1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2011-12 The Chromium OS Authors.
4 *
5 * This file is derived from the flashrom project.
6 */
7
8#define LOG_CATEGORY	UCLASS_SPI
9
10#include <bootstage.h>
11#include <div64.h>
12#include <dm.h>
13#include <dt-structs.h>
14#include <errno.h>
15#include <log.h>
16#include <malloc.h>
17#include <pch.h>
18#include <pci.h>
19#include <pci_ids.h>
20#include <spi.h>
21#include <spi_flash.h>
22#include <spi-mem.h>
23#include <spl.h>
24#include <asm/fast_spi.h>
25#include <asm/io.h>
26#include <dm/uclass-internal.h>
27#include <asm/mtrr.h>
28#include <linux/bitops.h>
29#include <linux/delay.h>
30#include <linux/sizes.h>
31
32#include "ich.h"
33
34#ifdef DEBUG_TRACE
35#define debug_trace(fmt, args...) debug(fmt, ##args)
36#else
37#define debug_trace(x, args...)
38#endif
39
40static u8 ich_readb(struct ich_spi_priv *priv, int reg)
41{
42	u8 value = readb(priv->base + reg);
43
44	debug_trace("read %2.2x from %4.4x\n", value, reg);
45
46	return value;
47}
48
49static u16 ich_readw(struct ich_spi_priv *priv, int reg)
50{
51	u16 value = readw(priv->base + reg);
52
53	debug_trace("read %4.4x from %4.4x\n", value, reg);
54
55	return value;
56}
57
58static u32 ich_readl(struct ich_spi_priv *priv, int reg)
59{
60	u32 value = readl(priv->base + reg);
61
62	debug_trace("read %8.8x from %4.4x\n", value, reg);
63
64	return value;
65}
66
67static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
68{
69	writeb(value, priv->base + reg);
70	debug_trace("wrote %2.2x to %4.4x\n", value, reg);
71}
72
73static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
74{
75	writew(value, priv->base + reg);
76	debug_trace("wrote %4.4x to %4.4x\n", value, reg);
77}
78
79static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
80{
81	writel(value, priv->base + reg);
82	debug_trace("wrote %8.8x to %4.4x\n", value, reg);
83}
84
85static void write_reg(struct ich_spi_priv *priv, const void *value,
86		      int dest_reg, uint32_t size)
87{
88	memcpy_toio(priv->base + dest_reg, value, size);
89}
90
91static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
92		     uint32_t size)
93{
94	memcpy_fromio(value, priv->base + src_reg, size);
95}
96
97static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
98{
99	const uint32_t bbar_mask = 0x00ffff00;
100	uint32_t ichspi_bbar;
101
102	if (ctlr->bbar) {
103		minaddr &= bbar_mask;
104		ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
105		ichspi_bbar |= minaddr;
106		ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
107	}
108}
109
110/* @return 1 if the SPI flash supports the 33MHz speed */
111static bool ich9_can_do_33mhz(struct udevice *dev)
112{
113	struct ich_spi_priv *priv = dev_get_priv(dev);
114	u32 fdod, speed;
115
116	if (!CONFIG_IS_ENABLED(PCI) || !priv->pch)
117		return false;
118	/* Observe SPI Descriptor Component Section 0 */
119	dm_pci_write_config32(priv->pch, 0xb0, 0x1000);
120
121	/* Extract the Write/Erase SPI Frequency from descriptor */
122	dm_pci_read_config32(priv->pch, 0xb4, &fdod);
123
124	/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
125	speed = (fdod >> 21) & 7;
126
127	return speed == 1;
128}
129
130static void spi_lock_down(struct ich_spi_plat *plat, void *sbase)
131{
132	if (plat->ich_version == ICHV_7) {
133		struct ich7_spi_regs *ich7_spi = sbase;
134
135		setbits_le16(&ich7_spi->spis, SPIS_LOCK);
136	} else if (plat->ich_version == ICHV_9) {
137		struct ich9_spi_regs *ich9_spi = sbase;
138
139		setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN);
140	}
141}
142
143static bool spi_lock_status(struct ich_spi_plat *plat, void *sbase)
144{
145	int lock = 0;
146
147	if (plat->ich_version == ICHV_7) {
148		struct ich7_spi_regs *ich7_spi = sbase;
149
150		lock = readw(&ich7_spi->spis) & SPIS_LOCK;
151	} else if (plat->ich_version == ICHV_9) {
152		struct ich9_spi_regs *ich9_spi = sbase;
153
154		lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
155	}
156
157	return lock != 0;
