1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2015
4 * Elecsys Corporation <www.elecsyscorp.com>
5 * Kevin Smith <kevin.smith@elecsyscorp.com>
6 *
7 * Original driver:
8 * (C) Copyright 2009
9 * Marvell Semiconductor <www.marvell.com>
10 * Prafulla Wadaskar <prafulla@marvell.com>
11 */
12
13/*
14 * PHY driver for mv88e61xx ethernet switches.
15 *
16 * This driver configures the mv88e61xx for basic use as a PHY.  The switch
17 * supports a VLAN configuration that determines how traffic will be routed
18 * between the ports.  This driver uses a simple configuration that routes
19 * traffic from each PHY port only to the CPU port, and from the CPU port to
20 * any PHY port.
21 *
22 * The configuration determines which PHY ports to activate using the
23 * CONFIG_MV88E61XX_PHY_PORTS bitmask.  Setting bit 0 will activate port 0, bit
24 * 1 activates port 1, etc.  Do not set the bit for the port the CPU is
25 * connected to unless it is connected over a PHY interface (not MII).
26 *
27 * This driver was written for and tested on the mv88e6176 with an SGMII
28 * connection.  Other configurations should be supported, but some additions or
29 * changes may be required.
30 */
31
32#include <common.h>
33#include <log.h>
34#include <linux/bitops.h>
35#include <linux/delay.h>
36
37#include <bitfield.h>
38#include <errno.h>
39#include <malloc.h>
40#include <miiphy.h>
41#include <netdev.h>
42
43#define PHY_AUTONEGOTIATE_TIMEOUT	5000
44
45#define PORT_MASK(port_count)		((1 << (port_count)) - 1)
46
47/* Device addresses */
48#define DEVADDR_PHY(p)			(p)
49#define DEVADDR_SERDES			0x0F
50
51/* SMI indirection registers for multichip addressing mode */
52#define SMI_CMD_REG			0x00
53#define SMI_DATA_REG			0x01
54
55/* Global registers */
56#define GLOBAL1_STATUS			0x00
57#define GLOBAL1_CTRL			0x04
58#define GLOBAL1_MON_CTRL		0x1A
59
60/* Global 2 registers */
61#define GLOBAL2_REG_PHY_CMD		0x18
62#define GLOBAL2_REG_PHY_DATA		0x19
63
64/* Port registers */
65#define PORT_REG_STATUS			0x00
66#define PORT_REG_PHYS_CTRL		0x01
67#define PORT_REG_SWITCH_ID		0x03
68#define PORT_REG_CTRL			0x04
69#define PORT_REG_VLAN_MAP		0x06
70#define PORT_REG_VLAN_ID		0x07
71
72/* Phy registers */
73#define PHY_REG_CTRL1			0x10
74#define PHY_REG_STATUS1			0x11
75#define PHY_REG_PAGE			0x16
76
77/* Serdes registers */
78#define SERDES_REG_CTRL_1		0x10
79
80/* Phy page numbers */
81#define PHY_PAGE_COPPER			0
82#define PHY_PAGE_SERDES			1
83
84/* Register fields */
85#define GLOBAL1_CTRL_SWRESET		BIT(15)
86
87#define GLOBAL1_MON_CTRL_CPUDEST_SHIFT	4
88#define GLOBAL1_MON_CTRL_CPUDEST_WIDTH	4
89
90#define PORT_REG_STATUS_SPEED_SHIFT	8
91#define PORT_REG_STATUS_SPEED_10	0
92#define PORT_REG_STATUS_SPEED_100	1
93#define PORT_REG_STATUS_SPEED_1000	2
94
95#define PORT_REG_STATUS_CMODE_MASK		0xF
96#define PORT_REG_STATUS_CMODE_100BASE_X		0x8
97#define PORT_REG_STATUS_CMODE_1000BASE_X	0x9
98#define PORT_REG_STATUS_CMODE_SGMII		0xa
99
100#define PORT_REG_PHYS_CTRL_PCS_AN_EN	BIT(10)
101#define PORT_REG_PHYS_CTRL_PCS_AN_RST	BIT(9)
102#define PORT_REG_PHYS_CTRL_FC_VALUE	BIT(7)
103#define PORT_REG_PHYS_CTRL_FC_FORCE	BIT(6)
104#define PORT_REG_PHYS_CTRL_LINK_VALUE	BIT(5)
105#define PORT_REG_PHYS_CTRL_LINK_FORCE	BIT(4)
106#define PORT_REG_PHYS_CTRL_DUPLEX_VALUE	BIT(3)
107#define PORT_REG_PHYS_CTRL_DUPLEX_FORCE	BIT(2)
108#define PORT_REG_PHYS_CTRL_SPD1000	BIT(1)
109#define PORT_REG_PHYS_CTRL_SPD100	BIT(0)
110#define PORT_REG_PHYS_CTRL_SPD_MASK	(BIT(1) | BIT(0))
111
112#define PORT_REG_CTRL_PSTATE_SHIFT	0
113#define PORT_REG_CTRL_PSTATE_WIDTH	2
114
115#define PORT_REG_VLAN_ID_DEF_VID_SHIFT	0
116#define PORT_REG_VLAN_ID_DEF_VID_WIDTH	12
117
118#define PORT_REG_VLAN_MAP_TABLE_SHIFT	0
119#define PORT_REG_VLAN_MAP_TABLE_WIDTH	11
120
121#define SERDES_REG_CTRL_1_FORCE_LINK	BIT(10)
122
123/* Field values */
124#define PORT_REG_CTRL_PSTATE_DISABLED	0
125#define PORT_REG_CTRL_PSTATE_FORWARD	3
126
127#define PHY_REG_CTRL1_ENERGY_DET_OFF	0
128#define PHY_REG_CTRL1_ENERGY_DET_SENSE_PULSE	1
129#define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY	2
