes sequence number order, and then inserts all
48 * the replay entries to the TNC.
49 */
50struct replay_entry {
51	int lnum;
52	int offs;
53	int len;
54	unsigned int deletion:1;
55	unsigned long long sqnum;
56	struct list_head list;
57	union ubifs_key key;
58	union {
59		struct qstr nm;
60		struct {
61			loff_t old_size;
62			loff_t new_size;
63		};
64	};
65};
66
67/**
68 * struct bud_entry - entry in the list of buds to replay.
69 * @list: next bud in the list
70 * @bud: bud description object
71 * @sqnum: reference node sequence number
72 * @free: free bytes in the bud
73 * @dirty: dirty bytes in the bud
74 */
75struct bud_entry {
76	struct list_head list;
77	struct ubifs_bud *bud;
78	unsigned long long sqnum;
79	int free;
80	int dirty;
81};
82
83/**
84 * set_bud_lprops - set free and dirty space used by a bud.
85 * @c: UBIFS file-system description object
86 * @b: bud entry which describes the bud
87 *
88 * This function makes sure the LEB properties of bud @b are set correctly
89 * after the replay. Returns zero in case of success and a negative error code
90 * in case of failure.
91 */
92static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
93{
94	const struct ubifs_lprops *lp;
95	int err = 0, dirty;
96
97	ubifs_get_lprops(c);
98
99	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
100	if (IS_ERR(lp)) {
101		err = PTR_ERR(lp);
102		goto out;
103	}
104
105	dirty = lp->dirty;
106	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
107		/*
108		 * The LEB was added to the journal with a starting offset of
109		 * zero which means the LEB must have been empty. The LEB
110		 * property values should be @lp->free == @c->leb_size and
111		 * @lp->dirty == 0, but that is not the case. The reason is that
112		 * the LEB had been garbage collected before it became the bud,
113		 * and there was not commit inbetween. The garbage collector
114		 * resets the free and dirty space without recording it
115		 * anywhere except lprops, so if there was no commit then
116		 * lprops does not have that information.
117		 *
118		 * We do not need to adjust free space because the scan has told
119		 * us the exact value which is recorded in the replay entry as
120		 * @b->free.
121		 *
122		 * However we do need to subtract from the dirty space the
123		 * amount of space that the garbage collector reclaimed, which
124		 * is the whole LEB minus the amount of space that was free.
125		 */
126		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
127			lp->free, lp->dirty);
128		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
129			lp->free, lp->dirty);
130		dirty -= c->leb_size - lp->free;
131		/*
132		 * If the replay order was perfect the dirty space would now be
133		 * zero. The order is not perfect because the journal heads
134		 * race with each other. This is not a problem but is does mean
135		 * that the dirty space may temporarily exceed c->leb_size
136		 * during the replay.
137		 */
138		if (dirty != 0)
139			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
140				b->bud->lnum, lp->free, lp->dirty, b->free,
141				b->dirty);
142	}
143	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
144			     lp->flags | LPROPS_TAKEN, 0);
145	if (IS_ERR(lp)) {
146		err = PTR_ERR(lp);
147		goto out;
148	}
149
150	/* Make sure the journal head points to the latest bud */
151	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
152				     b->bud->lnum, c->leb_size - b->free);
153
154out:
155	ubifs_release_lprops(c);
156	return err;
157}
158
159/**
160 * set_buds_lprops - set free and dirty space for all replayed buds.
161 * @c: UBIFS file-system description object
162 *
163 * This function sets LEB properties for all replayed buds. Returns zero in
164 * case of success and a negative error code in case of failure.
165 */
166static int set_buds_lprops(struct ubifs_info *c)
167{
168	struct bud_entry *b;
169	int err;
170
171	list_for_each_entry(b, &c->replay_buds, list) {
172		err = set_bud_lprops(c, b);
173		if (err)
174			return err;
175	}
176
177	return 0;
178}
179
180/**
181 * trun_remove_range - apply a replay entry for a truncation to the TNC.
182 * @c: UBIFS file-system description object
183 * @r: replay entry of truncation
184 */
185static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
186{
187	unsigned min_blk, max_blk;
188	union ubifs_key min_key, max_key;
189	ino_t ino;
190
191	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
192	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
193		min_blk += 1;
194
195	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
196	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
197		max_blk -= 1;
198
199	ino = key_inum(c, &r->key);
200
201	data_key_init(c, &min_key, ino, min_blk);
202	data_key_init(c, &max_key, ino, max_blk);
203
204	return ubifs_tnc_remove_range(c, &min_key, &max_key);
205}
206
207/**
208 * apply_replay_entry - apply a replay entry to the TNC.
