1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Author: Adrian Hunter
8 */
9
10#include <log.h>
11#include <dm/devres.h>
12#include <linux/err.h>
13#include "ubifs.h"
14
15/*
16 * An orphan is an inode number whose inode node has been committed to the index
17 * with a link count of zero. That happens when an open file is deleted
18 * (unlinked) and then a commit is run. In the normal course of events the inode
19 * would be deleted when the file is closed. However in the case of an unclean
20 * unmount, orphans need to be accounted for. After an unclean unmount, the
21 * orphans' inodes must be deleted which means either scanning the entire index
22 * looking for them, or keeping a list on flash somewhere. This unit implements
23 * the latter approach.
24 *
25 * The orphan area is a fixed number of LEBs situated between the LPT area and
26 * the main area. The number of orphan area LEBs is specified when the file
27 * system is created. The minimum number is 1. The size of the orphan area
28 * should be so that it can hold the maximum number of orphans that are expected
29 * to ever exist at one time.
30 *
31 * The number of orphans that can fit in a LEB is:
32 *
33 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
34 *
35 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
36 *
37 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
38 * zero, the inode number is added to the rb-tree. It is removed from the tree
39 * when the inode is deleted.  Any new orphans that are in the orphan tree when
40 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
41 * If the orphan area is full, it is consolidated to make space.  There is
42 * always enough space because validation prevents the user from creating more
43 * than the maximum number of orphans allowed.
44 */
45
46static int dbg_check_orphans(struct ubifs_info *c);
47
48/**
49 * ubifs_add_orphan - add an orphan.
50 * @c: UBIFS file-system description object
51 * @inum: orphan inode number
52 *
53 * Add an orphan. This function is called when an inodes link count drops to
54 * zero.
55 */
56int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
57{
58	struct ubifs_orphan *orphan, *o;
59	struct rb_node **p, *parent = NULL;
60
61	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
62	if (!orphan)
63		return -ENOMEM;
64	orphan->inum = inum;
65	orphan->new = 1;
66
67	spin_lock(&c->orphan_lock);
68	if (c->tot_orphans >= c->max_orphans) {
69		spin_unlock(&c->orphan_lock);
70		kfree(orphan);
71		return -ENFILE;
72	}
73	p = &c->orph_tree.rb_node;
74	while (*p) {
75		parent = *p;
76		o = rb_entry(parent, struct ubifs_orphan, rb);
77		if (inum < o->inum)
78			p = &(*p)->rb_left;
79		else if (inum > o->inum)
80			p = &(*p)->rb_right;
81		else {
82			ubifs_err(c, "orphaned twice");
83			spin_unlock(&c->orphan_lock);
84			kfree(orphan);
85			return 0;
86		}
87	}
88	c->tot_orphans += 1;
89	c->new_orphans += 1;
90	rb_link_node(&orphan->rb, parent, p);
91	rb_insert_color(&orphan->rb, &c->orph_tree);
92	list_add_tail(&orphan->list, &c->orph_list);
93	list_add_tail(&orphan->new_list, &c->orph_new);
94	spin_unlock(&c->orphan_lock);
95	dbg_gen("ino %lu", (unsigned long)inum);
96	return 0;
97}
98
99/**
100 * ubifs_delete_orphan - delete an orphan.
101 * @c: UBIFS file-system description object
102 * @inum: orphan inode number
103 *
104 * Delete an orphan. This function is called when an inode is deleted.