130#define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT	3
131
132/* PHY Status Register */
133#define PHY_REG_STATUS1_SPEED		0xc000
134#define PHY_REG_STATUS1_GBIT		0x8000
135#define PHY_REG_STATUS1_100		0x4000
136#define PHY_REG_STATUS1_DUPLEX		0x2000
137#define PHY_REG_STATUS1_SPDDONE		0x0800
138#define PHY_REG_STATUS1_LINK		0x0400
139#define PHY_REG_STATUS1_ENERGY		0x0010
140
141/*
142 * Macros for building commands for indirect addressing modes.  These are valid
143 * for both the indirect multichip addressing mode and the PHY indirection
144 * required for the writes to any PHY register.
145 */
146#define SMI_BUSY			BIT(15)
147#define SMI_CMD_CLAUSE_22		BIT(12)
148#define SMI_CMD_CLAUSE_22_OP_READ	(2 << 10)
149#define SMI_CMD_CLAUSE_22_OP_WRITE	(1 << 10)
150
151#define SMI_CMD_READ			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
152					 SMI_CMD_CLAUSE_22_OP_READ)
153#define SMI_CMD_WRITE			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
154					 SMI_CMD_CLAUSE_22_OP_WRITE)
155
156#define SMI_CMD_ADDR_SHIFT		5
157#define SMI_CMD_ADDR_WIDTH		5
158#define SMI_CMD_REG_SHIFT		0
159#define SMI_CMD_REG_WIDTH		5
160
161/* Check for required macros */
162#ifndef CONFIG_MV88E61XX_PHY_PORTS
163#error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
164	to activate
165#endif
166#ifndef CONFIG_MV88E61XX_CPU_PORT
167#error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
168#endif
169
170/* ID register values for different switch models */
171#define PORT_SWITCH_ID_6020		0x0200
172#define PORT_SWITCH_ID_6070		0x0700
173#define PORT_SWITCH_ID_6071		0x0710
174#define PORT_SWITCH_ID_6096		0x0980
175#define PORT_SWITCH_ID_6097		0x0990
176#define PORT_SWITCH_ID_6172		0x1720
177#define PORT_SWITCH_ID_6176		0x1760
178#define PORT_SWITCH_ID_6220		0x2200
179#define PORT_SWITCH_ID_6240		0x2400
180#define PORT_SWITCH_ID_6250		0x2500
181#define PORT_SWITCH_ID_6352		0x3520
182
183struct mv88e61xx_phy_priv {
184	struct mii_dev *mdio_bus;
185	int smi_addr;
186	int id;
187	int port_count;		/* Number of switch ports */
188	int port_reg_base;	/* Base of the switch port registers */
189	u16 port_stat_link_mask;/* Bitmask for port link status bits */
190	u16 port_stat_dup_mask; /* Bitmask for port duplex status bits */
191	u8 port_stat_speed_width;/* Width of speed status bitfield */
192	u8 global1;	/* Offset of Switch Global 1 registers */
193	u8 global2;	/* Offset of Switch Global 2 registers */
194	u8 phy_ctrl1_en_det_shift; /* 'EDet' bit field offset */
195	u8 phy_ctrl1_en_det_width; /* Width of 'EDet' bit field */
196	u8 phy_ctrl1_en_det_ctrl;  /* 'EDet' control value */
197};
198
199static inline int smi_cmd(int cmd, int addr, int reg)
200{
201	cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
202			       addr);
203	cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
204	return cmd;
205}
206
207static inline int smi_cmd_read(int addr, int reg)
208{
209	return smi_cmd(SMI_CMD_READ, addr, reg);
210}
211
212static inline int smi_cmd_write(int addr, int reg)
213{
214	return smi_cmd(SMI_CMD_WRITE, addr, reg);
215}
216
217__weak int mv88e61xx_hw_reset(struct phy_device *phydev)
218{
219	return 0;
220}
221
222/* Wait for the current SMI indirect command to complete */
223static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
224{
225	int val;
226	u32 timeout = 100;
227
228	do {
229		val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
230		if (val >= 0 && (val & SMI_BUSY) == 0)
231			return 0;
232
233		mdelay(1);
234	} while (--timeout);
235
236	puts("SMI busy timeout\n");
237	return -ETIMEDOUT;
238}
239
240/*
241 * The mv88e61xx has three types of addresses: the smi bus address, the device
242 * address, and the register address.  The smi bus address distinguishes it on
243 * the smi bus from other PHYs or switches.  The device address determines
244 * which on-chip register set you are reading/writing (the various PHYs, their
245 * associated ports, or global configuration registers).  The register address
246 * is the offset of the register you are reading/writing.
