1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4 *
5 * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6 */
7
8#include <dm.h>
9#include <dm/device_compat.h>
10#include <dm/devres.h>
11#include <div64.h>
12#include <generic-phy.h>
13#include <linux/kernel.h>
14#include <linux/iopoll.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/math64.h>
18#include <linux/time.h>
19#include <phy-mipi-dphy.h>
20#include <reset.h>
21
22#define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
23
24/*
25 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
26 * is the first address, the other from the bit4 to bit0 is the second address.
27 * when you configure the registers, you must set both of them. The Clock Lane
28 * and Data Lane use the same registers with the same second address, but the
29 * first address is different.
30 */
31#define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
32#define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
33#define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
34					 SECOND_ADDRESS(second))
35
36/* Analog Register Part: reg00 */
37#define BANDGAP_POWER_MASK			BIT(7)
38#define BANDGAP_POWER_DOWN			BIT(7)
39#define BANDGAP_POWER_ON			0
40#define LANE_EN_MASK				GENMASK(6, 2)
41#define LANE_EN_CK				BIT(6)
42#define LANE_EN_3				BIT(5)
43#define LANE_EN_2				BIT(4)
44#define LANE_EN_1				BIT(3)
45#define LANE_EN_0				BIT(2)
46#define POWER_WORK_MASK				GENMASK(1, 0)
47#define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
48#define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
49/* Analog Register Part: reg01 */
50#define REG_SYNCRST_MASK			BIT(2)
51#define REG_SYNCRST_RESET			BIT(2)
52#define REG_SYNCRST_NORMAL			0
53#define REG_LDOPD_MASK				BIT(1)
54#define REG_LDOPD_POWER_DOWN			BIT(1)
55#define REG_LDOPD_POWER_ON			0
56#define REG_PLLPD_MASK				BIT(0)
57#define REG_PLLPD_POWER_DOWN			BIT(0)
58#define REG_PLLPD_POWER_ON			0
59/* Analog Register Part: reg03 */
60#define REG_FBDIV_HI_MASK			BIT(5)
61#define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
62#define REG_PREDIV_MASK				GENMASK(4, 0)
63#define REG_PREDIV(x)				UPDATE(x, 4, 0)
64/* Analog Register Part: reg04 */
65#define REG_FBDIV_LO_MASK			GENMASK(7, 0)
66#define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
67/* Analog Register Part: reg05 */
68#define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
69#define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
70#define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
71#define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
72/* Analog Register Part: reg06 */
73#define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
74#define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
75#define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
76#define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
77/* Analog Register Part: reg07 */
78#define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
79#define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
80#define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
81#define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
82/* Analog Register Part: reg08 */
83#define PLL_POST_DIV_ENABLE_MASK		BIT(5)
84#define PLL_POST_DIV_ENABLE			BIT(5)
85#define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
86#define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
87#define SAMPLE_CLOCK_DIRECTION_FORWARD		0
88#define LOWFRE_EN_MASK				BIT(5)
89#define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
90#define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
91/* Analog Register Part: reg0b */
92#define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
93#define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
94#define VOD_MIN_RANGE				0x1
95#define VOD_MID_RANGE				0x3
96#define VOD_BIG_RANGE				0x7
97#define VOD_MAX_RANGE				0xf
98/* Analog Register Part: reg1E */
99#define PLL_MODE_SEL_MASK			GENMASK(6, 5)
100#define PLL_MODE_SEL_LVDS_MODE			0
101#define PLL_MODE_SEL_MIPI_MODE			BIT(5)
102/* Digital Register Part: reg00 */
103#define REG_DIG_RSTN_MASK			BIT(0)
104#define REG_DIG_RSTN_NORMAL			BIT(0)
105#define REG_DIG_RSTN_RESET			0
106/* Digital Register Part: reg01 */
107#define INVERT_TXCLKESC_MASK			BIT(1)
108#define INVERT_TXCLKESC_ENABLE			BIT(1)
109#define INVERT_TXCLKESC_DISABLE			0
110#define INVERT_TXBYTECLKHS_MASK			BIT(0)
111#define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
112#define INVERT_TXBYTECLKHS_DISABLE		0
113/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
114#define T_LPX_CNT_MASK				GENMASK(5, 0)
115#define T_LPX_CNT(x)				UPDATE(x, 5, 0)
116/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
117#define T_HS_ZERO_CNT_HI_MASK			BIT(7)
118#define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
