1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2011-12 The Chromium OS Authors.
4 *
5 * This file is derived from the flashrom project.
6 */
7
8#define LOG_CATEGORY	UCLASS_SPI
9
10#include <common.h>
11#include <bootstage.h>
12#include <div64.h>
13#include <dm.h>
14#include <dt-structs.h>
15#include <errno.h>
16#include <log.h>
17#include <malloc.h>
18#include <pch.h>
19#include <pci.h>
20#include <pci_ids.h>
21#include <spi.h>
22#include <spi_flash.h>
23#include <spi-mem.h>
24#include <spl.h>
25#include <asm/fast_spi.h>
26#include <asm/io.h>
27#include <dm/uclass-internal.h>
28#include <asm/mtrr.h>
29#include <linux/bitops.h>
30#include <linux/delay.h>
31#include <linux/sizes.h>
32
33#include "ich.h"
34
35#ifdef DEBUG_TRACE
36#define debug_trace(fmt, args...) debug(fmt, ##args)
37#else
38#define debug_trace(x, args...)
39#endif
40
41static u8 ich_readb(struct ich_spi_priv *priv, int reg)
42{
43	u8 value = readb(priv->base + reg);
44
45	debug_trace("read %2.2x from %4.4x\n", value, reg);
46
47	return value;
48}
49
50static u16 ich_readw(struct ich_spi_priv *priv, int reg)
51{
52	u16 value = readw(priv->base + reg);
53
54	debug_trace("read %4.4x from %4.4x\n", value, reg);
55
56	return value;
57}
58
59static u32 ich_readl(struct ich_spi_priv *priv, int reg)
60{
61	u32 value = readl(priv->base + reg);
62
63	debug_trace("read %8.8x from %4.4x\n", value, reg);
64
65	return value;
66}
67
68static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
69{
70	writeb(value, priv->base + reg);
71	debug_trace("wrote %2.2x to %4.4x\n", value, reg);
72}
73
74static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
75{
76	writew(value, priv->base + reg);
77	debug_trace("wrote %4.4x to %4.4x\n", value, reg);
78}
79
80static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
81{
82	writel(value, priv->base + reg);
83	debug_trace("wrote %8.8x to %4.4x\n", value, reg);
84}
85
86static void write_reg(struct ich_spi_priv *priv, const void *value,
87		      int dest_reg, uint32_t size)
88{
89	memcpy_toio(priv->base + dest_reg, value, size);
90}
91
92static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
93		     uint32_t size)
94{
95	memcpy_fromio(value, priv->base + src_reg, size);
96}
97
98static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
99{
100	const uint32_t bbar_mask = 0x00ffff00;
101	uint32_t ichspi_bbar;
102
103	if (ctlr->bbar) {
104		minaddr &= bbar_mask;
105		ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
106		ichspi_bbar |= minaddr;
107		ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
108	}
109}
110
111/* @return 1 if the SPI flash supports the 33MHz speed */
112static bool ich9_can_do_33mhz(struct udevice *dev)
113{
114	struct ich_spi_priv *priv = dev_get_priv(dev);
115	u32 fdod, speed;
116
117	if (!CONFIG_IS_ENABLED(PCI) || !priv->pch)
118		return false;
119	/* Observe SPI Descriptor Component Section 0 */
120	dm_pci_write_config32(priv->pch, 0xb0, 0x1000);
121
122	/* Extract the Write/Erase SPI Frequency from descriptor */
123	dm_pci_read_config32(priv->pch, 0xb4, &fdod);
124
125	/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
126	speed = (fdod >> 21) & 7;
127
128	return speed == 1;
129}
130
131static void spi_lock_down(struct ich_spi_plat *plat, void *sbase)
132{
133	if (plat->ich_version == ICHV_7) {
134		struct ich7_spi_regs *ich7_spi = sbase;
135
136		setbits_le16(&ich7_spi->spis, SPIS_LOCK);
137	} else if (plat->ich_version == ICHV_9) {
138		struct ich9_spi_regs *ich9_spi = sbase;
139
140		setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN);
141	}
142}
143
144static bool spi_lock_status(struct ich_spi_plat *plat, void *sbase)
145{
146	int lock = 0;
147
148	if (plat->ich_version == ICHV_7) {
149		struct ich7_spi_regs *ich7_spi = sbase;
150
151		lock = readw(&ich7_spi->spis) & SPIS_LOCK;
152	} else if (plat->ich_version == ICHV_9) {
153		struct ich9_spi_regs *ich9_spi = sbase;
154
155		lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
156	}
157