247 *
248 * When the mv88e61xx is hardware configured to have address zero, it behaves in
249 * single-chip addressing mode, where it responds to all SMI addresses, using
250 * the smi address as its device address.  This obviously only works when this
251 * is the only chip on the SMI bus.  This allows the driver to access device
252 * registers without using indirection.  When the chip is configured to a
253 * non-zero address, it only responds to that SMI address and requires indirect
254 * writes to access the different device addresses.
255 */
256static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
257{
258	struct mv88e61xx_phy_priv *priv = phydev->priv;
259	struct mii_dev *mdio_bus = priv->mdio_bus;
260	int smi_addr = priv->smi_addr;
261	int res;
262
263	/* In single-chip mode, the device can be addressed directly */
264	if (smi_addr == 0)
265		return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
266
267	/* Wait for the bus to become free */
268	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
269	if (res < 0)
270		return res;
271
272	/* Issue the read command */
273	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
274			 smi_cmd_read(dev, reg));
275	if (res < 0)
276		return res;
277
278	/* Wait for the read command to complete */
279	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
280	if (res < 0)
281		return res;
282
283	/* Read the data */
284	res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
285	if (res < 0)
286		return res;
287
288	return bitfield_extract(res, 0, 16);
289}
290
291/* See the comment above mv88e61xx_reg_read */
292static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
293			       u16 val)
294{
295	struct mv88e61xx_phy_priv *priv = phydev->priv;
296	struct mii_dev *mdio_bus = priv->mdio_bus;
297	int smi_addr = priv->smi_addr;
298	int res;
299
300	/* In single-chip mode, the device can be addressed directly */
301	if (smi_addr == 0) {
302		return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
303				val);
304	}
305
306	/* Wait for the bus to become free */
307	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
308	if (res < 0)
309		return res;
310
311	/* Set the data to write */
312	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
313				SMI_DATA_REG, val);
314	if (res < 0)
315		return res;
316
317	/* Issue the write command */
318	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
319				smi_cmd_write(dev, reg));
320	if (res < 0)
321		return res;
322
323	/* Wait for the write command to complete */
324	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
325	if (res < 0)
326		return res;
327
328	return 0;
329}
330
331static int mv88e61xx_phy_wait(struct phy_device *phydev)
332{
333	struct mv88e61xx_phy_priv *priv = phydev->priv;
334	int val;
335	u32 timeout = 100;
336
337	do {
338		val = mv88e61xx_reg_read(phydev, priv->global2,
339					 GLOBAL2_REG_PHY_CMD);
340		if (val >= 0 && (val & SMI_BUSY) == 0)
341			return 0;
342
343		mdelay(1);
344	} while (--timeout);
345
346	return -ETIMEDOUT;
347}
348
349static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
350		int devad, int reg)
351{
352	struct mv88e61xx_phy_priv *priv;
353	struct phy_device *phydev;
354	int res;
355
356	phydev = (struct phy_device *)smi_wrapper->priv;
357	priv = phydev->priv;
358
359	/* Issue command to read */
360	res = mv88e61xx_reg_write(phydev, priv->global2,
361				  GLOBAL2_REG_PHY_CMD,
362				  smi_cmd_read(dev, reg));
363
364	/* Wait for data to be read */
365	res = mv88e61xx_phy_wait(phydev);
366	if (res < 0)
367		return res;
368
369	/* Read retrieved data */
370	return mv88e61xx_reg_read(phydev, priv->global2,
371				  GLOBAL2_REG_PHY_DATA);
372}
373
374static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
375		int devad, int reg, u16 data)
376{
377	struct mv88e61xx_phy_priv *priv;
378	struct phy_device *phydev;
379	int res;
380
381	phydev = (struct phy_device *)smi_wrapper->priv;
382	priv = phydev->priv;
383
384	/* Set the data to write */
385	res = mv88e61xx_reg_write(phydev, priv->global2,
386				  GLOBAL2_REG_PHY_DATA, data);
387	if (res < 0)
388		return res;
389	/* Issue the write command */
390	res = mv88e61xx_reg_write(phydev, priv->global2,
391				  GLOBAL2_REG_PHY_CMD,
392				  smi_cmd_write(dev, reg));
393	if (res < 0)
394		return res;
395