119#define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
120#define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
121/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
122#define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
123#define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
124/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
125#define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
126#define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
127/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
128#define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
129#define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
130/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
131#define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
132#define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
133/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
134#define LPDT_TX_PPI_SYNC_MASK			BIT(2)
135#define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
136#define LPDT_TX_PPI_SYNC_DISABLE		0
137#define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
138#define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
139/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
140#define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
141#define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
142/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
143#define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
144#define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
145/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
146#define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
147#define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
148#define T_TA_GO_CNT_MASK			GENMASK(5, 0)
149#define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
150/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
151#define T_HS_EXIT_CNT_HI_MASK			BIT(6)
152#define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
153#define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
154#define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
155/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
156#define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
157#define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
158/* LVDS Register Part: reg00 */
159#define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
160#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
161#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
162/* LVDS Register Part: reg01 */
163#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
164#define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
165#define LVDS_DIGITAL_INTERNAL_DISABLE		0
166/* LVDS Register Part: reg03 */
167#define MODE_ENABLE_MASK			GENMASK(2, 0)
168#define TTL_MODE_ENABLE				BIT(2)
169#define LVDS_MODE_ENABLE			BIT(1)
170#define MIPI_MODE_ENABLE			BIT(0)
171/* LVDS Register Part: reg0b */
172#define LVDS_LANE_EN_MASK			GENMASK(7, 3)
173#define LVDS_DATA_LANE0_EN			BIT(7)
174#define LVDS_DATA_LANE1_EN			BIT(6)
175#define LVDS_DATA_LANE2_EN			BIT(5)
176#define LVDS_DATA_LANE3_EN			BIT(4)
177#define LVDS_CLK_LANE_EN			BIT(3)
178#define LVDS_PLL_POWER_MASK			BIT(2)
179#define LVDS_PLL_POWER_OFF			BIT(2)
180#define LVDS_PLL_POWER_ON			0
181#define LVDS_BANDGAP_POWER_MASK			BIT(0)
182#define LVDS_BANDGAP_POWER_DOWN			BIT(0)
183#define LVDS_BANDGAP_POWER_ON			0
184
185#define DSI_PHY_RSTZ				0xa0
186#define PHY_ENABLECLK				BIT(2)
187#define DSI_PHY_STATUS				0xb0
188#define PHY_LOCK				BIT(0)
189
190#define msleep(a)				udelay(a * 1000)
191
192enum phy_max_rate {
193	MAX_1GHZ,
194	MAX_2_5GHZ,
195};
196
197struct clk_hw {
198	struct clk_core *core;
199	struct clk *clk;
200	const struct clk_init_data *init;
201};
202
203struct inno_video_phy_plat_data {
204	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
205	const unsigned int num_timings;
206	enum phy_max_rate max_rate;
207};
208
209struct inno_dsidphy {
210	struct udevice *dev;
211	struct clk *ref_clk;
212	struct clk *pclk_phy;
213	struct clk *pclk_host;
214	const struct inno_video_phy_plat_data *pdata;
215	void __iomem *phy_base;
216	void __iomem *host_base;
217	struct reset_ctl *rst;
218	struct phy_configure_opts_mipi_dphy dphy_cfg;
219
220	struct clk *pll_clk;
221	struct {
222		struct clk_hw hw;
223		u8 prediv;
224		u16 fbdiv;
225		unsigned long rate;
226	} pll;
227};
228
229enum {
230	REGISTER_PART_ANALOG,
231	REGISTER_PART_DIGITAL,
232	REGISTER_PART_CLOCK_LANE,
233	REGISTER_PART_DATA0_LANE,
234	REGISTER_PART_DATA1_LANE,
235	REGISTER_PART_DATA2_LANE,
236	REGISTER_PART_DATA3_LANE,
237	REGISTER_PART_LVDS,
238};
239
240struct inno_mipi_dphy_timing {
241	unsigned long rate;
242	u8 lpx;
243	u8 hs_prepare;
244	u8 clk_lane_hs_zero;
245	u8 data_lane_hs_zero;
246	u8 hs_trail;
247};
248