158	return lock != 0;
159}
160
161static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans,
162			    bool lock)
163{
164	uint16_t optypes;
165	uint8_t opmenu[ctlr->menubytes];
166
167	if (!lock) {
168		/* The lock is off, so just use index 0. */
169		ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
170		optypes = ich_readw(ctlr, ctlr->optype);
171		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
172		ich_writew(ctlr, optypes, ctlr->optype);
173		return 0;
174	} else {
175		/* The lock is on. See if what we need is on the menu. */
176		uint8_t optype;
177		uint16_t opcode_index;
178
179		/* Write Enable is handled as atomic prefix */
180		if (trans->opcode == SPI_OPCODE_WREN)
181			return 0;
182
183		read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
184		for (opcode_index = 0; opcode_index < ctlr->menubytes;
185				opcode_index++) {
186			if (opmenu[opcode_index] == trans->opcode)
187				break;
188		}
189
190		if (opcode_index == ctlr->menubytes) {
191			debug("ICH SPI: Opcode %x not found\n", trans->opcode);
192			return -EINVAL;
193		}
194
195		optypes = ich_readw(ctlr, ctlr->optype);
196		optype = (optypes >> (opcode_index * 2)) & 0x3;
197
198		if (optype != trans->type) {
199			debug("ICH SPI: Transaction doesn't fit type %d\n",
200			      optype);
201			return -ENOSPC;
202		}
203		return opcode_index;
204	}
205}
206
207/*
208 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
209 * below is true) or 0. In case the wait was for the bit(s) to set - write
210 * those bits back, which would cause resetting them.
211 *
212 * Return the last read status value on success or -1 on failure.
213 */
214static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
215			   int wait_til_set)
216{
217	int timeout = 600000; /* This will result in 6s */
218	u16 status = 0;
219
220	while (timeout--) {
221		status = ich_readw(ctlr, ctlr->status);
222		if (wait_til_set ^ ((status & bitmask) == 0)) {
223			if (wait_til_set) {
224				ich_writew(ctlr, status & bitmask,
225					   ctlr->status);
226			}
227			return status;
228		}
229		udelay(10);
230	}
231	debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n",
232	      status, bitmask, wait_til_set, status & bitmask);
233
234	return -ETIMEDOUT;
235}
236
237static void ich_spi_config_opcode(struct udevice *dev)
238{
239	struct ich_spi_priv *ctlr = dev_get_priv(dev);
240
241	/*
242	 * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down
243	 * to prevent accidental or intentional writes. Before they get
244	 * locked down, these registers should be initialized properly.
245	 */
246	ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop);
247	ich_writew(ctlr, SPI_OPTYPE, ctlr->optype);
248	ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu);
249	ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32));
250}
251
252static int ich_spi_exec_op_swseq(struct spi_slave *slave,
253				 const struct spi_mem_op *op)
254{
255	struct udevice *bus = dev_get_parent(slave->dev);
256	struct ich_spi_plat *plat = dev_get_plat(bus);
257	struct ich_spi_priv *ctlr = dev_get_priv(bus);
258	uint16_t control;
259	int16_t opcode_index;
260	int with_address;
261	int status;
262	struct spi_trans *trans = &ctlr->trans;
263	bool lock = spi_lock_status(plat, ctlr->base);
264	int ret = 0;
265
266	trans->in = NULL;
267	trans->out = NULL;
268	trans->type = 0xFF;
269
270	if (op->data.nbytes) {
271		if (op->data.dir == SPI_MEM_DATA_IN) {
272			trans->in = op->data.buf.in;
273			trans->bytesin = op->data.nbytes;
274		} else {
275			trans->out = op->data.buf.out;
276			trans->bytesout = op->data.nbytes;
277		}
278	}
279
280	if (trans->opcode != op->cmd.opcode)
281		trans->opcode = op->cmd.opcode;
282
283	if (lock && trans->opcode == SPI_OPCODE_WRDIS)
284		return 0;
285
286	if (trans->opcode == SPI_OPCODE_WREN) {
287		/*
288		 * Treat Write Enable as Atomic Pre-Op if possible
289		 * in order to prevent the Management Engine from
290		 * issuing a transaction between WREN and DATA.