396	/* Wait for command to complete */
397	return mv88e61xx_phy_wait(phydev);
398}
399
400/* Wrapper function to make calls to phy_read_indirect simpler */
401static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
402{
403	return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
404					   MDIO_DEVAD_NONE, reg);
405}
406
407/* Wrapper function to make calls to phy_read_indirect simpler */
408static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
409		int reg, u16 val)
410{
411	return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
412					    MDIO_DEVAD_NONE, reg, val);
413}
414
415static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
416{
417	struct mv88e61xx_phy_priv *priv = phydev->priv;
418
419	return mv88e61xx_reg_read(phydev, priv->port_reg_base + port, reg);
420}
421
422static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
423								u16 val)
424{
425	struct mv88e61xx_phy_priv *priv = phydev->priv;
426
427	return mv88e61xx_reg_write(phydev, priv->port_reg_base + port,
428				   reg, val);
429}
430
431static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
432{
433	return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
434}
435
436static int mv88e61xx_get_switch_id(struct phy_device *phydev)
437{
438	int res;
439
440	res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
441	if (res < 0)
442		return res;
443	return res & 0xfff0;
444}
445
446static bool mv88e61xx_6352_family(struct phy_device *phydev)
447{
448	struct mv88e61xx_phy_priv *priv = phydev->priv;
449
450	switch (priv->id) {
451	case PORT_SWITCH_ID_6172:
452	case PORT_SWITCH_ID_6176:
453	case PORT_SWITCH_ID_6240:
454	case PORT_SWITCH_ID_6352:
455		return true;
456	}
457	return false;
458}
459
460static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
461{
462	int res;
463
464	res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
465	if (res < 0)
466		return res;
467	return res & PORT_REG_STATUS_CMODE_MASK;
468}
469
470static int mv88e61xx_parse_status(struct phy_device *phydev)
471{
472	unsigned int speed;
473	unsigned int mii_reg;
474
475	mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
476
477	if ((mii_reg & PHY_REG_STATUS1_LINK) &&
478	    !(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
479		int i = 0;
480
481		puts("Waiting for PHY realtime link");
482		while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
483			/* Timeout reached ? */
484			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
485				puts(" TIMEOUT !\n");
486				phydev->link = 0;
487				break;
488			}
489
490			if ((i++ % 1000) == 0)
491				putc('.');
492			udelay(1000);
493			mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
494					PHY_REG_STATUS1);
495		}
496		puts(" done\n");
497		udelay(500000);	/* another 500 ms (results in faster booting) */
498	} else {
499		if (mii_reg & PHY_REG_STATUS1_LINK)
500			phydev->link = 1;
501		else
502			phydev->link = 0;
503	}
504
505	if (mii_reg & PHY_REG_STATUS1_DUPLEX)
506		phydev->duplex = DUPLEX_FULL;
507	else
508		phydev->duplex = DUPLEX_HALF;
509
510	speed = mii_reg & PHY_REG_STATUS1_SPEED;
511
512	switch (speed) {
513	case PHY_REG_STATUS1_GBIT:
514		phydev->speed = SPEED_1000;
515		break;
516	case PHY_REG_STATUS1_100:
517		phydev->speed = SPEED_100;
518		break;
519	default:
520		phydev->speed = SPEED_10;
521		break;
522	}
523
524	return 0;
525}
526
527static int mv88e61xx_switch_reset(struct phy_device *phydev)
528{
529	struct mv88e61xx_phy_priv *priv = phydev->priv;
530	int time;
531	int val;
532	u8 port;
533
534	/* Disable all ports */
535	for (port = 0; port < priv->port_count; port++) {
536		val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
537		if (val < 0)
538			return val;
539		val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
540				       PORT_REG_CTRL_PSTATE_WIDTH,
541				       PORT_REG_CTRL_PSTATE_DISABLED);
542		val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
543		if (val < 0)
544			return val;
545	}
546
547	/* Wait 2 ms for queues to drain */
548	udelay(2000);
549
550	/* Reset switch */
551	val = mv88e61xx_reg_read(phydev, priv->global1, GLOBAL1_CTRL);
552	if (val < 0)
553		return val;
554	val |= GLOBAL1_CTRL_SWRESET;
555	val = mv88e61xx_reg_write(phydev, priv->global1,
556				  GLOBAL1_CTRL, val);
557	if (val < 0)
558		return val;
559