249static const
250struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
251	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
252	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
253	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
254	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
255	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
256	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
257	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
258	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
259	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
260	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
261	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
262};
263
264static const
265struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
266	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
267	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
268	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
269	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
270	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
271	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
272	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
273	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
274	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
275	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
276	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
277	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
278	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
279	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
280	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
281	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
282	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
283	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
284	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
285};
286
287static void phy_update_bits(struct inno_dsidphy *inno,
288			    u8 first, u8 second, u8 mask, u8 val)
289{
290	u32 reg = PHY_REG(first, second) << 2;
291	unsigned int tmp, orig;
292
293	orig = readl(inno->phy_base + reg);
294	tmp = orig & ~mask;
295	tmp |= val & mask;
296	writel(tmp, inno->phy_base + reg);
297}
298
299static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
300						unsigned long rate)
301{
302	unsigned long prate;
303	unsigned long best_freq = 0;
304	unsigned long fref, fout;
305	u8 min_prediv, max_prediv;
306	u8 _prediv, best_prediv = 1;
307	u16 _fbdiv, best_fbdiv = 1;
308	u32 min_delta = UINT_MAX;
309
310	/*
311	 * Upstream Linux tries to read the ref_clk, while the BSP
312	 * U-Boot hard-codes this as 24MHz. Try the first, and if that
313	 * fails do the second.
314	 */
315	prate = clk_get_rate(inno->ref_clk);
316	if (IS_ERR_VALUE(prate))
317		prate = 24000000;
318
319	/*
320	 * The PLL output frequency can be calculated using a simple formula:
321	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
322	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
323	 */
324	fref = prate / 2;
325	if (rate > 1000000000UL)
326		fout = 1000000000UL;
327	else
328		fout = rate;
329
330	/* 5Mhz < Fref / prediv < 40MHz */
331	min_prediv = DIV_ROUND_UP(fref, 40000000);
332	max_prediv = fref / 5000000;
333
334	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
335		u64 tmp;
336		u32 delta;
337
338		tmp = (u64)fout * _prediv;
339		do_div(tmp, fref);
340		_fbdiv = tmp;
341
342		/*
343		 * The possible settings of feedback divider are
344		 * 12, 13, 14, 16, ~ 511
345		 */
346		if (_fbdiv == 15)
347			continue;
348
349		if (_fbdiv < 12 || _fbdiv > 511)
350			continue;
351
352		tmp = (u64)_fbdiv * fref;
353		do_div(tmp, _prediv);
354
355		delta = abs(fout - tmp);
356		if (!delta) {
357			best_prediv = _prediv;
358			best_fbdiv = _fbdiv;
359			best_freq = tmp;
360			break;
361		} else if (delta < min_delta) {
362			best_prediv = _prediv;
363			best_fbdiv = _fbdiv;
364			best_freq = tmp;
365			min_delta = delta;
366		}
367	}
368
369	if (best_freq) {
370		inno->pll.prediv = best_prediv;
371		inno->pll.fbdiv = best_fbdiv;
372		inno->pll.rate = best_freq;
373	}
374
375	return best_freq;
376}
377
378static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
379{
380	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
381	const struct inno_mipi_dphy_timing *timings;
382	u32 t_txbyteclkhs, t_txclkesc;
383	u32 txbyteclkhs, txclkesc, esc_clk_div;
384	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
385	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
386	unsigned int i;
387
388	timings = inno->pdata->inno_mipi_dphy_timing_table;
389
390	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
391
392	/* Select MIPI mode */
393	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
394			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
395	/* Configure PLL */