158}
159
160static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans,
161			    bool lock)
162{
163	uint16_t optypes;
164	uint8_t opmenu[ctlr->menubytes];
165
166	if (!lock) {
167		/* The lock is off, so just use index 0. */
168		ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
169		optypes = ich_readw(ctlr, ctlr->optype);
170		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
171		ich_writew(ctlr, optypes, ctlr->optype);
172		return 0;
173	} else {
174		/* The lock is on. See if what we need is on the menu. */
175		uint8_t optype;
176		uint16_t opcode_index;
177
178		/* Write Enable is handled as atomic prefix */
179		if (trans->opcode == SPI_OPCODE_WREN)
180			return 0;
181
182		read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
183		for (opcode_index = 0; opcode_index < ctlr->menubytes;
184				opcode_index++) {
185			if (opmenu[opcode_index] == trans->opcode)
186				break;
187		}
188
189		if (opcode_index == ctlr->menubytes) {
190			debug("ICH SPI: Opcode %x not found\n", trans->opcode);
191			return -EINVAL;
192		}
193
194		optypes = ich_readw(ctlr, ctlr->optype);
195		optype = (optypes >> (opcode_index * 2)) & 0x3;
196
197		if (optype != trans->type) {
198			debug("ICH SPI: Transaction doesn't fit type %d\n",
199			      optype);
200			return -ENOSPC;
201		}
202		return opcode_index;
203	}
204}
205
206/*
207 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
208 * below is true) or 0. In case the wait was for the bit(s) to set - write
209 * those bits back, which would cause resetting them.
210 *
211 * Return the last read status value on success or -1 on failure.
212 */
213static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
214			   int wait_til_set)
215{
216	int timeout = 600000; /* This will result in 6s */
217	u16 status = 0;
218
219	while (timeout--) {
220		status = ich_readw(ctlr, ctlr->status);
221		if (wait_til_set ^ ((status & bitmask) == 0)) {
222			if (wait_til_set) {
223				ich_writew(ctlr, status & bitmask,
224					   ctlr->status);
225			}
226			return status;
227		}
228		udelay(10);
229	}
230	debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n",
231	      status, bitmask, wait_til_set, status & bitmask);
232
233	return -ETIMEDOUT;
234}
235
236static void ich_spi_config_opcode(struct udevice *dev)
237{
238	struct ich_spi_priv *ctlr = dev_get_priv(dev);
239
240	/*
241	 * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down
242	 * to prevent accidental or intentional writes. Before they get
243	 * locked down, these registers should be initialized properly.
244	 */
245	ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop);
246	ich_writew(ctlr, SPI_OPTYPE, ctlr->optype);
247	ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu);
248	ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32));
249}
250
251static int ich_spi_exec_op_swseq(struct spi_slave *slave,
252				 const struct spi_mem_op *op)
253{
254	struct udevice *bus = dev_get_parent(slave->dev);
255	struct ich_spi_plat *plat = dev_get_plat(bus);
256	struct ich_spi_priv *ctlr = dev_get_priv(bus);
257	uint16_t control;
258	int16_t opcode_index;
259	int with_address;
260	int status;
261	struct spi_trans *trans = &ctlr->trans;
262	bool lock = spi_lock_status(plat, ctlr->base);
263	int ret = 0;
264
265	trans->in = NULL;
266	trans->out = NULL;
267	trans->type = 0xFF;
268
269	if (op->data.nbytes) {
270		if (op->data.dir == SPI_MEM_DATA_IN) {
271			trans->in = op->data.buf.in;
272			trans->bytesin = op->data.nbytes;
273		} else {
274			trans->out = op->data.buf.out;
275			trans->bytesout = op->data.nbytes;
276		}
277	}
278
279	if (trans->opcode != op->cmd.opcode)
280		trans->opcode = op->cmd.opcode;
281
282	if (lock && trans->opcode == SPI_OPCODE_WRDIS)
283		return 0;
284
285	if (trans->opcode == SPI_OPCODE_WREN) {
286		/*
287		 * Treat Write Enable as Atomic Pre-Op if possible
288		 * in order to prevent the Management Engine from
289		 * issuing a transaction between WREN and DATA.