105 */
106void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
107{
108	struct ubifs_orphan *o;
109	struct rb_node *p;
110
111	spin_lock(&c->orphan_lock);
112	p = c->orph_tree.rb_node;
113	while (p) {
114		o = rb_entry(p, struct ubifs_orphan, rb);
115		if (inum < o->inum)
116			p = p->rb_left;
117		else if (inum > o->inum)
118			p = p->rb_right;
119		else {
120			if (o->del) {
121				spin_unlock(&c->orphan_lock);
122				dbg_gen("deleted twice ino %lu",
123					(unsigned long)inum);
124				return;
125			}
126			if (o->cmt) {
127				o->del = 1;
128				o->dnext = c->orph_dnext;
129				c->orph_dnext = o;
130				spin_unlock(&c->orphan_lock);
131				dbg_gen("delete later ino %lu",
132					(unsigned long)inum);
133				return;
134			}
135			rb_erase(p, &c->orph_tree);
136			list_del(&o->list);
137			c->tot_orphans -= 1;
138			if (o->new) {
139				list_del(&o->new_list);
140				c->new_orphans -= 1;
141			}
142			spin_unlock(&c->orphan_lock);
143			kfree(o);
144			dbg_gen("inum %lu", (unsigned long)inum);
145			return;
146		}
147	}
148	spin_unlock(&c->orphan_lock);
149	ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
150	dump_stack();
151}
152
153/**
154 * ubifs_orphan_start_commit - start commit of orphans.
155 * @c: UBIFS file-system description object
156 *
157 * Start commit of orphans.
158 */
159int ubifs_orphan_start_commit(struct ubifs_info *c)
160{
161	struct ubifs_orphan *orphan, **last;
162
163	spin_lock(&c->orphan_lock);
164	last = &c->orph_cnext;
165	list_for_each_entry(orphan, &c->orph_new, new_list) {
166		ubifs_assert(orphan->new);
167		ubifs_assert(!orphan->cmt);
168		orphan->new = 0;
169		orphan->cmt = 1;
170		*last = orphan;
171		last = &orphan->cnext;
172	}
173	*last = NULL;
174	c->cmt_orphans = c->new_orphans;
175	c->new_orphans = 0;
176	dbg_cmt("%d orphans to commit", c->cmt_orphans);
177	INIT_LIST_HEAD(&c->orph_new);
178	if (c->tot_orphans == 0)
179		c->no_orphs = 1;
180	else
181		c->no_orphs = 0;
182	spin_unlock(&c->orphan_lock);
183	return 0;
184}
185
186/**
187 * avail_orphs - calculate available space.
188 * @c: UBIFS file-system description object
189 *
190 * This function returns the number of orphans that can be written in the
191 * available space.
192 */
193static int avail_orphs(struct ubifs_info *c)
194{
195	int avail_lebs, avail, gap;
196
197	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
198	avail = avail_lebs *
199	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
200	gap = c->leb_size - c->ohead_offs;
201	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
202		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
203	return avail;
204}
205
206/**
207 * tot_avail_orphs - calculate total space.
208 * @c: UBIFS file-system description object
209 *
210 * This function returns the number of orphans that can be written in half
211 * the total space. That leaves half the space for adding new orphans.
212 */
213static int tot_avail_orphs(struct ubifs_info *c)
214{
215	int avail_lebs, avail;
216
217	avail_lebs = c->orph_lebs;
218	avail = avail_lebs *
219	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
220	return avail / 2;
221}
222
223/**
224 * do_write_orph_node - write a node to the orphan head.
225 * @c: UBIFS file-system description object
226 * @len: length of node
227 * @atomic: write atomically
228 *
229 * This function writes a node to the orphan head from the orphan buffer. If
230 * %atomic is not zero, then the write is done atomically. On success, %0 is
231 * returned, otherwise a negative error code is returned.
232 */
233static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
234{
235	int err = 0;
236
237	if (atomic) {
238		ubifs_assert(c->ohead_offs == 0);
239		ubifs_prepare_node(c, c->orph_buf, len, 1);
240		len = ALIGN(len, c->min_io_size);
241		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
242	} else {
243		if (c->ohead_offs == 0) {
244			/* Ensure LEB has been unmapped */
245			err = ubifs_leb_unmap(c, c->ohead_lnum);
246			if (err)
247				return err;
248		}
249		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
250				       c->ohead_offs);
251	}
252	return err;
253}
254
255/**
256 * write_orph_node - write an orphan node.
257 * @c: UBIFS file-system description object
258 * @atomic: write atomically
259 *
260 * This function builds an orphan node from the cnext list and writes it to the
261 * orphan head. On success, %0 is returned, otherwise a negative error code
262 * is returned.