396	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
397			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
398	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
399			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
400	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
401			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
402	if (inno->pdata->max_rate == MAX_2_5GHZ) {
403		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
404				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
405		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
406				CLOCK_LANE_VOD_RANGE_SET_MASK,
407				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
408	}
409	/* Enable PLL and LDO */
410	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
411			REG_LDOPD_MASK | REG_PLLPD_MASK,
412			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
413	/* Reset analog */
414	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
415			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
416	udelay(1);
417	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
418			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
419	/* Reset digital */
420	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
421			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
422	udelay(1);
423	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
424			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
425
426	txbyteclkhs = inno->pll.rate / 8;
427	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
428
429	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
430	txclkesc = txbyteclkhs / esc_clk_div;
431	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
432
433	/*
434	 * The value of counter for HS Ths-exit
435	 * Ths-exit = Tpin_txbyteclkhs * value
436	 */
437	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
438	/*
439	 * The value of counter for HS Tclk-post
440	 * Tclk-post = Tpin_txbyteclkhs * value
441	 */
442	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
443	/*
444	 * The value of counter for HS Tclk-pre
445	 * Tclk-pre = Tpin_txbyteclkhs * value
446	 */
447	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
448
449	/*
450	 * The value of counter for HS Tta-go
451	 * Tta-go for turnaround
452	 * Tta-go = Ttxclkesc * value
453	 */
454	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
455	/*
456	 * The value of counter for HS Tta-sure
457	 * Tta-sure for turnaround
458	 * Tta-sure = Ttxclkesc * value
459	 */
460	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
461	/*
462	 * The value of counter for HS Tta-wait
463	 * Tta-wait for turnaround
464	 * Tta-wait = Ttxclkesc * value
465	 */
466	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
467
468	for (i = 0; i < inno->pdata->num_timings; i++)
469		if (inno->pll.rate <= timings[i].rate)
470			break;
471
472	if (i == inno->pdata->num_timings)
473		--i;
474
475	/*
476	 * The value of counter for HS Tlpx Time
477	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
478	 */
479	if (inno->pdata->max_rate == MAX_1GHZ) {
480		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
481		if (lpx >= 2)
482			lpx -= 2;
483	} else {
484		lpx = timings[i].lpx;
485	}
486
487	hs_prepare = timings[i].hs_prepare;
488	hs_trail = timings[i].hs_trail;
489	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
490	data_lane_hs_zero = timings[i].data_lane_hs_zero;
491	wakeup = 0x3ff;
492
493	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
494		if (i == REGISTER_PART_CLOCK_LANE)
495			hs_zero = clk_lane_hs_zero;
496		else
497			hs_zero = data_lane_hs_zero;
498
499		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
500				T_LPX_CNT(lpx));
501		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
502				T_HS_PREPARE_CNT(hs_prepare));
503		if (inno->pdata->max_rate == MAX_2_5GHZ)
504			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
505					T_HS_ZERO_CNT_HI(hs_zero >> 6));
506		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
507				T_HS_ZERO_CNT_LO(hs_zero));
508		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
509				T_HS_TRAIL_CNT(hs_trail));
510		if (inno->pdata->max_rate == MAX_2_5GHZ)
511			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
512					T_HS_EXIT_CNT_HI(hs_exit >> 5));
513		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
514				T_HS_EXIT_CNT_LO(hs_exit));
515		if (inno->pdata->max_rate == MAX_2_5GHZ)
516			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
517					T_CLK_POST_CNT_HI(clk_post >> 4));
518		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
519				T_CLK_POST_CNT_LO(clk_post));
520		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
521				T_CLK_PRE_CNT(clk_pre));
522		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
523				T_WAKEUP_CNT_HI(wakeup >> 8));
524		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
525				T_WAKEUP_CNT_LO(wakeup));