209 * @c: UBIFS file-system description object
210 * @r: replay entry to apply
211 *
212 * Apply a replay entry to the TNC.
213 */
214static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
215{
216	int err;
217
218	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
219		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
220
221	/* Set c->replay_sqnum to help deal with dangling branches. */
222	c->replay_sqnum = r->sqnum;
223
224	if (is_hash_key(c, &r->key)) {
225		if (r->deletion)
226			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
227		else
228			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
229					       r->len, &r->nm);
230	} else {
231		if (r->deletion)
232			switch (key_type(c, &r->key)) {
233			case UBIFS_INO_KEY:
234			{
235				ino_t inum = key_inum(c, &r->key);
236
237				err = ubifs_tnc_remove_ino(c, inum);
238				break;
239			}
240			case UBIFS_TRUN_KEY:
241				err = trun_remove_range(c, r);
242				break;
243			default:
244				err = ubifs_tnc_remove(c, &r->key);
245				break;
246			}
247		else
248			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
249					    r->len);
250		if (err)
251			return err;
252
253		if (c->need_recovery)
254			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
255						       r->new_size);
256	}
257
258	return err;
259}
260
261/**
262 * replay_entries_cmp - compare 2 replay entries.
263 * @priv: UBIFS file-system description object
264 * @a: first replay entry
265 * @a: second replay entry
266 *
267 * This is a comparios function for 'list_sort()' which compares 2 replay
268 * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
269 * greater sequence number and %-1 otherwise.
270 */
271static int replay_entries_cmp(void *priv, struct list_head *a,
272			      struct list_head *b)
273{
274	struct replay_entry *ra, *rb;
275
276	cond_resched();
277	if (a == b)
278		return 0;
279
280	ra = list_entry(a, struct replay_entry, list);
281	rb = list_entry(b, struct replay_entry, list);
282	ubifs_assert(ra->sqnum != rb->sqnum);
283	if (ra->sqnum > rb->sqnum)
284		return 1;
285	return -1;
286}
287
288/**
289 * apply_replay_list - apply the replay list to the TNC.
290 * @c: UBIFS file-system description object
291 *
292 * Apply all entries in the replay list to the TNC. Returns zero in case of
293 * success and a negative error code in case of failure.
294 */
295static int apply_replay_list(struct ubifs_info *c)
296{
297	struct replay_entry *r;
298	int err;
299
300	list_sort(c, &c->replay_list, &replay_entries_cmp);
301
302	list_for_each_entry(r, &c->replay_list, list) {
303		cond_resched();
304
305		err = apply_replay_entry(c, r);
306		if (err)
307			return err;
308	}
309
310	return 0;
311}
312
313/**
314 * destroy_replay_list - destroy the replay.
315 * @c: UBIFS file-system description object
316 *
317 * Destroy the replay list.
318 */
319static void destroy_replay_list(struct ubifs_info *c)
320{
321	struct replay_entry *r, *tmp;
322
323	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
324		if (is_hash_key(c, &r->key))
325			kfree(r->nm.name);
326		list_del(&r->list);
327		kfree(r);
328	}
329}
330
331/**
332 * insert_node - insert a node to the replay list
333 * @c: UBIFS file-system description object
334 * @lnum: node logical eraseblock number
335 * @offs: node offset
336 * @len: node length
337 * @key: node key
338 * @sqnum: sequence number
339 * @deletion: non-zero if this is a deletion
340 * @used: number of bytes in use in a LEB
341 * @old_size: truncation old size
342 * @new_size: truncation new size
343 *
344 * This function inserts a scanned non-direntry node to the replay list. The
345 * replay list contains @struct replay_entry elements, and we sort this list in
346 * sequence number order before applying it. The replay list is applied at the
347 * very end of the replay process. Since the list is sorted in sequence number
348 * order, the older modifications are applied first. This function returns zero
349 * in case of success and a negative error code in case of failure.