263 */
264static int write_orph_node(struct ubifs_info *c, int atomic)
265{
266	struct ubifs_orphan *orphan, *cnext;
267	struct ubifs_orph_node *orph;
268	int gap, err, len, cnt, i;
269
270	ubifs_assert(c->cmt_orphans > 0);
271	gap = c->leb_size - c->ohead_offs;
272	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
273		c->ohead_lnum += 1;
274		c->ohead_offs = 0;
275		gap = c->leb_size;
276		if (c->ohead_lnum > c->orph_last) {
277			/*
278			 * We limit the number of orphans so that this should
279			 * never happen.
280			 */
281			ubifs_err(c, "out of space in orphan area");
282			return -EINVAL;
283		}
284	}
285	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
286	if (cnt > c->cmt_orphans)
287		cnt = c->cmt_orphans;
288	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
289	ubifs_assert(c->orph_buf);
290	orph = c->orph_buf;
291	orph->ch.node_type = UBIFS_ORPH_NODE;
292	spin_lock(&c->orphan_lock);
293	cnext = c->orph_cnext;
294	for (i = 0; i < cnt; i++) {
295		orphan = cnext;
296		ubifs_assert(orphan->cmt);
297		orph->inos[i] = cpu_to_le64(orphan->inum);
298		orphan->cmt = 0;
299		cnext = orphan->cnext;
300		orphan->cnext = NULL;
301	}
302	c->orph_cnext = cnext;
303	c->cmt_orphans -= cnt;
304	spin_unlock(&c->orphan_lock);
305	if (c->cmt_orphans)
306		orph->cmt_no = cpu_to_le64(c->cmt_no);
307	else
308		/* Mark the last node of the commit */
309		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
310	ubifs_assert(c->ohead_offs + len <= c->leb_size);
311	ubifs_assert(c->ohead_lnum >= c->orph_first);
312	ubifs_assert(c->ohead_lnum <= c->orph_last);
313	err = do_write_orph_node(c, len, atomic);
314	c->ohead_offs += ALIGN(len, c->min_io_size);
315	c->ohead_offs = ALIGN(c->ohead_offs, 8);
316	return err;
317}
318
319/**
320 * write_orph_nodes - write orphan nodes until there are no more to commit.
321 * @c: UBIFS file-system description object
322 * @atomic: write atomically
323 *
324 * This function writes orphan nodes for all the orphans to commit. On success,
325 * %0 is returned, otherwise a negative error code is returned.
326 */
327static int write_orph_nodes(struct ubifs_info *c, int atomic)
328{
329	int err;
330
331	while (c->cmt_orphans > 0) {
332		err = write_orph_node(c, atomic);
333		if (err)
334			return err;
335	}
336	if (atomic) {
337		int lnum;
338
339		/* Unmap any unused LEBs after consolidation */
340		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
341			err = ubifs_leb_unmap(c, lnum);
342			if (err)
343				return err;
344		}
345	}
346	return 0;
347}
348
349/**
350 * consolidate - consolidate the orphan area.
351 * @c: UBIFS file-system description object
352 *
353 * This function enables consolidation by putting all the orphans into the list
354 * to commit. The list is in the order that the orphans were added, and the
355 * LEBs are written atomically in order, so at no time can orphans be lost by
356 * an unclean unmount.
357 *
358 * This function returns %0 on success and a negative error code on failure.
359 */
360static int consolidate(struct ubifs_info *c)
361{
362	int tot_avail = tot_avail_orphs(c), err = 0;
363
364	spin_lock(&c->orphan_lock);
365	dbg_cmt("there is space for %d orphans and there are %d",
366		tot_avail, c->tot_orphans);
367	if (c->tot_orphans - c->new_orphans <= tot_avail) {
368		struct ubifs_orphan *orphan, **last;
369		int cnt = 0;
370
371		/* Change the cnext list to include all non-new orphans */
372		last = &c->orph_cnext;
373		list_for_each_entry(orphan, &c->orph_list, list) {
374			if (orphan->new)
375				continue;
376			orphan->cmt = 1;
377			*last = orphan;
378			last = &orphan->cnext;
379			cnt += 1;
380		}
381		*last = NULL;
382		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
383		c->cmt_orphans = cnt;
384		c->ohead_lnum = c->orph_first;
385		c->ohead_offs = 0;
386	} else {
387		/*
388		 * We limit the number of orphans so that this should
389		 * never happen.