290		 */
291		if (!lock)
292			ich_writew(ctlr, trans->opcode, ctlr->preop);
293		return 0;
294	}
295
296	ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
297	if (ret < 0)
298		return ret;
299
300	if (plat->ich_version == ICHV_7)
301		ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
302	else
303		ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
304
305	/* Try to guess spi transaction type */
306	if (op->data.dir == SPI_MEM_DATA_OUT) {
307		if (op->addr.nbytes)
308			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
309		else
310			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
311	} else {
312		if (op->addr.nbytes)
313			trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
314		else
315			trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
316	}
317	/* Special erase case handling */
318	if (op->addr.nbytes && !op->data.buswidth)
319		trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
320
321	opcode_index = spi_setup_opcode(ctlr, trans, lock);
322	if (opcode_index < 0)
323		return -EINVAL;
324
325	if (op->addr.nbytes) {
326		trans->offset = op->addr.val;
327		with_address = 1;
328	}
329
330	if (ctlr->speed && ctlr->max_speed >= 33000000) {
331		int byte;
332
333		byte = ich_readb(ctlr, ctlr->speed);
334		if (ctlr->cur_speed >= 33000000)
335			byte |= SSFC_SCF_33MHZ;
336		else
337			byte &= ~SSFC_SCF_33MHZ;
338		ich_writeb(ctlr, byte, ctlr->speed);
339	}
340
341	/* Preset control fields */
342	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
343
344	/* Issue atomic preop cycle if needed */
345	if (ich_readw(ctlr, ctlr->preop))
346		control |= SPIC_ACS;
347
348	if (!trans->bytesout && !trans->bytesin) {
349		/* SPI addresses are 24 bit only */
350		if (with_address) {
351			ich_writel(ctlr, trans->offset & 0x00FFFFFF,
352				   ctlr->addr);
353		}
354		/*
355		 * This is a 'no data' command (like Write Enable), its
356		 * bitesout size was 1, decremented to zero while executing
357		 * spi_setup_opcode() above. Tell the chip to send the
358		 * command.
359		 */
360		ich_writew(ctlr, control, ctlr->control);
361
362		/* wait for the result */
363		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
364		if (status < 0)
365			return status;
366
367		if (status & SPIS_FCERR) {
368			debug("ICH SPI: Command transaction error\n");
369			return -EIO;
370		}
371
372		return 0;
373	}
374
375	while (trans->bytesout || trans->bytesin) {
376		uint32_t data_length;
377
378		/* SPI addresses are 24 bit only */
379		ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
380
381		if (trans->bytesout)
382			data_length = min(trans->bytesout, ctlr->databytes);
383		else
384			data_length = min(trans->bytesin, ctlr->databytes);
385
386		/* Program data into FDATA0 to N */
387		if (trans->bytesout) {
388			write_reg(ctlr, trans->out, ctlr->data, data_length);
389			trans->bytesout -= data_length;
390		}
391
392		/* Add proper control fields' values */
393		control &= ~((ctlr->databytes - 1) << 8);
394		control |= SPIC_DS;
395		control |= (data_length - 1) << 8;
396
397		/* write it */
398		ich_writew(ctlr, control, ctlr->control);
399
400		/* Wait for Cycle Done Status or Flash Cycle Error */
401		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
402		if (status < 0)
403			return status;
404
405		if (status & SPIS_FCERR) {
406			debug("ICH SPI: Data transaction error %x\n", status);
407			return -EIO;
408		}
409
410		if (trans->bytesin) {
411			read_reg(ctlr, ctlr->data, trans->in, data_length);
412			trans->bytesin -= data_length;
413		}
414	}
415
416	/* Clear atomic preop now that xfer is done */
417	if (!lock)
418		ich_writew(ctlr, 0, ctlr->preop);
419
420	return 0;
421}
422
423/*
424 * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
425 * that the operation does not cross page boundary.