350 */
351static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
352		       union ubifs_key *key, unsigned long long sqnum,
353		       int deletion, int *used, loff_t old_size,
354		       loff_t new_size)
355{
356	struct replay_entry *r;
357
358	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
359
360	if (key_inum(c, key) >= c->highest_inum)
361		c->highest_inum = key_inum(c, key);
362
363	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
364	if (!r)
365		return -ENOMEM;
366
367	if (!deletion)
368		*used += ALIGN(len, 8);
369	r->lnum = lnum;
370	r->offs = offs;
371	r->len = len;
372	r->deletion = !!deletion;
373	r->sqnum = sqnum;
374	key_copy(c, key, &r->key);
375	r->old_size = old_size;
376	r->new_size = new_size;
377
378	list_add_tail(&r->list, &c->replay_list);
379	return 0;
380}
381
382/**
383 * insert_dent - insert a directory entry node into the replay list.
384 * @c: UBIFS file-system description object
385 * @lnum: node logical eraseblock number
386 * @offs: node offset
387 * @len: node length
388 * @key: node key
389 * @name: directory entry name
390 * @nlen: directory entry name length
391 * @sqnum: sequence number
392 * @deletion: non-zero if this is a deletion
393 * @used: number of bytes in use in a LEB
394 *
395 * This function inserts a scanned directory entry node or an extended
396 * attribute entry to the replay list. Returns zero in case of success and a
397 * negative error code in case of failure.
398 */
399static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
400		       union ubifs_key *key, const char *name, int nlen,
401		       unsigned long long sqnum, int deletion, int *used)
402{
403	struct replay_entry *r;
404	char *nbuf;
405
406	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
407	if (key_inum(c, key) >= c->highest_inum)
408		c->highest_inum = key_inum(c, key);
409
410	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
411	if (!r)
412		return -ENOMEM;
413
414	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
415	if (!nbuf) {
416		kfree(r);
417		return -ENOMEM;
418	}
419
420	if (!deletion)
421		*used += ALIGN(len, 8);
422	r->lnum = lnum;
423	r->offs = offs;
424	r->len = len;
425	r->deletion = !!deletion;
426	r->sqnum = sqnum;
427	key_copy(c, key, &r->key);
428	r->nm.len = nlen;
429	memcpy(nbuf, name, nlen);
430	nbuf[nlen] = '\0';
431	r->nm.name = nbuf;
432
433	list_add_tail(&r->list, &c->replay_list);
434	return 0;
435}
436
437/**
438 * ubifs_validate_entry - validate directory or extended attribute entry node.
439 * @c: UBIFS file-system description object
440 * @dent: the node to validate
441 *
442 * This function validates directory or extended attribute entry node @dent.
443 * Returns zero if the node is all right and a %-EINVAL if not.
444 */
445int ubifs_validate_entry(struct ubifs_info *c,
446			 const struct ubifs_dent_node *dent)
447{
448	int key_type = key_type_flash(c, dent->key);
449	int nlen = le16_to_cpu(dent->nlen);
450
451	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
452	    dent->type >= UBIFS_ITYPES_CNT ||
453	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
454	    strnlen(dent->name, nlen) != nlen ||
455	    le64_to_cpu(dent->inum) > MAX_INUM) {
456		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
457			  "directory entry" : "extended attribute entry");
458		return -EINVAL;
459	}
460
461	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
462		ubifs_err(c, "bad key type %d", key_type);
463		return -EINVAL;
464	}
465
466	return 0;
467}
468
469/**
470 * is_last_bud - check if the bud is the last in the journal head.
471 * @c: UBIFS file-system description object
472 * @bud: bud description object
473 *
474 * This function checks if bud @bud is the last bud in its journal head. This
475 * information is then used by 'replay_bud()' to decide whether the bud can
476 * have corruptions or not. Indeed, only last buds can be corrupted by power
477 * cuts. Returns %1 if this is the last bud, and %0 if not.
478 */
479static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
480{
481	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
482	struct ubifs_bud *next;
483	uint32_t data;
484	int err;
485
486	if (list_is_last(&bud->list, &jh->buds_list))
487		return 1;
488
489	/*
490	 * The following is a quirk to make sure we work correctly with UBIFS
491	 * images used with older UBIFS.
492	 *
493	 * Normally, the last bud will be the last in the journal head's list
494	 * of bud. However, there is one exception if the UBIFS image belongs
495	 * to older UBIFS. This is fairly unlikely: one would need to use old
496	 * UBIFS, then have a power cut exactly at the right point, and then
497	 * try to mount this image with new UBIFS.