291		 */
292		if (!lock)
293			ich_writew(ctlr, trans->opcode, ctlr->preop);
294		return 0;
295	}
296
297	ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
298	if (ret < 0)
299		return ret;
300
301	if (plat->ich_version == ICHV_7)
302		ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
303	else
304		ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
305
306	/* Try to guess spi transaction type */
307	if (op->data.dir == SPI_MEM_DATA_OUT) {
308		if (op->addr.nbytes)
309			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
310		else
311			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
312	} else {
313		if (op->addr.nbytes)
314			trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
315		else
316			trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
317	}
318	/* Special erase case handling */
319	if (op->addr.nbytes && !op->data.buswidth)
320		trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
321
322	opcode_index = spi_setup_opcode(ctlr, trans, lock);
323	if (opcode_index < 0)
324		return -EINVAL;
325
326	if (op->addr.nbytes) {
327		trans->offset = op->addr.val;
328		with_address = 1;
329	}
330
331	if (ctlr->speed && ctlr->max_speed >= 33000000) {
332		int byte;
333
334		byte = ich_readb(ctlr, ctlr->speed);
335		if (ctlr->cur_speed >= 33000000)
336			byte |= SSFC_SCF_33MHZ;
337		else
338			byte &= ~SSFC_SCF_33MHZ;
339		ich_writeb(ctlr, byte, ctlr->speed);
340	}
341
342	/* Preset control fields */
343	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
344
345	/* Issue atomic preop cycle if needed */
346	if (ich_readw(ctlr, ctlr->preop))
347		control |= SPIC_ACS;
348
349	if (!trans->bytesout && !trans->bytesin) {
350		/* SPI addresses are 24 bit only */
351		if (with_address) {
352			ich_writel(ctlr, trans->offset & 0x00FFFFFF,
353				   ctlr->addr);
354		}
355		/*
356		 * This is a 'no data' command (like Write Enable), its
357		 * bitesout size was 1, decremented to zero while executing
358		 * spi_setup_opcode() above. Tell the chip to send the
359		 * command.
360		 */
361		ich_writew(ctlr, control, ctlr->control);
362
363		/* wait for the result */
364		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
365		if (status < 0)
366			return status;
367
368		if (status & SPIS_FCERR) {
369			debug("ICH SPI: Command transaction error\n");
370			return -EIO;
371		}
372
373		return 0;
374	}
375
376	while (trans->bytesout || trans->bytesin) {
377		uint32_t data_length;
378
379		/* SPI addresses are 24 bit only */
380		ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
381
382		if (trans->bytesout)
383			data_length = min(trans->bytesout, ctlr->databytes);
384		else
385			data_length = min(trans->bytesin, ctlr->databytes);
386
387		/* Program data into FDATA0 to N */
388		if (trans->bytesout) {
389			write_reg(ctlr, trans->out, ctlr->data, data_length);
390			trans->bytesout -= data_length;
391		}
392
393		/* Add proper control fields' values */
394		control &= ~((ctlr->databytes - 1) << 8);
395		control |= SPIC_DS;
396		control |= (data_length - 1) << 8;
397
398		/* write it */
399		ich_writew(ctlr, control, ctlr->control);
400
401		/* Wait for Cycle Done Status or Flash Cycle Error */
402		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
403		if (status < 0)
404			return status;
405
406		if (status & SPIS_FCERR) {
407			debug("ICH SPI: Data transaction error %x\n", status);
408			return -EIO;
409		}
410
411		if (trans->bytesin) {
412			read_reg(ctlr, ctlr->data, trans->in, data_length);
413			trans->bytesin -= data_length;
414		}
415	}
416
417	/* Clear atomic preop now that xfer is done */
418	if (!lock)
419		ich_writew(ctlr, 0, ctlr->preop);
420
421	return 0;
422}
423
424/*
425 * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
426 * that the operation does not cross page boundary.