560	/* Wait up to 1 second for switch reset complete */
561	for (time = 1000; time; time--) {
562		val = mv88e61xx_reg_read(phydev, priv->global1,
563					 GLOBAL1_CTRL);
564		if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
565			break;
566		udelay(1000);
567	}
568	if (!time)
569		return -ETIMEDOUT;
570
571	return 0;
572}
573
574static int mv88e61xx_serdes_init(struct phy_device *phydev)
575{
576	int val;
577
578	val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
579	if (val < 0)
580		return val;
581
582	/* Power up serdes module */
583	val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
584	if (val < 0)
585		return val;
586	val &= ~(BMCR_PDOWN);
587	val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
588	if (val < 0)
589		return val;
590
591	return 0;
592}
593
594static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
595{
596	int val;
597
598	val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
599	if (val < 0)
600		return val;
601	val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
602			       PORT_REG_CTRL_PSTATE_WIDTH,
603			       PORT_REG_CTRL_PSTATE_FORWARD);
604	val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
605	if (val < 0)
606		return val;
607
608	return 0;
609}
610
611static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
612							u16 mask)
613{
614	int val;
615
616	/* Set VID to port number plus one */
617	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
618	if (val < 0)
619		return val;
620	val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
621			       PORT_REG_VLAN_ID_DEF_VID_WIDTH,
622			       port + 1);
623	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
624	if (val < 0)
625		return val;
626
627	/* Set VID mask */
628	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
629	if (val < 0)
630		return val;
631	val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
632			       PORT_REG_VLAN_MAP_TABLE_WIDTH,
633			       mask);
634	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
635	if (val < 0)
636		return val;
637
638	return 0;
639}
640
641static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
642{
643	struct mv88e61xx_phy_priv *priv = phydev->priv;
644	int res;
645	int val;
646	bool forced = false;
647
648	val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
649	if (val < 0)
650		return val;
651	if (!(val & priv->port_stat_link_mask)) {
652		/* Temporarily force link to read port configuration */
653		u32 timeout = 100;
654		forced = true;
655
656		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
657		if (val < 0)
658			return val;
659		val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
660				PORT_REG_PHYS_CTRL_LINK_VALUE);
661		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
662					   val);
663		if (val < 0)
664			return val;
665
666		/* Wait for status register to reflect forced link */
667		do {
668			val = mv88e61xx_port_read(phydev, port,
669						  PORT_REG_STATUS);
670			if (val < 0) {
671				res = -EIO;
672				goto unforce;
673			}
674			if (val & priv->port_stat_link_mask)
675				break;
676		} while (--timeout);
677
678		if (timeout == 0) {
679			res = -ETIMEDOUT;
680			goto unforce;
681		}
682	}
683
684	if (val & priv->port_stat_dup_mask)
685		phydev->duplex = DUPLEX_FULL;
686	else
687		phydev->duplex = DUPLEX_HALF;
688
689	val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
690			       priv->port_stat_speed_width);
691	switch (val) {
692	case PORT_REG_STATUS_SPEED_1000:
693		phydev->speed = SPEED_1000;
694		break;
695	case PORT_REG_STATUS_SPEED_100:
696		phydev->speed = SPEED_100;
697		break;
698	default:
699		phydev->speed = SPEED_10;
700		break;
701	}
702
703	res = 0;
704
705unforce:
706	if (forced) {
707		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
708		if (val < 0)
709			return val;
710		val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
711				PORT_REG_PHYS_CTRL_LINK_VALUE);
712		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
713					   val);
714		if (val < 0)
715			return val;
716	}
717
718	return res;
719}
720
721static int mv88e61xx_fixed_port_setup(struct phy_device *phydev, u8 port)
722{
723	struct mv88e61xx_phy_priv *priv = phydev->priv;
724	int val;
725
726	val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
727	if (val < 0)
728		return val;
729
730	val &= ~(PORT_REG_PHYS_CTRL_SPD_MASK |