426 */
427static uint get_xfer_len(u32 offset, int len, int page_size)
428{
429	uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
430	uint bytes_left = ALIGN(offset, page_size) - offset;
431
432	if (bytes_left)
433		xfer_len = min(xfer_len, bytes_left);
434
435	return xfer_len;
436}
437
438/* Fill FDATAn FIFO in preparation for a write transaction */
439static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data,
440			   uint len)
441{
442	memcpy(regs->fdata, data, len);
443}
444
445/* Drain FDATAn FIFO after a read transaction populates data */
446static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len)
447{
448	memcpy(dest, regs->fdata, len);
449}
450
451/* Fire up a transfer using the hardware sequencer */
452static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
453			     uint offset, uint len)
454{
455	/* Make sure all W1C status bits get cleared */
456	u32 hsfsts;
457
458	hsfsts = readl(&regs->hsfsts_ctl);
459	hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK);
460	hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE;
461
462	/* Set up transaction parameters */
463	hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT;
464	hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK;
465	hsfsts |= HSFSTS_FGO;
466
467	writel(offset, &regs->faddr);
468	writel(hsfsts, &regs->hsfsts_ctl);
469}
470
471static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset)
472{
473	ulong start;
474	u32 hsfsts;
475
476	start = get_timer(0);
477	do {
478		hsfsts = readl(&regs->hsfsts_ctl);
479		if (hsfsts & HSFSTS_FCERR) {
480			debug("SPI transaction error at offset %x HSFSTS = %08x\n",
481			      offset, hsfsts);
482			return -EIO;
483		}
484		if (hsfsts & HSFSTS_AEL)
485			return -EPERM;
486
487		if (hsfsts & HSFSTS_FDONE)
488			return 0;
489	} while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS);
490
491	debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n",
492	      offset, hsfsts, (uint)get_timer(start));
493
494	return -ETIMEDOUT;
495}
496
497/**
498 * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing
499 *
500 * This waits until complete or timeout
501 *
502 * @regs: SPI registers
503 * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t)
504 * @offset: Offset to access
505 * @len: Number of bytes to transfer (can be 0)
506 * Return: 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error
507 *	(AEL), -ETIMEDOUT on timeout
508 */
509static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
510				uint offset, uint len)
511{
512	start_hwseq_xfer(regs, hsfsts_cycle, offset, len);
513
514	return wait_for_hwseq_xfer(regs, offset);
515}
516
517static int ich_spi_exec_op_hwseq(struct spi_slave *slave,
518				 const struct spi_mem_op *op)
519{
520	struct spi_flash *flash = dev_get_uclass_priv(slave->dev);
521	struct udevice *bus = dev_get_parent(slave->dev);
522	struct ich_spi_priv *priv = dev_get_priv(bus);
523	struct fast_spi_regs *regs = priv->base;
524	uint page_size;
525	uint offset;
526	int cycle;
527	uint len;
528	bool out;
529	int ret;
530	u8 *buf;
531
532	offset = op->addr.val;
533	len = op->data.nbytes;
534
535	switch (op->cmd.opcode) {
536	case SPINOR_OP_RDID:
537		cycle = HSFSTS_CYCLE_RDID;
538		break;
539	case SPINOR_OP_READ_FAST:
540		cycle = HSFSTS_CYCLE_READ;
541		break;
542	case SPINOR_OP_PP:
543		cycle = HSFSTS_CYCLE_WRITE;
544		break;
545	case SPINOR_OP_WREN:
546		/* Nothing needs to be done */
547		return 0;
548	case SPINOR_OP_WRSR:
549		cycle = HSFSTS_CYCLE_WR_STATUS;
550		break;
551	case SPINOR_OP_RDSR:
552		cycle = HSFSTS_CYCLE_RD_STATUS;
553		break;
554	case SPINOR_OP_WRDI:
555		return 0;  /* ignore */
556	case SPINOR_OP_BE_4K:
557		cycle = HSFSTS_CYCLE_4K_ERASE;
558		ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0);
559		return ret;
560	default:
561		debug("Unknown cycle %x\n", op->cmd.opcode);
562		return -EINVAL;
563	};
564
565	out = op->data.dir == SPI_MEM_DATA_OUT;
566	buf = out ? (u8 *)op->data.buf.out : op->data.buf.in;
567	page_size = flash->page_size ? : 256;
568
569	while (len) {
570		uint xfer_len = get_xfer_len(offset, len, page_size);
571
572		if (out)
573			fill_xfer_fifo(regs, buf, xfer_len);
574
575		ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len);
576		if (ret)
577			return ret;
578
579		if (!out)
580			drain_xfer_fifo(regs, buf, xfer_len);
581
582		offset += xfer_len;
583		buf += xfer_len;
584		len -= xfer_len;
585	}
586
587	return 0;
588}
589
590static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
591{
592	struct udevice *bus = dev_get_parent(slave->dev);
593	struct ich_spi_plat *plat = dev_get_plat(bus);
594	int ret;
595
596	bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi");
597	if (plat->hwseq)
598		ret = ich_spi_exec_op_hwseq(slave, op);
599	else
600		ret = ich_spi_exec_op_swseq(slave, op);
601	bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI);
602
603	return ret;
604}
605
606#if CONFIG_IS_ENABLED(OF_REAL)
607/**
608 * ich_spi_get_basics() - Get basic information about the ICH device
609 *
610 * This works without probing any devices if requested.
611 *
612 * @bus: SPI controller to use
613 * @can_probe: true if this function is allowed to probe the PCH
614 * @pchp: Returns a pointer to the pch, or NULL if not found
615 * @ich_versionp: Returns ICH version detected on success
616 * @mmio_basep: Returns the address of the SPI registers on success
617 * Return: 0 if OK, -EPROTOTYPE if the PCH could not be found, -EAGAIN if
618 *	the function cannot success without probing, possible another error if
619 *	pch_get_spi_base() fails
620 */
621static int ich_spi_get_basics(struct udevice *bus, bool can_probe,
622			      struct udevice **pchp,
623			      enum ich_version *ich_versionp, ulong *mmio_basep)
624{
625	struct udevice *pch = NULL;
626	int ret = 0;
627
628	/* Find a PCH if there is one */
629	if (can_probe) {
630		pch = dev_get_parent(bus);
631		if (device_get_uclass_id(pch) != UCLASS_PCH) {
632			uclass_first_device(UCLASS_PCH, &pch);
633			if (!pch)
634				; /* ignore this error since we don't need it */
635		}
636	}
637
638	*ich_versionp = dev_get_driver_data(bus);
639	if (*ich_versionp == ICHV_APL)
640		*mmio_basep = dm_pci_read_bar32(bus, 0);
641	else if (pch)
642		ret = pch_get_spi_base(pch, mmio_basep);
643	else
644		return -EAGAIN;
645	*pchp = pch;
646
647	return ret;
648}
649#endif
650
651/**
652 * ich_get_mmap_bus() - Handle the get_mmap() method for a bus
653 *
654 * There are several cases to consider:
655 * 1. Using of-platdata, in which case we have the BDF and can access the
656 *	registers by reading the BAR
657 * 2. Not using of-platdata, but still with a SPI controller that is on its own
658 * PCI PDF. In this case we read the BDF from the parent plat and again get
659 *	the registers by reading the BAR
660 * 3. Using a SPI controller that is a child of the PCH, in which case we try
661 *	to find the registers by asking the PCH. This only works if the PCH has
662 *	been probed (which it will be if the bus is probed since parents are
663 *	probed before children), since the PCH may not have a PCI address until
664 *	its parent (the PCI bus itself) has been probed. If you are using this
665 *	method then you should make sure the SPI bus is probed.
