1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * uniphier_spi.c - Socionext UniPhier SPI driver
4 * Copyright 2019 Socionext, Inc.
5 */
6
7#include <clk.h>
8#include <common.h>
9#include <dm.h>
10#include <log.h>
11#include <time.h>
12#include <asm/global_data.h>
13#include <dm/device_compat.h>
14#include <linux/bitfield.h>
15#include <linux/bitops.h>
16#include <linux/delay.h>
17#include <linux/io.h>
18#include <spi.h>
19#include <wait_bit.h>
20#include <linux/printk.h>
21
22DECLARE_GLOBAL_DATA_PTR;
23
24#define SSI_CTL			0x00
25#define   SSI_CTL_EN		BIT(0)
26
27#define SSI_CKS			0x04
28#define   SSI_CKS_CKRAT_MASK	GENMASK(7, 0)
29#define   SSI_CKS_CKPHS		BIT(14)
30#define   SSI_CKS_CKINIT	BIT(13)
31#define   SSI_CKS_CKDLY		BIT(12)
32
33#define SSI_TXWDS		0x08
34#define   SSI_TXWDS_WDLEN_MASK	GENMASK(13, 8)
35#define   SSI_TXWDS_TDTF_MASK	GENMASK(7, 6)
36#define   SSI_TXWDS_DTLEN_MASK	GENMASK(5, 0)
37
38#define SSI_RXWDS		0x0c
39#define   SSI_RXWDS_RDTF_MASK	GENMASK(7, 6)
40#define   SSI_RXWDS_DTLEN_MASK	GENMASK(5, 0)
41
42#define SSI_FPS			0x10
43#define   SSI_FPS_FSPOL		BIT(15)
44#define   SSI_FPS_FSTRT		BIT(14)
45
46#define SSI_SR			0x14
47#define   SSI_SR_BUSY		BIT(7)
48#define   SSI_SR_TNF		BIT(5)
49#define   SSI_SR_RNE		BIT(0)
50
51#define SSI_IE			0x18
52
53#define SSI_IC			0x1c
54#define   SSI_IC_TCIC		BIT(4)
55#define   SSI_IC_RCIC		BIT(3)
56#define   SSI_IC_RORIC		BIT(0)
57
58#define SSI_FC			0x20
59#define   SSI_FC_TXFFL		BIT(12)
60#define   SSI_FC_TXFTH_MASK	GENMASK(11, 8)
61#define   SSI_FC_RXFFL		BIT(4)
62#define   SSI_FC_RXFTH_MASK	GENMASK(3, 0)
63
64#define SSI_XDR			0x24	/* TXDR for write, RXDR for read */
65
66#define SSI_FIFO_DEPTH		8U
67
68#define SSI_REG_TIMEOUT		(CONFIG_SYS_HZ / 100)	/* 10 ms */
69#define SSI_XFER_TIMEOUT	(CONFIG_SYS_HZ)		/* 1 sec */
70
71#define SSI_CLK			50000000	/* internal I/O clock: 50MHz */
72
73struct uniphier_spi_plat {
74	void __iomem *base;
75	u32 frequency;			/* input frequency */
76	u32 speed_hz;
77	uint deactivate_delay_us;	/* Delay to wait after deactivate */
78	uint activate_delay_us;		/* Delay to wait after activate */
79};
80
81struct uniphier_spi_priv {
82	void __iomem *base;
83	u8 mode;
84	u8 fifo_depth;
85	u8 bits_per_word;
86	ulong last_transaction_us;	/* Time of last transaction end */
87};
88
89static void uniphier_spi_enable(struct uniphier_spi_priv *priv, int enable)
90{
91	u32 val;
92
93	val = readl(priv->base + SSI_CTL);
94	if (enable)
95		val |= SSI_CTL_EN;
96	else
97		val &= ~SSI_CTL_EN;
98	writel(val, priv->base + SSI_CTL);
99}
100
101static void uniphier_spi_regdump(struct uniphier_spi_priv *priv)
102{
103	pr_debug("CTL   %08x\n", readl(priv->base + SSI_CTL));
104	pr_debug("CKS   %08x\n", readl(priv->base + SSI_CKS));
105	pr_debug("TXWDS %08x\n", readl(priv->base + SSI_TXWDS));
106	pr_debug("RXWDS %08x\n", readl(priv->base + SSI_RXWDS));
107	pr_debug("FPS   %08x\n", readl(priv->base + SSI_FPS));
108	pr_debug("SR    %08x\n", readl(priv->base + SSI_SR));