731		 PORT_REG_PHYS_CTRL_FC_VALUE |
732		 PORT_REG_PHYS_CTRL_FC_FORCE);
733	val |= PORT_REG_PHYS_CTRL_FC_FORCE |
734	       PORT_REG_PHYS_CTRL_DUPLEX_VALUE |
735	       PORT_REG_PHYS_CTRL_DUPLEX_FORCE;
736
737	if (priv->id == PORT_SWITCH_ID_6071) {
738		val |= PORT_REG_PHYS_CTRL_SPD100;
739	} else {
740		val |= PORT_REG_PHYS_CTRL_PCS_AN_EN |
741		       PORT_REG_PHYS_CTRL_PCS_AN_RST |
742		       PORT_REG_PHYS_CTRL_SPD1000;
743	}
744
745	if (port == CONFIG_MV88E61XX_CPU_PORT)
746		val |= PORT_REG_PHYS_CTRL_LINK_VALUE |
747		       PORT_REG_PHYS_CTRL_LINK_FORCE;
748
749	return mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
750				   val);
751}
752
753static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
754{
755	struct mv88e61xx_phy_priv *priv = phydev->priv;
756	int val;
757
758	/* Set CPUDest */
759	val = mv88e61xx_reg_read(phydev, priv->global1, GLOBAL1_MON_CTRL);
760	if (val < 0)
761		return val;
762	val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
763			       GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
764			       CONFIG_MV88E61XX_CPU_PORT);
765	val = mv88e61xx_reg_write(phydev, priv->global1,
766				  GLOBAL1_MON_CTRL, val);
767	if (val < 0)
768		return val;
769
770	/* Allow CPU to route to any port */
771	val = PORT_MASK(priv->port_count) & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
772	val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
773	if (val < 0)
774		return val;
775
776	/* Enable CPU port */
777	val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
778	if (val < 0)
779		return val;
780
781	val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
782	if (val < 0)
783		return val;
784
785	/* If CPU is connected to serdes, initialize serdes */
786	if (mv88e61xx_6352_family(phydev)) {
787		val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
788		if (val < 0)
789			return val;
790		if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
791		    val == PORT_REG_STATUS_CMODE_1000BASE_X ||
792		    val == PORT_REG_STATUS_CMODE_SGMII) {
793			val = mv88e61xx_serdes_init(phydev);
794			if (val < 0)
795				return val;
796		}
797	} else {
798		val = mv88e61xx_fixed_port_setup(phydev,
799						 CONFIG_MV88E61XX_CPU_PORT);
800		if (val < 0)
801			return val;
802	}
803
804	return 0;
805}
806
807static int mv88e61xx_switch_init(struct phy_device *phydev)
808{
809	static int init;
810	int res;
811
812	if (init)
813		return 0;
814
815	res = mv88e61xx_switch_reset(phydev);
816	if (res < 0)
817		return res;
818
819	res = mv88e61xx_set_cpu_port(phydev);
820	if (res < 0)
821		return res;
822
823	init = 1;
824
825	return 0;
826}
827
828static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
829{
830	int val;
831
832	val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
833	if (val < 0)
834		return val;
835	val &= ~(BMCR_PDOWN);
836	val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
837	if (val < 0)
838		return val;
839
840	return 0;
841}
842
843static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
844{
845	struct mv88e61xx_phy_priv *priv = phydev->priv;
846	int val;
847
848	/*
849	 * Enable energy-detect sensing on PHY, used to determine when a PHY
850	 * port is physically connected
851	 */
852	val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
853	if (val < 0)
854		return val;
855	val = bitfield_replace(val, priv->phy_ctrl1_en_det_shift,
856			       priv->phy_ctrl1_en_det_width,
857			       priv->phy_ctrl1_en_det_ctrl);
858	val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
859	if (val < 0)
860		return val;
861
862	return 0;
863}
864
865static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
866{
867	int val;
868
869	val = mv88e61xx_port_enable(phydev, phy);
870	if (val < 0)
871		return val;
872
873	val = mv88e61xx_port_set_vlan(phydev, phy,
874			1 << CONFIG_MV88E61XX_CPU_PORT);
875	if (val < 0)
876		return val;
877
878	return 0;
879}
880
881/*
882 * This function is used to pre-configure the required register
883 * offsets, so that the indirect register access to the PHY registers
884 * is possible. This is necessary to be able to read the PHY ID
885 * while driver probing or in get_phy_id(). The globalN register
886 * offsets must be initialized correctly for a detected switch,
887 * otherwise detection of the PHY ID won't work!