666 *
667 * The first two cases are useful in early init. The last one is more useful
668 * afterwards.
669 */
670static int ich_get_mmap_bus(struct udevice *bus, ulong *map_basep,
671			    uint *map_sizep, uint *offsetp)
672{
673	pci_dev_t spi_bdf;
674#if CONFIG_IS_ENABLED(OF_REAL)
675	if (device_is_on_pci_bus(bus)) {
676		struct pci_child_plat *pplat;
677
678		pplat = dev_get_parent_plat(bus);
679		spi_bdf = pplat->devfn;
680	} else {
681		enum ich_version ich_version;
682		struct fast_spi_regs *regs;
683		struct udevice *pch;
684		ulong mmio_base;
685		int ret;
686
687		ret = ich_spi_get_basics(bus, device_active(bus), &pch,
688					 &ich_version, &mmio_base);
689		if (ret)
690			return log_msg_ret("basics", ret);
691		regs = (struct fast_spi_regs *)mmio_base;
692
693		return fast_spi_get_bios_mmap_regs(regs, map_basep, map_sizep,
694						   offsetp);
695	}
696#else
697	struct ich_spi_plat *plat = dev_get_plat(bus);
698
699	/*
700	 * We cannot rely on plat->bdf being set up yet since this method can
701	 * be called before the device is probed. Use the of-platdata directly
702	 * instead.
703	 */
704	spi_bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
705#endif
706
707	return fast_spi_get_bios_mmap(spi_bdf, map_basep, map_sizep, offsetp);
708}
709
710static int ich_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
711			uint *offsetp)
712{
713	struct udevice *bus = dev_get_parent(dev);
714
715	return ich_get_mmap_bus(bus, map_basep, map_sizep, offsetp);
716}
717
718static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op)
719{
720	unsigned int page_offset;
721	int addr = op->addr.val;
722	unsigned int byte_count = op->data.nbytes;
723
724	if (hweight32(ICH_BOUNDARY) == 1) {
725		page_offset = addr & (ICH_BOUNDARY - 1);
726	} else {
727		u64 aux = addr;
728
729		page_offset = do_div(aux, ICH_BOUNDARY);
730	}
731
732	if (op->data.dir == SPI_MEM_DATA_IN) {
733		if (slave->max_read_size) {
734			op->data.nbytes = min(ICH_BOUNDARY - page_offset,
735					      slave->max_read_size);
736		}
737	} else if (slave->max_write_size) {
738		op->data.nbytes = min(ICH_BOUNDARY - page_offset,
739				      slave->max_write_size);
740	}
741
742	op->data.nbytes = min(op->data.nbytes, byte_count);
743
744	return 0;
745}
746
747static int ich_protect_lockdown(struct udevice *dev)
748{
749	struct ich_spi_plat *plat = dev_get_plat(dev);
750	struct ich_spi_priv *priv = dev_get_priv(dev);
751	int ret = -ENOSYS;
752
753	/* Disable the BIOS write protect so write commands are allowed */
754	if (priv->pch)
755		ret = pch_set_spi_protect(priv->pch, false);
756	if (ret == -ENOSYS) {
757		u8 bios_cntl;
758
759		bios_cntl = ich_readb(priv, priv->bcr);
760		bios_cntl &= ~BIT(5);	/* clear Enable InSMM_STS (EISS) */
761		bios_cntl |= 1;		/* Write Protect Disable (WPD) */
762		ich_writeb(priv, bios_cntl, priv->bcr);
763	} else if (ret) {
764		debug("%s: Failed to disable write-protect: err=%d\n",
765		      __func__, ret);
766		return ret;
767	}
768
769	/* Lock down SPI controller settings if required */
770	if (plat->lockdown) {
771		ich_spi_config_opcode(dev);
772		spi_lock_down(plat, priv->base);
773	}
774
775	return 0;
776}
777
778static int ich_init_controller(struct udevice *dev,
779			       struct ich_spi_plat *plat,
780			       struct ich_spi_priv *ctlr)
781{
782	if (spl_phase() == PHASE_TPL) {
783		struct ich_spi_plat *plat = dev_get_plat(dev);
784		int ret;
785
786		ret = fast_spi_early_init(plat->bdf, plat->mmio_base);
787		if (ret)
788			return ret;
789	}
790
791	ctlr->base = (void *)plat->mmio_base;
792	if (plat->ich_version == ICHV_7) {
793		struct ich7_spi_regs *ich7_spi = ctlr->base;
794
795		ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
796		ctlr->menubytes = sizeof(ich7_spi->opmenu);
797		ctlr->optype = offsetof(struct ich7_spi_regs, optype);