109	pr_debug("IE    %08x\n", readl(priv->base + SSI_IE));
110	pr_debug("IC    %08x\n", readl(priv->base + SSI_IC));
111	pr_debug("FC    %08x\n", readl(priv->base + SSI_FC));
112	pr_debug("XDR   %08x\n", readl(priv->base + SSI_XDR));
113}
114
115static void spi_cs_activate(struct udevice *dev)
116{
117	struct udevice *bus = dev->parent;
118	struct uniphier_spi_plat *plat = dev_get_plat(bus);
119	struct uniphier_spi_priv *priv = dev_get_priv(bus);
120	ulong delay_us;		/* The delay completed so far */
121	u32 val;
122
123	/* If it's too soon to do another transaction, wait */
124	if (plat->deactivate_delay_us && priv->last_transaction_us) {
125		delay_us = timer_get_us() - priv->last_transaction_us;
126		if (delay_us < plat->deactivate_delay_us)
127			udelay(plat->deactivate_delay_us - delay_us);
128	}
129
130	val = readl(priv->base + SSI_FPS);
131	if (priv->mode & SPI_CS_HIGH)
132		val |= SSI_FPS_FSPOL;
133	else
134		val &= ~SSI_FPS_FSPOL;
135	writel(val, priv->base + SSI_FPS);
136
137	if (plat->activate_delay_us)
138		udelay(plat->activate_delay_us);
139}
140
141static void spi_cs_deactivate(struct udevice *dev)
142{
143	struct udevice *bus = dev->parent;
144	struct uniphier_spi_plat *plat = dev_get_plat(bus);
145	struct uniphier_spi_priv *priv = dev_get_priv(bus);
146	u32 val;
147
148	val = readl(priv->base + SSI_FPS);
149	if (priv->mode & SPI_CS_HIGH)
150		val &= ~SSI_FPS_FSPOL;
151	else
152		val |= SSI_FPS_FSPOL;
153	writel(val, priv->base + SSI_FPS);
154
155	/* Remember time of this transaction so we can honour the bus delay */
156	if (plat->deactivate_delay_us)
157		priv->last_transaction_us = timer_get_us();
158}
159
160static int uniphier_spi_claim_bus(struct udevice *dev)
161{
162	struct udevice *bus = dev->parent;
163	struct uniphier_spi_priv *priv = dev_get_priv(bus);
164	u32 val, size;
165
166	uniphier_spi_enable(priv, false);
167
168	/* disable interrupts */
169	writel(0, priv->base + SSI_IE);
170
171	/* bits_per_word */
172	size = priv->bits_per_word;
173	val = readl(priv->base + SSI_TXWDS);
174	val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
175	val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
176	val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
177	writel(val, priv->base + SSI_TXWDS);
178
179	val = readl(priv->base + SSI_RXWDS);
180	val &= ~SSI_RXWDS_DTLEN_MASK;
181	val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
182	writel(val, priv->base + SSI_RXWDS);
183
184	/* reset FIFOs */
185	val = SSI_FC_TXFFL | SSI_FC_RXFFL;
186	writel(val, priv->base + SSI_FC);
187
188	/* FIFO threthold */
189	val = readl(priv->base + SSI_FC);
190	val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
191	val |= FIELD_PREP(SSI_FC_TXFTH_MASK, priv->fifo_depth);
192	val |= FIELD_PREP(SSI_FC_RXFTH_MASK, priv->fifo_depth);
193	writel(val, priv->base + SSI_FC);
194
195	/* clear interrupts */
196	writel(SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC,
197	       priv->base + SSI_IC);
198
199	uniphier_spi_enable(priv, true);
200
201	return 0;
202}
203