498	 *
499	 * The exception is: it is possible to have 2 buds A and B, A goes
500	 * before B, and B is the last, bud B is contains no data, and bud A is
501	 * corrupted at the end. The reason is that in older versions when the
502	 * journal code switched the next bud (from A to B), it first added a
503	 * log reference node for the new bud (B), and only after this it
504	 * synchronized the write-buffer of current bud (A). But later this was
505	 * changed and UBIFS started to always synchronize the write-buffer of
506	 * the bud (A) before writing the log reference for the new bud (B).
507	 *
508	 * But because older UBIFS always synchronized A's write-buffer before
509	 * writing to B, we can recognize this exceptional situation but
510	 * checking the contents of bud B - if it is empty, then A can be
511	 * treated as the last and we can recover it.
512	 *
513	 * TODO: remove this piece of code in a couple of years (today it is
514	 * 16.05.2011).
515	 */
516	next = list_entry(bud->list.next, struct ubifs_bud, list);
517	if (!list_is_last(&next->list, &jh->buds_list))
518		return 0;
519
520	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
521	if (err)
522		return 0;
523
524	return data == 0xFFFFFFFF;
525}
526
527/**
528 * replay_bud - replay a bud logical eraseblock.
529 * @c: UBIFS file-system description object
530 * @b: bud entry which describes the bud
531 *
532 * This function replays bud @bud, recovers it if needed, and adds all nodes
533 * from this bud to the replay list. Returns zero in case of success and a
534 * negative error code in case of failure.
535 */
536static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
537{
538	int is_last = is_last_bud(c, b->bud);
539	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
540	struct ubifs_scan_leb *sleb;
541	struct ubifs_scan_node *snod;
542
543	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
544		lnum, b->bud->jhead, offs, is_last);
545
546	if (c->need_recovery && is_last)
547		/*
548		 * Recover only last LEBs in the journal heads, because power
549		 * cuts may cause corruptions only in these LEBs, because only
550		 * these LEBs could possibly be written to at the power cut
551		 * time.
552		 */
553		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
554	else
555		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
556	if (IS_ERR(sleb))
557		return PTR_ERR(sleb);
558
559	/*
560	 * The bud does not have to start from offset zero - the beginning of
561	 * the 'lnum' LEB may contain previously committed data. One of the
562	 * things we have to do in replay is to correctly update lprops with
563	 * newer information about this LEB.
564	 *
565	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
566	 * bytes of free space because it only contain information about
567	 * committed data.
568	 *
569	 * But we know that real amount of free space is 'c->leb_size -
570	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
571	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
572	 * how much of these data are dirty and update lprops with this
573	 * information.
574	 *
575	 * The dirt in that LEB region is comprised of padding nodes, deletion
576	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
577	 * nodes in this LEB. So instead of calculating clean space, we
578	 * calculate used space ('used' variable).
579	 */
580
581	list_for_each_entry(snod, &sleb->nodes, list) {
582		int deletion = 0;
583
584		cond_resched();
585
586		if (snod->sqnum >= SQNUM_WATERMARK) {
587			ubifs_err(c, "file system's life ended");
588			goto out_dump;
589		}
590
591		if (snod->sqnum > c->max_sqnum)
592			c->max_sqnum = snod->sqnum;
593
594		switch (snod->type) {
595		case UBIFS_INO_NODE:
596		{
597			struct ubifs_ino_node *ino = snod->node;
598			loff_t new_size = le64_to_cpu(ino->size);
599
600			if (le32_to_cpu(ino->nlink) == 0)
601				deletion = 1;
602			err = insert_node(c, lnum, snod->offs, snod->len,
603					  &snod->key, snod->sqnum, deletion,
604					  &used, 0, new_size);
605			break;
606		}
607		case UBIFS_DATA_NODE:
608		{
609			struct ubifs_data_node *dn = snod->node;
610			loff_t new_size = le32_to_cpu(dn->size) +
611					  key_block(c, &snod->key) *
612					  UBIFS_BLOCK_SIZE;
613
614			err = insert_node(c, lnum, snod->offs, snod->len,
615					  &snod->key, snod->sqnum, deletion,
616					  &used, 0, new_size);
617			break;
618		}
619		case UBIFS_DENT_NODE:
620		case UBIFS_XENT_NODE:
621		{
622			struct ubifs_dent_node *dent = snod->node;
623
624			err = ubifs_validate_entry(c, dent);
625			if (err)
626				goto out_dump;
627
628			err = insert_dent(c, lnum, snod->offs, snod->len,
629					  &snod->key, dent->name,
630					  le16_to_cpu(dent->nlen), snod->sqnum,
631					  !le64_to_cpu(dent->inum), &used);
632			break;
633		}
634		case UBIFS_TRUN_NODE:
635		{
636			struct ubifs_trun_node *trun = snod->node;
637			loff_t old_size = le64_to_cpu(trun->old_size);
638			loff_t new_size = le64_to_cpu(trun->new_size);
639			union ubifs_key key;
640
641			/* Validate truncation node */
642			if (old_size < 0 || old_size > c->max_inode_sz ||
643			    new_size < 0 || new_size > c->max_inode_sz ||
644			    old_size <= new_size) {
645				ubifs_err(c, "bad truncation node");
646				goto out_dump;
647			}
648
649			/*
650			 * Create a fake truncation key just to use the same
651			 * functions which expect nodes to have keys.