390		 */
391		ubifs_err(c, "out of space in orphan area");
392		err = -EINVAL;
393	}
394	spin_unlock(&c->orphan_lock);
395	return err;
396}
397
398/**
399 * commit_orphans - commit orphans.
400 * @c: UBIFS file-system description object
401 *
402 * This function commits orphans to flash. On success, %0 is returned,
403 * otherwise a negative error code is returned.
404 */
405static int commit_orphans(struct ubifs_info *c)
406{
407	int avail, atomic = 0, err;
408
409	ubifs_assert(c->cmt_orphans > 0);
410	avail = avail_orphs(c);
411	if (avail < c->cmt_orphans) {
412		/* Not enough space to write new orphans, so consolidate */
413		err = consolidate(c);
414		if (err)
415			return err;
416		atomic = 1;
417	}
418	err = write_orph_nodes(c, atomic);
419	return err;
420}
421
422/**
423 * erase_deleted - erase the orphans marked for deletion.
424 * @c: UBIFS file-system description object
425 *
426 * During commit, the orphans being committed cannot be deleted, so they are
427 * marked for deletion and deleted by this function. Also, the recovery
428 * adds killed orphans to the deletion list, and therefore they are deleted
429 * here too.
430 */
431static void erase_deleted(struct ubifs_info *c)
432{
433	struct ubifs_orphan *orphan, *dnext;
434
435	spin_lock(&c->orphan_lock);
436	dnext = c->orph_dnext;
437	while (dnext) {
438		orphan = dnext;
439		dnext = orphan->dnext;
440		ubifs_assert(!orphan->new);
441		ubifs_assert(orphan->del);
442		rb_erase(&orphan->rb, &c->orph_tree);
443		list_del(&orphan->list);
444		c->tot_orphans -= 1;
445		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
446		kfree(orphan);
447	}
448	c->orph_dnext = NULL;
449	spin_unlock(&c->orphan_lock);
450}
451
452/**
453 * ubifs_orphan_end_commit - end commit of orphans.
454 * @c: UBIFS file-system description object
455 *
456 * End commit of orphans.
457 */
458int ubifs_orphan_end_commit(struct ubifs_info *c)
459{
460	int err;
461
462	if (c->cmt_orphans != 0) {
463		err = commit_orphans(c);
464		if (err)
465			return err;
466	}
467	erase_deleted(c);
468	err = dbg_check_orphans(c);
469	return err;
470}
471
472/**
473 * ubifs_clear_orphans - erase all LEBs used for orphans.
474 * @c: UBIFS file-system description object
475 *
476 * If recovery is not required, then the orphans from the previous session
477 * are not needed. This function locates the LEBs used to record
478 * orphans, and un-maps them.
479 */
480int ubifs_clear_orphans(struct ubifs_info *c)
481{
482	int lnum, err;
483
484	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
485		err = ubifs_leb_unmap(c, lnum);
486		if (err)
487			return err;
488	}
489	c->ohead_lnum = c->orph_first;
490	c->ohead_offs = 0;
491	return 0;
492}
493
494/**
495 * insert_dead_orphan - insert an orphan.
496 * @c: UBIFS file-system description object
497 * @inum: orphan inode number
498 *
499 * This function is a helper to the 'do_kill_orphans()' function. The orphan
500 * must be kept until the next commit, so it is added to the rb-tree and the
501 * deletion list.