204static int uniphier_spi_release_bus(struct udevice *dev)
205{
206	struct udevice *bus = dev->parent;
207	struct uniphier_spi_priv *priv = dev_get_priv(bus);
208
209	uniphier_spi_enable(priv, false);
210
211	return 0;
212}
213
214static int uniphier_spi_xfer(struct udevice *dev, unsigned int bitlen,
215			     const void *dout, void *din, unsigned long flags)
216{
217	struct udevice *bus = dev->parent;
218	struct uniphier_spi_priv *priv = dev_get_priv(bus);
219	const u8 *tx_buf = dout;
220	u8 *rx_buf = din, buf;
221	u32 len = bitlen / 8;
222	u32 tx_len, rx_len;
223	u32 ts, status;
224	int ret = 0;
225
226	if (bitlen % 8) {
227		dev_err(dev, "Non byte aligned SPI transfer\n");
228		return -EINVAL;
229	}
230
231	if (flags & SPI_XFER_BEGIN)
232		spi_cs_activate(dev);
233
234	uniphier_spi_enable(priv, true);
235
236	ts = get_timer(0);
237	tx_len = len;
238	rx_len = len;
239
240	uniphier_spi_regdump(priv);
241
242	while (tx_len || rx_len) {
243		ret = wait_for_bit_le32(priv->base + SSI_SR, SSI_SR_BUSY, false,
244					SSI_REG_TIMEOUT * 1000, false);
245		if (ret) {
246			if (ret == -ETIMEDOUT)
247				dev_err(dev, "access timeout\n");
248			break;
249		}
250
251		status = readl(priv->base + SSI_SR);
252		/* write the data into TX */
253		if (tx_len && (status & SSI_SR_TNF)) {
254			buf = tx_buf ? *tx_buf++ : 0;
255			writel(buf, priv->base + SSI_XDR);
256			tx_len--;
257		}
258
259		/* read the data from RX */
260		if (rx_len && (status & SSI_SR_RNE)) {
261			buf = readl(priv->base + SSI_XDR);
262			if (rx_buf)
263				*rx_buf++ = buf;
264			rx_len--;
265		}
266
267		if (get_timer(ts) >= SSI_XFER_TIMEOUT) {
268			dev_err(dev, "transfer timeout\n");
269			ret = -ETIMEDOUT;
270			break;
271		}
272	}
273
274	if (flags & SPI_XFER_END)
275		spi_cs_deactivate(dev);
276
277	uniphier_spi_enable(priv, false);
278
279	return ret;
280}
281
282static int uniphier_spi_set_speed(struct udevice *bus, uint speed)
283{
284	struct uniphier_spi_plat *plat = dev_get_plat(bus);
285	struct uniphier_spi_priv *priv = dev_get_priv(bus);
286	u32 val, ckdiv;
287
288	if (speed > plat->frequency)
289		speed = plat->frequency;
290
291	/* baudrate */
292	ckdiv = DIV_ROUND_UP(SSI_CLK, speed);
293	ckdiv = round_up(ckdiv, 2);
294
295	val = readl(priv->base + SSI_CKS);
296	val &= ~SSI_CKS_CKRAT_MASK;
297	val |= ckdiv & SSI_CKS_CKRAT_MASK;
298	writel(val, priv->base + SSI_CKS);
299
300	return 0;
301}
302
303static int uniphier_spi_set_mode(struct udevice *bus, uint mode)
304{
305	struct uniphier_spi_priv *priv = dev_get_priv(bus);
306	u32 val1, val2;
307
308	/*
309	 * clock setting
310	 * CKPHS    capture timing. 0:rising edge, 1:falling edge
311	 * CKINIT   clock initial level. 0:low, 1:high
312	 * CKDLY    clock delay. 0:no delay, 1:delay depending on FSTRT
313	 *          (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
314	 *
315	 * frame setting
316	 * FSPOL    frame signal porarity. 0: low, 1: high
317	 * FSTRT    start frame timing
318	 *          0: rising edge of clock, 1: falling edge of clock