798		ctlr->addr = offsetof(struct ich7_spi_regs, spia);
799		ctlr->data = offsetof(struct ich7_spi_regs, spid);
800		ctlr->databytes = sizeof(ich7_spi->spid);
801		ctlr->status = offsetof(struct ich7_spi_regs, spis);
802		ctlr->control = offsetof(struct ich7_spi_regs, spic);
803		ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
804		ctlr->preop = offsetof(struct ich7_spi_regs, preop);
805	} else if (plat->ich_version == ICHV_9) {
806		struct ich9_spi_regs *ich9_spi = ctlr->base;
807
808		ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
809		ctlr->menubytes = sizeof(ich9_spi->opmenu);
810		ctlr->optype = offsetof(struct ich9_spi_regs, optype);
811		ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
812		ctlr->data = offsetof(struct ich9_spi_regs, fdata);
813		ctlr->databytes = sizeof(ich9_spi->fdata);
814		ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
815		ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
816		ctlr->speed = ctlr->control + 2;
817		ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
818		ctlr->preop = offsetof(struct ich9_spi_regs, preop);
819		ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
820		ctlr->pr = &ich9_spi->pr[0];
821	} else if (plat->ich_version == ICHV_APL) {
822	} else {
823		debug("ICH SPI: Unrecognised ICH version %d\n",
824		      plat->ich_version);
825		return -EINVAL;
826	}
827
828	/* Work out the maximum speed we can support */
829	ctlr->max_speed = 20000000;
830	if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev))
831		ctlr->max_speed = 33000000;
832	debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n",
833	      plat->ich_version, plat->mmio_base, ctlr->max_speed);
834
835	ich_set_bbar(ctlr, 0);
836
837	return 0;
838}
839
840static int ich_cache_bios_region(struct udevice *dev)
841{
842	ulong map_base;
843	uint map_size;
844	uint offset;
845	ulong base;
846	int ret;
847
848	ret = ich_get_mmap_bus(dev, &map_base, &map_size, &offset);
849	if (ret)
850		return ret;
851
852	/* Don't use WRBACK since we are not supposed to write to SPI flash */
853	base = SZ_4G - map_size;
854	mtrr_set_next_var(MTRR_TYPE_WRPROT, base, map_size);
855	log_debug("BIOS cache base=%lx, size=%x\n", base, (uint)map_size);
856
857	return 0;
858}
859
860static int ich_spi_probe(struct udevice *dev)
861{
862	struct ich_spi_plat *plat = dev_get_plat(dev);
863	struct ich_spi_priv *priv = dev_get_priv(dev);
864	int ret;
865
866	ret = ich_init_controller(dev, plat, priv);
867	if (ret)
868		return ret;
869
870	if (spl_phase() == PHASE_TPL) {
871		/* Cache the BIOS to speed things up */
872		ret = ich_cache_bios_region(dev);
873		if (ret)
874			return ret;
875	} else {
876		ret = ich_protect_lockdown(dev);
877		if (ret)
878			return ret;
879	}
880	priv->cur_speed = priv->max_speed;
881
882	return 0;
883}
884
885static int ich_spi_remove(struct udevice *bus)
886{
887	/*
888	 * Configure SPI controller so that the Linux MTD driver can fully
889	 * access the SPI NOR chip
890	 */
891	ich_spi_config_opcode(bus);
892
893	return 0;
894}
895
896static int ich_spi_set_speed(struct udevice *bus, uint speed)
897{
898	struct ich_spi_priv *priv = dev_get_priv(bus);
899
900	priv->cur_speed = speed;
901
902	return 0;
903}
904
905static int ich_spi_set_mode(struct udevice *bus, uint mode)
906{
907	debug("%s: mode=%d\n", __func__, mode);
908
909	return 0;
910}
911
912static int ich_spi_child_pre_probe(struct udevice *dev)
913{
914	struct udevice *bus = dev_get_parent(dev);
915	struct ich_spi_plat *plat = dev_get_plat(bus);
916	struct ich_spi_priv *priv = dev_get_priv(bus);
917	struct spi_slave *slave = dev_get_parent_priv(dev);
918
919	/*
920	 * Yes this controller can only transfer a small number of bytes at
921	 * once! The limit is typically 64 bytes. For hardware sequencing a
922	 * a loop is used to get around this.