502 */
503static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
504{
505	struct ubifs_orphan *orphan, *o;
506	struct rb_node **p, *parent = NULL;
507
508	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
509	if (!orphan)
510		return -ENOMEM;
511	orphan->inum = inum;
512
513	p = &c->orph_tree.rb_node;
514	while (*p) {
515		parent = *p;
516		o = rb_entry(parent, struct ubifs_orphan, rb);
517		if (inum < o->inum)
518			p = &(*p)->rb_left;
519		else if (inum > o->inum)
520			p = &(*p)->rb_right;
521		else {
522			/* Already added - no problem */
523			kfree(orphan);
524			return 0;
525		}
526	}
527	c->tot_orphans += 1;
528	rb_link_node(&orphan->rb, parent, p);
529	rb_insert_color(&orphan->rb, &c->orph_tree);
530	list_add_tail(&orphan->list, &c->orph_list);
531	orphan->del = 1;
532	orphan->dnext = c->orph_dnext;
533	c->orph_dnext = orphan;
534	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
535		c->new_orphans, c->tot_orphans);
536	return 0;
537}
538
539/**
540 * do_kill_orphans - remove orphan inodes from the index.
541 * @c: UBIFS file-system description object
542 * @sleb: scanned LEB
543 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
544 * @outofdate: whether the LEB is out of date is returned here
545 * @last_flagged: whether the end orphan node is encountered
546 *
547 * This function is a helper to the 'kill_orphans()' function. It goes through
548 * every orphan node in a LEB and for every inode number recorded, removes
549 * all keys for that inode from the TNC.
550 */
551static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
552			   unsigned long long *last_cmt_no, int *outofdate,
553			   int *last_flagged)
554{
555	struct ubifs_scan_node *snod;
556	struct ubifs_orph_node *orph;
557	unsigned long long cmt_no;
558	ino_t inum;
559	int i, n, err, first = 1;
560
561	list_for_each_entry(snod, &sleb->nodes, list) {
562		if (snod->type != UBIFS_ORPH_NODE) {
563			ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
564				  snod->type, sleb->lnum, snod->offs);
565			ubifs_dump_node(c, snod->node);
566			return -EINVAL;
567		}
568
569		orph = snod->node;
570
571		/* Check commit number */
572		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
573		/*
574		 * The commit number on the master node may be less, because
575		 * of a failed commit. If there are several failed commits in a
576		 * row, the commit number written on orphan nodes will continue
577		 * to increase (because the commit number is adjusted here) even
578		 * though the commit number on the master node stays the same
579		 * because the master node has not been re-written.
580		 */
581		if (cmt_no > c->cmt_no)
582			c->cmt_no = cmt_no;
583		if (cmt_no < *last_cmt_no && *last_flagged) {
584			/*
585			 * The last orphan node had a higher commit number and
586			 * was flagged as the last written for that commit
587			 * number. That makes this orphan node, out of date.
588			 */
589			if (!first) {
590				ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
591					  cmt_no, sleb->lnum, snod->offs);
592				ubifs_dump_node(c, snod->node);
593				return -EINVAL;
594			}
595			dbg_rcvry("out of date LEB %d", sleb->lnum);
596			*outofdate = 1;
597			return 0;
598		}
599
600		if (first)
601			first = 0;
602
603		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
604		for (i = 0; i < n; i++) {
605			inum = le64_to_cpu(orph->inos[i]);
606			dbg_rcvry("deleting orphaned inode %lu",
607				  (unsigned long)inum);
608			err = ubifs_tnc_remove_ino(c, inum);
609			if (err)
610				return err;
611			err = insert_dead_orphan(c, inum);
612			if (err)
613				return err;
614		}
615
616		*last_cmt_no = cmt_no;
617		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
618			dbg_rcvry("last orph node for commit %llu at %d:%d",
619				  cmt_no, sleb->lnum, snod->offs);
620			*last_flagged = 1;
621		} else
622			*last_flagged = 0;
623	}
624
625	return 0;
626}
627
628/**
629 * kill_orphans - remove all orphan inodes from the index.
630 * @c: UBIFS file-system description object
631 *
632 * If recovery is required, then orphan inodes recorded during the previous
633 * session (which ended with an unclean unmount) must be deleted from the index.
634 * This is done by updating the TNC, but since the index is not updated until
635 * the next commit, the LEBs where the orphan information is recorded are not
636 * erased until the next commit.