427 */
428static uint get_xfer_len(u32 offset, int len, int page_size)
429{
430	uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
431	uint bytes_left = ALIGN(offset, page_size) - offset;
432
433	if (bytes_left)
434		xfer_len = min(xfer_len, bytes_left);
435
436	return xfer_len;
437}
438
439/* Fill FDATAn FIFO in preparation for a write transaction */
440static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data,
441			   uint len)
442{
443	memcpy(regs->fdata, data, len);
444}
445
446/* Drain FDATAn FIFO after a read transaction populates data */
447static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len)
448{
449	memcpy(dest, regs->fdata, len);
450}
451
452/* Fire up a transfer using the hardware sequencer */
453static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
454			     uint offset, uint len)
455{
456	/* Make sure all W1C status bits get cleared */
457	u32 hsfsts;
458
459	hsfsts = readl(&regs->hsfsts_ctl);
460	hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK);
461	hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE;
462
463	/* Set up transaction parameters */
464	hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT;
465	hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK;
466	hsfsts |= HSFSTS_FGO;
467
468	writel(offset, &regs->faddr);
469	writel(hsfsts, &regs->hsfsts_ctl);
470}
471
472static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset)
473{
474	ulong start;
475	u32 hsfsts;
476
477	start = get_timer(0);
478	do {
479		hsfsts = readl(&regs->hsfsts_ctl);
480		if (hsfsts & HSFSTS_FCERR) {
481			debug("SPI transaction error at offset %x HSFSTS = %08x\n",
482			      offset, hsfsts);
483			return -EIO;
484		}
485		if (hsfsts & HSFSTS_AEL)
486			return -EPERM;
487
488		if (hsfsts & HSFSTS_FDONE)
489			return 0;
490	} while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS);
491
492	debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n",
493	      offset, hsfsts, (uint)get_timer(start));
494
495	return -ETIMEDOUT;
496}
497
498/**
499 * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing
500 *
501 * This waits until complete or timeout
502 *
503 * @regs: SPI registers
504 * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t)
505 * @offset: Offset to access
506 * @len: Number of bytes to transfer (can be 0)
507 * Return: 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error
508 *	(AEL), -ETIMEDOUT on timeout
509 */
510static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
511				uint offset, uint len)
512{
513	start_hwseq_xfer(regs, hsfsts_cycle, offset, len);
514
515	return wait_for_hwseq_xfer(regs, offset);
516}
517
518static int ich_spi_exec_op_hwseq(struct spi_slave *slave,
519				 const struct spi_mem_op *op)
520{
521	struct spi_flash *flash = dev_get_uclass_priv(slave->dev);
522	struct udevice *bus = dev_get_parent(slave->dev);
523	struct ich_spi_priv *priv = dev_get_priv(bus);
524	struct fast_spi_regs *regs = priv->base;
525	uint page_size;
526	uint offset;
527	int cycle;
528	uint len;
529	bool out;
530	int ret;
531	u8 *buf;
532
533	offset = op->addr.val;
534	len = op->data.nbytes;
535
536	switch (op->cmd.opcode) {
537	case SPINOR_OP_RDID:
538		cycle = HSFSTS_CYCLE_RDID;
539		break;
540	case SPINOR_OP_READ_FAST:
541		cycle = HSFSTS_CYCLE_READ;
542		break;
543	case SPINOR_OP_PP:
544		cycle = HSFSTS_CYCLE_WRITE;
545		break;
546	case SPINOR_OP_WREN:
547		/* Nothing needs to be done */
548		return 0;
549	case SPINOR_OP_WRSR:
550		cycle = HSFSTS_CYCLE_WR_STATUS;
551		break;
552	case SPINOR_OP_RDSR:
553		cycle = HSFSTS_CYCLE_RD_STATUS;
554		break;
555	case SPINOR_OP_WRDI:
556		return 0;  /* ignore */
557	case SPINOR_OP_BE_4K:
558		cycle = HSFSTS_CYCLE_4K_ERASE;
559		ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0);
560		return ret;
561	default:
562		debug("Unknown cycle %x\n", op->cmd.opcode);
563		return -EINVAL;
564	};
565
566	out = op->data.dir == SPI_MEM_DATA_OUT;
567	buf = out ? (u8 *)op->data.buf.out : op->data.buf.in;
568	page_size = flash->page_size ? : 256;
569
570	while (len) {
571		uint xfer_len = get_xfer_len(offset, len, page_size);
572
573		if (out)
574			fill_xfer_fifo(regs, buf, xfer_len);
575
576		ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len);
577		if (ret)
578			return ret;
579
580		if (!out)
581			drain_xfer_fifo(regs, buf, xfer_len);
582
583		offset += xfer_len;
584		buf += xfer_len;
585		len -= xfer_len;
586	}
587
588	return 0;
589}
590
591static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
592{
593	struct udevice *bus = dev_get_parent(slave->dev);
594	struct ich_spi_plat *plat = dev_get_plat(bus);
595	int ret;
596
597	bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi");
598	if (plat->hwseq)
599		ret = ich_spi_exec_op_hwseq(slave, op);
600	else
601		ret = ich_spi_exec_op_swseq(slave, op);
602	bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI);
603
604	return ret;
605}
606
607#if CONFIG_IS_ENABLED(OF_REAL)
608/**
609 * ich_spi_get_basics() - Get basic information about the ICH device
610 *
611 * This works without probing any devices if requested.
612 *
613 * @bus: SPI controller to use
614 * @can_probe: true if this function is allowed to probe the PCH
615 * @pchp: Returns a pointer to the pch, or NULL if not found
616 * @ich_versionp: Returns ICH version detected on success
617 * @mmio_basep: Returns the address of the SPI registers on success
618 * Return: 0 if OK, -EPROTOTYPE if the PCH could not be found, -EAGAIN if
619 *	the function cannot success without probing, possible another error if
620 *	pch_get_spi_base() fails
621 */
622static int ich_spi_get_basics(struct udevice *bus, bool can_probe,
623			      struct udevice **pchp,
624			      enum ich_version *ich_versionp, ulong *mmio_basep)
625{
626	struct udevice *pch = NULL;
627	int ret = 0;
628
629	/* Find a PCH if there is one */
630	if (can_probe) {
631		pch = dev_get_parent(bus);
632		if (device_get_uclass_id(pch) != UCLASS_PCH) {
633			uclass_first_device(UCLASS_PCH, &pch);
634			if (!pch)
635				; /* ignore this error since we don't need it */
636		}
637	}
638
639	*ich_versionp = dev_get_driver_data(bus);
640	if (*ich_versionp == ICHV_APL)
641		*mmio_basep = dm_pci_read_bar32(bus, 0);
642	else if (pch)
643		ret = pch_get_spi_base(pch, mmio_basep);
644	else
645		return -EAGAIN;
646	*pchp = pch;
647
648	return ret;
649}
650#endif
651
652/**
653 * ich_get_mmap_bus() - Handle the get_mmap() method for a bus
654 *
655 * There are several cases to consider:
656 * 1. Using of-platdata, in which case we have the BDF and can access the
657 *	registers by reading the BAR
658 * 2. Not using of-platdata, but still with a SPI controller that is on its own
659 * PCI PDF. In this case we read the BDF from the parent plat and again get
660 *	the registers by reading the BAR
661 * 3. Using a SPI controller that is a child of the PCH, in which case we try
662 *	to find the registers by asking the PCH. This only works if the PCH has
663 *	been probed (which it will be if the bus is probed since parents are
664 *	probed before children), since the PCH may not have a PCI address until
665 *	its parent (the PCI bus itself) has been probed. If you are using this
666 *	method then you should make sure the SPI bus is probed.