652			 */
653			trun_key_init(c, &key, le32_to_cpu(trun->inum));
654			err = insert_node(c, lnum, snod->offs, snod->len,
655					  &key, snod->sqnum, 1, &used,
656					  old_size, new_size);
657			break;
658		}
659		default:
660			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
661				  snod->type, lnum, snod->offs);
662			err = -EINVAL;
663			goto out_dump;
664		}
665		if (err)
666			goto out;
667	}
668
669	ubifs_assert(ubifs_search_bud(c, lnum));
670	ubifs_assert(sleb->endpt - offs >= used);
671	ubifs_assert(sleb->endpt % c->min_io_size == 0);
672
673	b->dirty = sleb->endpt - offs - used;
674	b->free = c->leb_size - sleb->endpt;
675	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
676		lnum, b->dirty, b->free);
677
678out:
679	ubifs_scan_destroy(sleb);
680	return err;
681
682out_dump:
683	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
684	ubifs_dump_node(c, snod->node);
685	ubifs_scan_destroy(sleb);
686	return -EINVAL;
687}
688
689/**
690 * replay_buds - replay all buds.
691 * @c: UBIFS file-system description object
692 *
693 * This function returns zero in case of success and a negative error code in
694 * case of failure.
695 */
696static int replay_buds(struct ubifs_info *c)
697{
698	struct bud_entry *b;
699	int err;
700	unsigned long long prev_sqnum = 0;
701
702	list_for_each_entry(b, &c->replay_buds, list) {
703		err = replay_bud(c, b);
704		if (err)
705			return err;
706
707		ubifs_assert(b->sqnum > prev_sqnum);
708		prev_sqnum = b->sqnum;
709	}
710
711	return 0;
712}
713
714/**
715 * destroy_bud_list - destroy the list of buds to replay.
716 * @c: UBIFS file-system description object
717 */
718static void destroy_bud_list(struct ubifs_info *c)
719{
720	struct bud_entry *b;
721
722	while (!list_empty(&c->replay_buds)) {
723		b = list_entry(c->replay_buds.next, struct bud_entry, list);
724		list_del(&b->list);
725		kfree(b);
726	}
727}
728
729/**
730 * add_replay_bud - add a bud to the list of buds to replay.
731 * @c: UBIFS file-system description object
732 * @lnum: bud logical eraseblock number to replay
733 * @offs: bud start offset
734 * @jhead: journal head to which this bud belongs
735 * @sqnum: reference node sequence number
736 *
737 * This function returns zero in case of success and a negative error code in
738 * case of failure.
739 */
740static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
741			  unsigned long long sqnum)
742{
743	struct ubifs_bud *bud;
744	struct bud_entry *b;
745
746	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
747
748	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
749	if (!bud)
750		return -ENOMEM;
751
752	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
753	if (!b) {
754		kfree(bud);
755		return -ENOMEM;
756	}
757
758	bud->lnum = lnum;
759	bud->start = offs;
760	bud->jhead = jhead;
761	ubifs_add_bud(c, bud);
762
763	b->bud = bud;
764	b->sqnum = sqnum;
765	list_add_tail(&b->list, &c->replay_buds);
766
767	return 0;
768}
769
770/**
771 * validate_ref - validate a reference node.