888 */
889static int mv88e61xx_priv_reg_offs_pre_init(struct phy_device *phydev)
890{
891	struct mv88e61xx_phy_priv *priv = phydev->priv;
892
893	/*
894	 * Initial 'port_reg_base' value must be an offset of existing
895	 * port register, then reading the ID should succeed. First, try
896	 * to read via port registers with device address 0x10 (88E6096
897	 * and compatible switches).
898	 */
899	priv->port_reg_base = 0x10;
900	priv->id = mv88e61xx_get_switch_id(phydev);
901	if (priv->id != 0xfff0) {
902		priv->global1 = 0x1B;
903		priv->global2 = 0x1C;
904		return 0;
905	}
906
907	/*
908	 * Now try via port registers with device address 0x08
909	 * (88E6020 and compatible switches).
910	 */
911	priv->port_reg_base = 0x08;
912	priv->id = mv88e61xx_get_switch_id(phydev);
913	if (priv->id != 0xfff0) {
914		priv->global1 = 0x0F;
915		priv->global2 = 0x07;
916		return 0;
917	}
918
919	debug("%s Unknown ID 0x%x\n", __func__, priv->id);
920	return -ENODEV;
921}
922
923static int mv88e61xx_probe(struct phy_device *phydev)
924{
925	struct mii_dev *smi_wrapper;
926	struct mv88e61xx_phy_priv *priv;
927	int res;
928
929	res = mv88e61xx_hw_reset(phydev);
930	if (res < 0)
931		return res;
932
933	priv = malloc(sizeof(*priv));
934	if (!priv)
935		return -ENOMEM;
936
937	memset(priv, 0, sizeof(*priv));
938
939	/*
940	 * This device requires indirect reads/writes to the PHY registers
941	 * which the generic PHY code can't handle.  Make a wrapper MII device
942	 * to handle reads/writes
943	 */
944	smi_wrapper = mdio_alloc();
945	if (!smi_wrapper) {
946		free(priv);
947		return -ENOMEM;
948	}
949
950	/*
951	 * Store the mdio bus in the private data, as we are going to replace
952	 * the bus with the wrapper bus
953	 */
954	priv->mdio_bus = phydev->bus;
955
956	/*
957	 * Store the smi bus address in private data.  This lets us use the
958	 * phydev addr field for device address instead, as the genphy code
959	 * expects.
960	 */
961	priv->smi_addr = phydev->addr;
962
963	/*
964	 * Store the phy_device in the wrapper mii device. This lets us get it
965	 * back when genphy functions call phy_read/phy_write.
966	 */
967	smi_wrapper->priv = phydev;
968	strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
969	smi_wrapper->read = mv88e61xx_phy_read_indirect;
970	smi_wrapper->write = mv88e61xx_phy_write_indirect;
971
972	/* Replace the bus with the wrapper device */
973	phydev->bus = smi_wrapper;
974
975	phydev->priv = priv;
976
977	res = mv88e61xx_priv_reg_offs_pre_init(phydev);
978	if (res < 0)
979		return res;
980
981	debug("%s ID 0x%x\n", __func__, priv->id);
982
983	switch (priv->id) {
984	case PORT_SWITCH_ID_6096:
985	case PORT_SWITCH_ID_6097:
986	case PORT_SWITCH_ID_6172:
987	case PORT_SWITCH_ID_6176:
988	case PORT_SWITCH_ID_6240:
989	case PORT_SWITCH_ID_6352:
990		priv->port_count = 11;
991		priv->port_stat_link_mask = BIT(11);
992		priv->port_stat_dup_mask = BIT(10);
993		priv->port_stat_speed_width = 2;
994		priv->phy_ctrl1_en_det_shift = 8;
995		priv->phy_ctrl1_en_det_width = 2;
996		priv->phy_ctrl1_en_det_ctrl =
997			PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT;
998		break;
999	case PORT_SWITCH_ID_6020:
1000	case PORT_SWITCH_ID_6070:
1001	case PORT_SWITCH_ID_6071:
1002	case PORT_SWITCH_ID_6220:
1003	case PORT_SWITCH_ID_6250:
1004		priv->port_count = 7;
1005		priv->port_stat_link_mask = BIT(12);
1006		priv->port_stat_dup_mask = BIT(9);
1007		priv->port_stat_speed_width = 1;
1008		priv->phy_ctrl1_en_det_shift = 14;
1009		priv->phy_ctrl1_en_det_width = 1;
1010		priv->phy_ctrl1_en_det_ctrl =
1011			PHY_REG_CTRL1_ENERGY_DET_SENSE_PULSE;
1012		break;
1013	default:
1014		free(priv);
1015		return -ENODEV;
1016	}
1017
1018	res = mdio_register(smi_wrapper);