667 *
668 * The first two cases are useful in early init. The last one is more useful
669 * afterwards.
670 */
671static int ich_get_mmap_bus(struct udevice *bus, ulong *map_basep,
672			    uint *map_sizep, uint *offsetp)
673{
674	pci_dev_t spi_bdf;
675#if CONFIG_IS_ENABLED(OF_REAL)
676	if (device_is_on_pci_bus(bus)) {
677		struct pci_child_plat *pplat;
678
679		pplat = dev_get_parent_plat(bus);
680		spi_bdf = pplat->devfn;
681	} else {
682		enum ich_version ich_version;
683		struct fast_spi_regs *regs;
684		struct udevice *pch;
685		ulong mmio_base;
686		int ret;
687
688		ret = ich_spi_get_basics(bus, device_active(bus), &pch,
689					 &ich_version, &mmio_base);
690		if (ret)
691			return log_msg_ret("basics", ret);
692		regs = (struct fast_spi_regs *)mmio_base;
693
694		return fast_spi_get_bios_mmap_regs(regs, map_basep, map_sizep,
695						   offsetp);
696	}
697#else
698	struct ich_spi_plat *plat = dev_get_plat(bus);
699
700	/*
701	 * We cannot rely on plat->bdf being set up yet since this method can
702	 * be called before the device is probed. Use the of-platdata directly
703	 * instead.
704	 */
705	spi_bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
706#endif
707
708	return fast_spi_get_bios_mmap(spi_bdf, map_basep, map_sizep, offsetp);
709}
710
711static int ich_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
712			uint *offsetp)
713{
714	struct udevice *bus = dev_get_parent(dev);
715
716	return ich_get_mmap_bus(bus, map_basep, map_sizep, offsetp);
717}
718
719static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op)
720{
721	unsigned int page_offset;
722	int addr = op->addr.val;
723	unsigned int byte_count = op->data.nbytes;
724
725	if (hweight32(ICH_BOUNDARY) == 1) {
726		page_offset = addr & (ICH_BOUNDARY - 1);
727	} else {
728		u64 aux = addr;
729
730		page_offset = do_div(aux, ICH_BOUNDARY);
731	}
732
733	if (op->data.dir == SPI_MEM_DATA_IN) {
734		if (slave->max_read_size) {
735			op->data.nbytes = min(ICH_BOUNDARY - page_offset,
736					      slave->max_read_size);
737		}
738	} else if (slave->max_write_size) {
739		op->data.nbytes = min(ICH_BOUNDARY - page_offset,
740				      slave->max_write_size);
741	}
742
743	op->data.nbytes = min(op->data.nbytes, byte_count);
744
745	return 0;
746}
747
748static int ich_protect_lockdown(struct udevice *dev)
749{
750	struct ich_spi_plat *plat = dev_get_plat(dev);
751	struct ich_spi_priv *priv = dev_get_priv(dev);
752	int ret = -ENOSYS;
753
754	/* Disable the BIOS write protect so write commands are allowed */
755	if (priv->pch)
756		ret = pch_set_spi_protect(priv->pch, false);
757	if (ret == -ENOSYS) {
758		u8 bios_cntl;
759
760		bios_cntl = ich_readb(priv, priv->bcr);
761		bios_cntl &= ~BIT(5);	/* clear Enable InSMM_STS (EISS) */
762		bios_cntl |= 1;		/* Write Protect Disable (WPD) */
763		ich_writeb(priv, bios_cntl, priv->bcr);
764	} else if (ret) {
765		debug("%s: Failed to disable write-protect: err=%d\n",
766		      __func__, ret);
767		return ret;
768	}
769
770	/* Lock down SPI controller settings if required */
771	if (plat->lockdown) {
772		ich_spi_config_opcode(dev);
773		spi_lock_down(plat, priv->base);
774	}
775
776	return 0;
777}
778
779static int ich_init_controller(struct udevice *dev,
780			       struct ich_spi_plat *plat,
781			       struct ich_spi_priv *ctlr)
782{
783	if (spl_phase() == PHASE_TPL) {
784		struct ich_spi_plat *plat = dev_get_plat(dev);
785		int ret;
786
787		ret = fast_spi_early_init(plat->bdf, plat->mmio_base);
788		if (ret)
789			return ret;
790	}
791
792	ctlr->base = (void *)plat->mmio_base;
793	if (plat->ich_version == ICHV_7) {
794		struct ich7_spi_regs *ich7_spi = ctlr->base;
795
796		ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
797		ctlr->menubytes = sizeof(ich7_spi->opmenu);
798		ctlr->optype = offsetof(struct ich7_spi_regs, optype);