637 */
638static int kill_orphans(struct ubifs_info *c)
639{
640	unsigned long long last_cmt_no = 0;
641	int lnum, err = 0, outofdate = 0, last_flagged = 0;
642
643	c->ohead_lnum = c->orph_first;
644	c->ohead_offs = 0;
645	/* Check no-orphans flag and skip this if no orphans */
646	if (c->no_orphs) {
647		dbg_rcvry("no orphans");
648		return 0;
649	}
650	/*
651	 * Orph nodes always start at c->orph_first and are written to each
652	 * successive LEB in turn. Generally unused LEBs will have been unmapped
653	 * but may contain out of date orphan nodes if the unmap didn't go
654	 * through. In addition, the last orphan node written for each commit is
655	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
656	 * there are orphan nodes from the next commit (i.e. the commit did not
657	 * complete successfully). In that case, no orphans will have been lost
658	 * due to the way that orphans are written, and any orphans added will
659	 * be valid orphans anyway and so can be deleted.
660	 */
661	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
662		struct ubifs_scan_leb *sleb;
663
664		dbg_rcvry("LEB %d", lnum);
665		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
666		if (IS_ERR(sleb)) {
667			if (PTR_ERR(sleb) == -EUCLEAN)
668				sleb = ubifs_recover_leb(c, lnum, 0,
669							 c->sbuf, -1);
670			if (IS_ERR(sleb)) {
671				err = PTR_ERR(sleb);
672				break;
673			}
674		}
675		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
676				      &last_flagged);
677		if (err || outofdate) {
678			ubifs_scan_destroy(sleb);
679			break;
680		}
681		if (sleb->endpt) {
682			c->ohead_lnum = lnum;
683			c->ohead_offs = sleb->endpt;
684		}
685		ubifs_scan_destroy(sleb);
686	}
687	return err;
688}
689
690/**
691 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
692 * @c: UBIFS file-system description object
693 * @unclean: indicates recovery from unclean unmount
694 * @read_only: indicates read only mount
695 *
696 * This function is called when mounting to erase orphans from the previous
697 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
698 * orphans are deleted.
699 */
700int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
701{
702	int err = 0;
703
704	c->max_orphans = tot_avail_orphs(c);
705
706	if (!read_only) {
707		c->orph_buf = vmalloc(c->leb_size);
708		if (!c->orph_buf)
709			return -ENOMEM;
710	}
711
712	if (unclean)
713		err = kill_orphans(c);
714	else if (!read_only)
715		err = ubifs_clear_orphans(c);
716
717	return err;
718}
719
720/*
721 * Everything below is related to debugging.
722 */
723
724struct check_orphan {
725	struct rb_node rb;
726	ino_t inum;
727};
728
729struct check_info {
730	unsigned long last_ino;
731	unsigned long tot_inos;
732	unsigned long missing;
733	unsigned long long leaf_cnt;
734	struct ubifs_ino_node *node;
735	struct rb_root root;
736};
737
738static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
739{
740	struct ubifs_orphan *o;
741	struct rb_node *p;
742
743	spin_lock(&c->orphan_lock);
744	p = c->orph_tree.rb_node;
745	while (p) {
746		o = rb_entry(p, struct ubifs_orphan, rb);
747		if (inum < o->inum)
748			p = p->rb_left;
749		else if (inum > o->inum)
750			p = p->rb_right;
751		else {
752			spin_unlock(&c->orphan_lock);
753			return 1;
754		}
755	}
756	spin_unlock(&c->orphan_lock);
757	return 0;
758}
759
760static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
761{
762	struct check_orphan *orphan, *o;
763	struct rb_node **p, *parent = NULL;
764
765	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
766	if (!orphan)
767		return -ENOMEM;
768	orphan->inum = inum;
769
770	p = &root->rb_node;
771	while (*p) {
772		parent = *p;
773		o = rb_entry(parent, struct check_orphan, rb);
774		if (inum < o->inum)
775			p = &(*p)->rb_left;
776		else if (inum > o->inum)
777			p = &(*p)->rb_right;
778		else {
779			kfree(orphan);
780			return 0;
781		}
782	}
783	rb_link_node(&orphan->rb, parent, p);