772 * @c: UBIFS file-system description object
773 * @ref: the reference node to validate
774 * @ref_lnum: LEB number of the reference node
775 * @ref_offs: reference node offset
776 *
777 * This function returns %1 if a bud reference already exists for the LEB. %0 is
778 * returned if the reference node is new, otherwise %-EINVAL is returned if
779 * validation failed.
780 */
781static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
782{
783	struct ubifs_bud *bud;
784	int lnum = le32_to_cpu(ref->lnum);
785	unsigned int offs = le32_to_cpu(ref->offs);
786	unsigned int jhead = le32_to_cpu(ref->jhead);
787
788	/*
789	 * ref->offs may point to the end of LEB when the journal head points
790	 * to the end of LEB and we write reference node for it during commit.
791	 * So this is why we require 'offs > c->leb_size'.
792	 */
793	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
794	    lnum < c->main_first || offs > c->leb_size ||
795	    offs & (c->min_io_size - 1))
796		return -EINVAL;
797
798	/* Make sure we have not already looked at this bud */
799	bud = ubifs_search_bud(c, lnum);
800	if (bud) {
801		if (bud->jhead == jhead && bud->start <= offs)
802			return 1;
803		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
804		return -EINVAL;
805	}
806
807	return 0;
808}
809
810/**
811 * replay_log_leb - replay a log logical eraseblock.
812 * @c: UBIFS file-system description object
813 * @lnum: log logical eraseblock to replay
814 * @offs: offset to start replaying from
815 * @sbuf: scan buffer
816 *
817 * This function replays a log LEB and returns zero in case of success, %1 if
818 * this is the last LEB in the log, and a negative error code in case of
819 * failure.
820 */
821static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
822{
823	int err;
824	struct ubifs_scan_leb *sleb;
825	struct ubifs_scan_node *snod;
826	const struct ubifs_cs_node *node;
827
828	dbg_mnt("replay log LEB %d:%d", lnum, offs);
829	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
830	if (IS_ERR(sleb)) {
831		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
832			return PTR_ERR(sleb);
833		/*
834		 * Note, the below function will recover this log LEB only if
835		 * it is the last, because unclean reboots can possibly corrupt
836		 * only the tail of the log.
837		 */
838		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
839		if (IS_ERR(sleb))
840			return PTR_ERR(sleb);
841	}
842
843	if (sleb->nodes_cnt == 0) {
844		err = 1;
845		goto out;
846	}
847
848	node = sleb->buf;
849	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
850	if (c->cs_sqnum == 0) {
851		/*
852		 * This is the first log LEB we are looking at, make sure that
853		 * the first node is a commit start node. Also record its
854		 * sequence number so that UBIFS can determine where the log
855		 * ends, because all nodes which were have higher sequence
856		 * numbers.
857		 */
858		if (snod->type != UBIFS_CS_NODE) {
859			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
860				  lnum, offs);
861			goto out_dump;
862		}
863		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
864			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
865				  lnum, offs,
866				  (unsigned long long)le64_to_cpu(node->cmt_no),
867				  c->cmt_no);
868			goto out_dump;
869		}
870
871		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
872		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
873	}
874
875	if (snod->sqnum < c->cs_sqnum) {
876		/*
877		 * This means that we reached end of log and now
878		 * look to the older log data, which was already
879		 * committed but the eraseblock was not erased (UBIFS
880		 * only un-maps it). So this basically means we have to
881		 * exit with "end of log" code.