923	 */
924	if (!plat->hwseq) {
925		slave->max_read_size = priv->databytes;
926		slave->max_write_size = priv->databytes;
927	}
928	/*
929	 * ICH 7 SPI controller only supports array read command
930	 * and byte program command for SST flash
931	 */
932	if (plat->ich_version == ICHV_7)
933		slave->mode = SPI_RX_SLOW | SPI_TX_BYTE;
934
935	return 0;
936}
937
938static int ich_spi_of_to_plat(struct udevice *dev)
939{
940	struct ich_spi_plat *plat = dev_get_plat(dev);
941
942#if CONFIG_IS_ENABLED(OF_REAL)
943	struct ich_spi_priv *priv = dev_get_priv(dev);
944	int ret;
945
946	ret = ich_spi_get_basics(dev, true, &priv->pch, &plat->ich_version,
947				 &plat->mmio_base);
948	if (ret)
949		return log_msg_ret("basics", ret);
950	plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down");
951	/*
952	 * Use an int so that the property is present in of-platdata even
953	 * when false.
954	 */
955	plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0);
956#else
957	plat->ich_version = ICHV_APL;
958	plat->mmio_base = plat->dtplat.early_regs[0];
959	plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
960	plat->hwseq = plat->dtplat.intel_hardware_seq;
961#endif
962	debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base);
963
964	return 0;
965}
966
967static const struct spi_controller_mem_ops ich_controller_mem_ops = {
968	.adjust_op_size	= ich_spi_adjust_size,
969	.supports_op	= NULL,
970	.exec_op	= ich_spi_exec_op,
971};
972
973static const struct dm_spi_ops ich_spi_ops = {
974	/* xfer is not supported */
975	.set_speed	= ich_spi_set_speed,
976	.set_mode	= ich_spi_set_mode,
977	.mem_ops	= &ich_controller_mem_ops,
978	.get_mmap	= ich_get_mmap,
979	/*
980	 * cs_info is not needed, since we require all chip selects to be
981	 * in the device tree explicitly
982	 */
983};
984
985static const struct udevice_id ich_spi_ids[] = {
986	{ .compatible = "intel,ich7-spi", ICHV_7 },
987	{ .compatible = "intel,ich9-spi", ICHV_9 },
988	{ .compatible = "intel,fast-spi", ICHV_APL },
989	{ }
990};
991
992U_BOOT_DRIVER(intel_fast_spi) = {
993	.name	= "intel_fast_spi",
994	.id	= UCLASS_SPI,
995	.of_match = ich_spi_ids,
996	.ops	= &ich_spi_ops,
997	.of_to_plat = ich_spi_of_to_plat,
998	.plat_auto	= sizeof(struct ich_spi_plat),
999	.priv_auto	= sizeof(struct ich_spi_priv),
1000	.child_pre_probe = ich_spi_child_pre_probe,
1001	.probe	= ich_spi_probe,
1002	.remove	= ich_spi_remove,
1003	.flags	= DM_FLAG_OS_PREPARE,
1004};
1005