784	rb_insert_color(&orphan->rb, root);
785	return 0;
786}
787
788static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
789{
790	struct check_orphan *o;
791	struct rb_node *p;
792
793	p = root->rb_node;
794	while (p) {
795		o = rb_entry(p, struct check_orphan, rb);
796		if (inum < o->inum)
797			p = p->rb_left;
798		else if (inum > o->inum)
799			p = p->rb_right;
800		else
801			return 1;
802	}
803	return 0;
804}
805
806static void dbg_free_check_tree(struct rb_root *root)
807{
808	struct check_orphan *o, *n;
809
810	rbtree_postorder_for_each_entry_safe(o, n, root, rb)
811		kfree(o);
812}
813
814static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
815			    void *priv)
816{
817	struct check_info *ci = priv;
818	ino_t inum;
819	int err;
820
821	inum = key_inum(c, &zbr->key);
822	if (inum != ci->last_ino) {
823		/* Lowest node type is the inode node, so it comes first */
824		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
825			ubifs_err(c, "found orphan node ino %lu, type %d",
826				  (unsigned long)inum, key_type(c, &zbr->key));
827		ci->last_ino = inum;
828		ci->tot_inos += 1;
829		err = ubifs_tnc_read_node(c, zbr, ci->node);
830		if (err) {
831			ubifs_err(c, "node read failed, error %d", err);
832			return err;
833		}
834		if (ci->node->nlink == 0)
835			/* Must be recorded as an orphan */
836			if (!dbg_find_check_orphan(&ci->root, inum) &&
837			    !dbg_find_orphan(c, inum)) {
838				ubifs_err(c, "missing orphan, ino %lu",
839					  (unsigned long)inum);
840				ci->missing += 1;
841			}
842	}
843	ci->leaf_cnt += 1;
844	return 0;
845}
846
847static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
848{
849	struct ubifs_scan_node *snod;
850	struct ubifs_orph_node *orph;
851	ino_t inum;
852	int i, n, err;
853
854	list_for_each_entry(snod, &sleb->nodes, list) {
855		cond_resched();
856		if (snod->type != UBIFS_ORPH_NODE)
857			continue;
858		orph = snod->node;
859		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
860		for (i = 0; i < n; i++) {
861			inum = le64_to_cpu(orph->inos[i]);
862			err = dbg_ins_check_orphan(&ci->root, inum);
863			if (err)
864				return err;
865		}
866	}
867	return 0;
868}
869
870static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
871{
872	int lnum, err = 0;
873	void *buf;
874
875	/* Check no-orphans flag and skip this if no orphans */
876	if (c->no_orphs)
877		return 0;
878
879	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
880	if (!buf) {
881		ubifs_err(c, "cannot allocate memory to check orphans");
882		return 0;
883	}
884
885	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
886		struct ubifs_scan_leb *sleb;
887
888		sleb = ubifs_scan(c, lnum, 0, buf, 0);
889		if (IS_ERR(sleb)) {
890			err = PTR_ERR(sleb);
891			break;
892		}
893
894		err = dbg_read_orphans(ci, sleb);
895		ubifs_scan_destroy(sleb);
896		if (err)
897			break;
898	}
899
900	vfree(buf);
901	return err;
902}
903
904static int dbg_check_orphans(struct ubifs_info *c)
905{
906	struct check_info ci;
907	int err;
908
909	if (!dbg_is_chk_orph(c))
910		return 0;
911
912	ci.last_ino = 0;
913	ci.tot_inos = 0;
914	ci.missing  = 0;
915	ci.leaf_cnt = 0;
916	ci.root = RB_ROOT;
917	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
918	if (!ci.node) {
919		ubifs_err(c, "out of memory");
920		return -ENOMEM;
921	}
922
923	err = dbg_scan_orphans(c, &ci);
924	if (err)
925		goto out;
926
927	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
928	if (err) {
929		ubifs_err(c, "cannot scan TNC, error %d", err);
930		goto out;
931	}
932
933	if (ci.missing) {
934		ubifs_err(c, "%lu missing orphan(s)", ci.missing);
935		err = -EINVAL;
936		goto out;
937	}
938
939	dbg_cmt("last inode number is %lu", ci.last_ino);
940	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
941	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
942
943out:
944	dbg_free_check_tree(&ci.root);
945	kfree(ci.node);
946	return err;
947}
948