799		ctlr->addr = offsetof(struct ich7_spi_regs, spia);
800		ctlr->data = offsetof(struct ich7_spi_regs, spid);
801		ctlr->databytes = sizeof(ich7_spi->spid);
802		ctlr->status = offsetof(struct ich7_spi_regs, spis);
803		ctlr->control = offsetof(struct ich7_spi_regs, spic);
804		ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
805		ctlr->preop = offsetof(struct ich7_spi_regs, preop);
806	} else if (plat->ich_version == ICHV_9) {
807		struct ich9_spi_regs *ich9_spi = ctlr->base;
808
809		ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
810		ctlr->menubytes = sizeof(ich9_spi->opmenu);
811		ctlr->optype = offsetof(struct ich9_spi_regs, optype);
812		ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
813		ctlr->data = offsetof(struct ich9_spi_regs, fdata);
814		ctlr->databytes = sizeof(ich9_spi->fdata);
815		ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
816		ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
817		ctlr->speed = ctlr->control + 2;
818		ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
819		ctlr->preop = offsetof(struct ich9_spi_regs, preop);
820		ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
821		ctlr->pr = &ich9_spi->pr[0];
822	} else if (plat->ich_version == ICHV_APL) {
823	} else {
824		debug("ICH SPI: Unrecognised ICH version %d\n",
825		      plat->ich_version);
826		return -EINVAL;
827	}
828
829	/* Work out the maximum speed we can support */
830	ctlr->max_speed = 20000000;
831	if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev))
832		ctlr->max_speed = 33000000;
833	debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n",
834	      plat->ich_version, plat->mmio_base, ctlr->max_speed);
835
836	ich_set_bbar(ctlr, 0);
837
838	return 0;
839}
840
841static int ich_cache_bios_region(struct udevice *dev)
842{
843	ulong map_base;
844	uint map_size;
845	uint offset;
846	ulong base;
847	int ret;
848
849	ret = ich_get_mmap_bus(dev, &map_base, &map_size, &offset);
850	if (ret)
851		return ret;
852
853	/* Don't use WRBACK since we are not supposed to write to SPI flash */
854	base = SZ_4G - map_size;
855	mtrr_set_next_var(MTRR_TYPE_WRPROT, base, map_size);
856	log_debug("BIOS cache base=%lx, size=%x\n", base, (uint)map_size);
857
858	return 0;
859}
860
861static int ich_spi_probe(struct udevice *dev)
862{
863	struct ich_spi_plat *plat = dev_get_plat(dev);
864	struct ich_spi_priv *priv = dev_get_priv(dev);
865	int ret;
866
867	ret = ich_init_controller(dev, plat, priv);
868	if (ret)
869		return ret;
870
871	if (spl_phase() == PHASE_TPL) {
872		/* Cache the BIOS to speed things up */
873		ret = ich_cache_bios_region(dev);
874		if (ret)
875			return ret;
876	} else {
877		ret = ich_protect_lockdown(dev);
878		if (ret)
879			return ret;
880	}
881	priv->cur_speed = priv->max_speed;
882
883	return 0;
884}
885
886static int ich_spi_remove(struct udevice *bus)
887{
888	/*
889	 * Configure SPI controller so that the Linux MTD driver can fully
890	 * access the SPI NOR chip
891	 */
892	ich_spi_config_opcode(bus);
893
894	return 0;
895}
896
897static int ich_spi_set_speed(struct udevice *bus, uint speed)
898{
899	struct ich_spi_priv *priv = dev_get_priv(bus);
900
901	priv->cur_speed = speed;
902
903	return 0;
904}
905
906static int ich_spi_set_mode(struct udevice *bus, uint mode)
907{
908	debug("%s: mode=%d\n", __func__, mode);
909
910	return 0;
911}
912
913static int ich_spi_child_pre_probe(struct udevice *dev)
914{
915	struct udevice *bus = dev_get_parent(dev);
916	struct ich_spi_plat *plat = dev_get_plat(bus);
917	struct ich_spi_priv *priv = dev_get_priv(bus);
918	struct spi_slave *slave = dev_get_parent_priv(dev);
919
920	/*
921	 * Yes this controller can only transfer a small number of bytes at
922	 * once! The limit is typically 64 bytes. For hardware sequencing a
923	 * a loop is used to get around this.