882		 */
883		err = 1;
884		goto out;
885	}
886
887	/* Make sure the first node sits at offset zero of the LEB */
888	if (snod->offs != 0) {
889		ubifs_err(c, "first node is not at zero offset");
890		goto out_dump;
891	}
892
893	list_for_each_entry(snod, &sleb->nodes, list) {
894		cond_resched();
895
896		if (snod->sqnum >= SQNUM_WATERMARK) {
897			ubifs_err(c, "file system's life ended");
898			goto out_dump;
899		}
900
901		if (snod->sqnum < c->cs_sqnum) {
902			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
903				  snod->sqnum, c->cs_sqnum);
904			goto out_dump;
905		}
906
907		if (snod->sqnum > c->max_sqnum)
908			c->max_sqnum = snod->sqnum;
909
910		switch (snod->type) {
911		case UBIFS_REF_NODE: {
912			const struct ubifs_ref_node *ref = snod->node;
913
914			err = validate_ref(c, ref);
915			if (err == 1)
916				break; /* Already have this bud */
917			if (err)
918				goto out_dump;
919
920			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
921					     le32_to_cpu(ref->offs),
922					     le32_to_cpu(ref->jhead),
923					     snod->sqnum);
924			if (err)
925				goto out;
926
927			break;
928		}
929		case UBIFS_CS_NODE:
930			/* Make sure it sits at the beginning of LEB */
931			if (snod->offs != 0) {
932				ubifs_err(c, "unexpected node in log");
933				goto out_dump;
934			}
935			break;
936		default:
937			ubifs_err(c, "unexpected node in log");
938			goto out_dump;
939		}
940	}
941
942	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
943		c->lhead_lnum = lnum;
944		c->lhead_offs = sleb->endpt;
945	}
946
947	err = !sleb->endpt;
948out:
949	ubifs_scan_destroy(sleb);
950	return err;
951
952out_dump:
953	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
954		  lnum, offs + snod->offs);
955	ubifs_dump_node(c, snod->node);
956	ubifs_scan_destroy(sleb);
957	return -EINVAL;
958}
959
960/**
961 * take_ihead - update the status of the index head in lprops to 'taken'.
962 * @c: UBIFS file-system description object
963 *
964 * This function returns the amount of free space in the index head LEB or a
965 * negative error code.
966 */
967static int take_ihead(struct ubifs_info *c)
968{
969	const struct ubifs_lprops *lp;
970	int err, free;
971
972	ubifs_get_lprops(c);
973
974	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
975	if (IS_ERR(lp)) {
976		err = PTR_ERR(lp);
977		goto out;
978	}
979
980	free = lp->free;
981
982	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
983			     lp->flags | LPROPS_TAKEN, 0);
984	if (IS_ERR(lp)) {
985		err = PTR_ERR(lp);
986		goto out;
987	}
988
989	err = free;
990out:
991	ubifs_release_lprops(c);
992	return err;
993}
994
995/**
996 * ubifs_replay_journal - replay journal.
997 * @c: UBIFS file-system description object
998 *
999 * This function scans the journal, replays and cleans it up. It makes sure all
1000 * memory data structures related to uncommitted journal are built (dirty TNC
1001 * tree, tree of buds, modified lprops, etc).
1002 */
1003int ubifs_replay_journal(struct ubifs_info *c)
1004{
1005	int err, lnum, free;
1006
1007	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1008
1009	/* Update the status of the index head in lprops to 'taken' */
1010	free = take_ihead(c);
1011	if (free < 0)
1012		return free; /* Error code */
1013
1014	if (c->ihead_offs != c->leb_size - free) {
1015		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1016			  c->ihead_offs);
1017		return -EINVAL;
1018	}
1019
1020	dbg_mnt("start replaying the journal");
1021	c->replaying = 1;
1022	lnum = c->ltail_lnum = c->lhead_lnum;
1023
1024	do {
1025		err = replay_log_leb(c, lnum, 0, c->sbuf);
1026		if (err == 1) {
1027			if (lnum != c->lhead_lnum)
1028				/* We hit the end of the log */
1029				break;
1030
1031			/*
1032			 * The head of the log must always start with the
1033			 * "commit start" node on a properly formatted UBIFS.
1034			 * But we found no nodes at all, which means that
1035			 * someting went wrong and we cannot proceed mounting
1036			 * the file-system.
1037			 */
1038			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1039				  lnum, 0);
1040			err = -EINVAL;
1041		}
1042		if (err)
1043			goto out;
1044		lnum = ubifs_next_log_lnum(c, lnum);
1045	} while (lnum != c->ltail_lnum);
1046
1047	err = replay_buds(c);
1048	if (err)
1049		goto out;
1050
1051	err = apply_replay_list(c);
1052	if (err)
1053		goto out;
1054
1055	err = set_buds_lprops(c);
1056	if (err)
1057		goto out;
1058
1059	/*
1060	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1061	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1062	 * depend on it. This means we have to initialize it to make sure
1063	 * budgeting works properly.
1064	 */
1065	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1066	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1067
1068	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1069	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1070		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1071		(unsigned long)c->highest_inum);
1072out:
1073	destroy_replay_list(c);
1074	destroy_bud_list(c);
1075	c->replaying = 0;
1076	return err;
1077}
1078