526		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
527				T_TA_GO_CNT(ta_go));
528		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
529				T_TA_SURE_CNT(ta_sure));
530		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
531				T_TA_WAIT_CNT(ta_wait));
532	}
533
534	/* Enable all lanes on analog part */
535	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
536			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
537			LANE_EN_1 | LANE_EN_0);
538}
539
540static int inno_dsidphy_power_on(struct phy *phy)
541{
542	struct inno_dsidphy *inno = dev_get_priv(phy->dev);
543
544	clk_prepare_enable(inno->pclk_phy);
545	clk_prepare_enable(inno->ref_clk);
546
547	/* Bandgap power on */
548	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
549			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
550	/* Enable power work */
551	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
552			POWER_WORK_MASK, POWER_WORK_ENABLE);
553
554	inno_dsidphy_mipi_mode_enable(inno);
555
556	return 0;
557}
558
559static int inno_dsidphy_power_off(struct phy *phy)
560{
561	struct inno_dsidphy *inno = dev_get_priv(phy->dev);
562
563	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
564	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
565			REG_LDOPD_MASK | REG_PLLPD_MASK,
566			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
567	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
568			POWER_WORK_MASK, POWER_WORK_DISABLE);
569	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
570			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
571
572	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
573	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
574			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
575			LVDS_DIGITAL_INTERNAL_DISABLE);
576	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
577			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
578			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
579
580	clk_disable_unprepare(inno->ref_clk);
581	clk_disable_unprepare(inno->pclk_phy);
582
583	return 0;
584}
585
586static int inno_dsidphy_configure(struct phy *phy, void *params)
587{
588	struct inno_dsidphy *inno = dev_get_priv(phy->dev);
589	struct phy_configure_opts_mipi_dphy *config = params;
590	int ret;
591
592	ret = phy_mipi_dphy_config_validate(config);
593	if (ret)
594		return ret;
595
596	memcpy(&inno->dphy_cfg, config, sizeof(inno->dphy_cfg));
597
598	return 0;
599}
600
601static const struct phy_ops inno_dsidphy_ops = {
602	.configure = inno_dsidphy_configure,
603	.power_on = inno_dsidphy_power_on,
604	.power_off = inno_dsidphy_power_off,
605};
606
607static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
608	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
609	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
610	.max_rate = MAX_1GHZ,
611};
612
613static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
614	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
615	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
616	.max_rate = MAX_2_5GHZ,
617};
618
619static int inno_dsidphy_probe(struct udevice *dev)
620{
621	struct inno_dsidphy *inno = dev_get_priv(dev);
622	int ret;
623
624	inno->dev = dev;
625	inno->pdata = (const struct inno_video_phy_plat_data *)dev_get_driver_data(dev);
626
627	inno->phy_base = dev_read_addr_ptr(dev);
628	if (IS_ERR(inno->phy_base))
629		return PTR_ERR(inno->phy_base);
630
631	inno->ref_clk = devm_clk_get(dev, "ref");
632	if (IS_ERR(inno->ref_clk)) {
633		ret = PTR_ERR(inno->ref_clk);
634		dev_err(dev, "failed to get ref clock: %d\n", ret);
635		return ret;
636	}
637
638	inno->pclk_phy = devm_clk_get(dev, "pclk");
639	if (IS_ERR(inno->pclk_phy)) {
640		ret = PTR_ERR(inno->pclk_phy);
641		dev_err(dev, "failed to get phy pclk: %d\n", ret);
642		return ret;
643	}
644
645	inno->rst = devm_reset_control_get(dev, "apb");
646	if (IS_ERR(inno->rst)) {
647		ret = PTR_ERR(inno->rst);
648		dev_err(dev, "failed to get system reset control: %d\n", ret);
649		return ret;
650	}
651
652	return 0;
653}
654
655static const struct udevice_id inno_dsidphy_of_match[] = {
656	{
657		.compatible = "rockchip,px30-dsi-dphy",
658		.data = (long)&max_1ghz_video_phy_plat_data,
659	}, {
660		.compatible = "rockchip,rk3128-dsi-dphy",
661		.data = (long)&max_1ghz_video_phy_plat_data,
662	}, {
663		.compatible = "rockchip,rk3368-dsi-dphy",
664		.data = (long)&max_1ghz_video_phy_plat_data,
665	}, {
666		.compatible = "rockchip,rk3568-dsi-dphy",
667		.data = (long)&max_2_5ghz_video_phy_plat_data,
668	},
669	{}
670};
671
672U_BOOT_DRIVER(rockchip_inno_dsidphy) = {
673	.name = "rockchip-inno-dsidphy",
674	.id = UCLASS_PHY,
675	.of_match = inno_dsidphy_of_match,
676	.probe = inno_dsidphy_probe,
677	.ops = &inno_dsidphy_ops,
678	.priv_auto = sizeof(struct inno_dsidphy),
679};
680