319	 */
320	val1 = readl(priv->base + SSI_CKS);
321	val2 = readl(priv->base + SSI_FPS);
322
323	switch (mode & (SPI_CPOL | SPI_CPHA)) {
324	case SPI_MODE_0:
325		/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
326		val1 |= SSI_CKS_CKPHS | SSI_CKS_CKDLY;
327		val1 &= ~SSI_CKS_CKINIT;
328		val2 &= ~SSI_FPS_FSTRT;
329		break;
330	case SPI_MODE_1:
331		/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
332		val1 &= ~(SSI_CKS_CKPHS | SSI_CKS_CKINIT | SSI_CKS_CKDLY);
333		val2 |= SSI_FPS_FSTRT;
334		break;
335	case SPI_MODE_2:
336		/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
337		val1 |= SSI_CKS_CKINIT | SSI_CKS_CKDLY;
338		val1 &= ~SSI_CKS_CKPHS;
339		val2 |= SSI_FPS_FSTRT;
340		break;
341	case SPI_MODE_3:
342		/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
343		val1 |= SSI_CKS_CKPHS | SSI_CKS_CKINIT;
344		val1 &= ~SSI_CKS_CKDLY;
345		val2 &= ~SSI_FPS_FSTRT;
346		break;
347	}
348
349	writel(val1, priv->base + SSI_CKS);
350	writel(val2, priv->base + SSI_FPS);
351
352	/* format */
353	val1 = readl(priv->base + SSI_TXWDS);
354	val2 = readl(priv->base + SSI_RXWDS);
355	if (mode & SPI_LSB_FIRST) {
356		val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
357		val2 |= FIELD_PREP(SSI_RXWDS_RDTF_MASK, 1);
358	}
359	writel(val1, priv->base + SSI_TXWDS);
360	writel(val2, priv->base + SSI_RXWDS);
361
362	priv->mode = mode;
363
364	return 0;
365}
366
367static int uniphier_spi_of_to_plat(struct udevice *bus)
368{
369	struct uniphier_spi_plat *plat = dev_get_plat(bus);
370	const void *blob = gd->fdt_blob;
371	int node = dev_of_offset(bus);
372
373	plat->base = dev_read_addr_ptr(bus);
374
375	plat->frequency =
376		fdtdec_get_int(blob, node, "spi-max-frequency", 12500000);
377	plat->deactivate_delay_us =
378		fdtdec_get_int(blob, node, "spi-deactivate-delay", 0);
379	plat->activate_delay_us =
380		fdtdec_get_int(blob, node, "spi-activate-delay", 0);
381	plat->speed_hz = plat->frequency / 2;
382
383	return 0;
384}
385
386static int uniphier_spi_probe(struct udevice *bus)
387{
388	struct uniphier_spi_plat *plat = dev_get_plat(bus);
389	struct uniphier_spi_priv *priv = dev_get_priv(bus);
390
391	priv->base = plat->base;
392	priv->fifo_depth = SSI_FIFO_DEPTH;
393	priv->bits_per_word = 8;
394
395	return 0;
396}
397
398static const struct dm_spi_ops uniphier_spi_ops = {
399	.claim_bus	= uniphier_spi_claim_bus,
400	.release_bus	= uniphier_spi_release_bus,
401	.xfer		= uniphier_spi_xfer,
402	.set_speed	= uniphier_spi_set_speed,
403	.set_mode	= uniphier_spi_set_mode,
404};
405
406static const struct udevice_id uniphier_spi_ids[] = {
407	{ .compatible = "socionext,uniphier-scssi" },
408	{ /* Sentinel */ }
409};
410
411U_BOOT_DRIVER(uniphier_spi) = {
412	.name	= "uniphier_spi",
413	.id	= UCLASS_SPI,
414	.of_match = uniphier_spi_ids,
415	.ops	= &uniphier_spi_ops,
416	.of_to_plat = uniphier_spi_of_to_plat,
417	.plat_auto	= sizeof(struct uniphier_spi_plat),
418	.priv_auto	= sizeof(struct uniphier_spi_priv),
419	.probe	= uniphier_spi_probe,
420};
421