924	 */
925	if (!plat->hwseq) {
926		slave->max_read_size = priv->databytes;
927		slave->max_write_size = priv->databytes;
928	}
929	/*
930	 * ICH 7 SPI controller only supports array read command
931	 * and byte program command for SST flash
932	 */
933	if (plat->ich_version == ICHV_7)
934		slave->mode = SPI_RX_SLOW | SPI_TX_BYTE;
935
936	return 0;
937}
938
939static int ich_spi_of_to_plat(struct udevice *dev)
940{
941	struct ich_spi_plat *plat = dev_get_plat(dev);
942
943#if CONFIG_IS_ENABLED(OF_REAL)
944	struct ich_spi_priv *priv = dev_get_priv(dev);
945	int ret;
946
947	ret = ich_spi_get_basics(dev, true, &priv->pch, &plat->ich_version,
948				 &plat->mmio_base);
949	if (ret)
950		return log_msg_ret("basics", ret);
951	plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down");
952	/*
953	 * Use an int so that the property is present in of-platdata even
954	 * when false.
955	 */
956	plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0);
957#else
958	plat->ich_version = ICHV_APL;
959	plat->mmio_base = plat->dtplat.early_regs[0];
960	plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
961	plat->hwseq = plat->dtplat.intel_hardware_seq;
962#endif
963	debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base);
964
965	return 0;
966}
967
968static const struct spi_controller_mem_ops ich_controller_mem_ops = {
969	.adjust_op_size	= ich_spi_adjust_size,
970	.supports_op	= NULL,
971	.exec_op	= ich_spi_exec_op,
972};
973
974static const struct dm_spi_ops ich_spi_ops = {
975	/* xfer is not supported */
976	.set_speed	= ich_spi_set_speed,
977	.set_mode	= ich_spi_set_mode,
978	.mem_ops	= &ich_controller_mem_ops,
979	.get_mmap	= ich_get_mmap,
980	/*
981	 * cs_info is not needed, since we require all chip selects to be
982	 * in the device tree explicitly
983	 */
984};
985
986static const struct udevice_id ich_spi_ids[] = {
987	{ .compatible = "intel,ich7-spi", ICHV_7 },
988	{ .compatible = "intel,ich9-spi", ICHV_9 },
989	{ .compatible = "intel,fast-spi", ICHV_APL },
990	{ }
991};
992
993U_BOOT_DRIVER(intel_fast_spi) = {
994	.name	= "intel_fast_spi",
995	.id	= UCLASS_SPI,
996	.of_match = ich_spi_ids,
997	.ops	= &ich_spi_ops,
998	.of_to_plat = ich_spi_of_to_plat,
999	.plat_auto	= sizeof(struct ich_spi_plat),
1000	.priv_auto	= sizeof(struct ich_spi_priv),
1001	.child_pre_probe = ich_spi_child_pre_probe,
1002	.probe	= ich_spi_probe,
1003	.remove	= ich_spi_remove,
1004	.flags	= DM_FLAG_OS_PREPARE,
1005};
1006