1019	if (res)
1020		printf("Failed to register SMI bus\n");
1021
1022	return 0;
1023}
1024
1025static int mv88e61xx_phy_config(struct phy_device *phydev)
1026{
1027	struct mv88e61xx_phy_priv *priv = phydev->priv;
1028	int res;
1029	int i;
1030	int ret = -1;
1031
1032	res = mv88e61xx_switch_init(phydev);
1033	if (res < 0)
1034		return res;
1035
1036	for (i = 0; i < priv->port_count; i++) {
1037		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
1038			phydev->addr = i;
1039
1040			res = mv88e61xx_phy_enable(phydev, i);
1041			if (res < 0) {
1042				printf("Error enabling PHY %i\n", i);
1043				continue;
1044			}
1045			res = mv88e61xx_phy_setup(phydev, i);
1046			if (res < 0) {
1047				printf("Error setting up PHY %i\n", i);
1048				continue;
1049			}
1050			res = mv88e61xx_phy_config_port(phydev, i);
1051			if (res < 0) {
1052				printf("Error configuring PHY %i\n", i);
1053				continue;
1054			}
1055
1056			res = phy_reset(phydev);
1057			if (res < 0) {
1058				printf("Error resetting PHY %i\n", i);
1059				continue;
1060			}
1061			res = genphy_config_aneg(phydev);
1062			if (res < 0) {
1063				printf("Error setting PHY %i autoneg\n", i);
1064				continue;
1065			}
1066
1067			/* Return success if any PHY succeeds */
1068			ret = 0;
1069		} else if ((1 << i) & CONFIG_MV88E61XX_FIXED_PORTS) {
1070			res = mv88e61xx_fixed_port_setup(phydev, i);
1071			if (res < 0) {
1072				printf("Error configuring port %i\n", i);
1073				continue;
1074			}
1075		}
1076	}
1077
1078	return ret;
1079}
1080
1081static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
1082{
1083	int val;
1084
1085	val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
1086	if (val < 0)
1087		return 0;
1088
1089	/*
1090	 * After reset, the energy detect signal remains high for a few seconds
1091	 * regardless of whether a cable is connected.  This function will
1092	 * return false positives during this time.
1093	 */
1094	return (val & PHY_REG_STATUS1_ENERGY) == 0;
1095}
1096
1097static int mv88e61xx_phy_startup(struct phy_device *phydev)
1098{
1099	struct mv88e61xx_phy_priv *priv = phydev->priv;
1100	int i;
1101	int link = 0;
1102	int res;
1103	int speed = phydev->speed;
1104	int duplex = phydev->duplex;
1105
1106	for (i = 0; i < priv->port_count; i++) {
1107		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
1108			phydev->addr = i;
1109			if (!mv88e61xx_phy_is_connected(phydev))
1110				continue;
1111			res = genphy_update_link(phydev);
1112			if (res < 0)
1113				continue;
1114			res = mv88e61xx_parse_status(phydev);
1115			if (res < 0)
1116				continue;
1117			link = (link || phydev->link);
1118		}
1119	}
1120	phydev->link = link;
1121
1122	/* Restore CPU interface speed and duplex after it was changed for
1123	 * other ports */
1124	phydev->speed = speed;
1125	phydev->duplex = duplex;
1126
1127	return 0;
1128}
1129
1130U_BOOT_PHY_DRIVER(mv88e61xx) = {
1131	.name = "Marvell MV88E61xx",
1132	.uid = 0x01410eb1,
1133	.mask = 0xfffffff0,
1134	.features = PHY_GBIT_FEATURES,
1135	.probe = mv88e61xx_probe,
1136	.config = mv88e61xx_phy_config,
1137	.startup = mv88e61xx_phy_startup,
1138	.shutdown = &genphy_shutdown,
1139};
1140
1141U_BOOT_PHY_DRIVER(mv88e609x) = {
1142	.name = "Marvell MV88E609x",
1143	.uid = 0x1410c89,
1144	.mask = 0xfffffff0,
1145	.features = PHY_GBIT_FEATURES,
1146	.probe = mv88e61xx_probe,
1147	.config = mv88e61xx_phy_config,
1148	.startup = mv88e61xx_phy_startup,
1149	.shutdown = &genphy_shutdown,
1150};
1151
1152U_BOOT_PHY_DRIVER(mv88e6071) = {
1153	.name = "Marvell MV88E6071",
1154	.uid = 0x1410db0,
1155	.mask = 0xfffffff0,
1156	.features = PHY_BASIC_FEATURES | SUPPORTED_MII,
1157	.probe = mv88e61xx_probe,
1158	.config = mv88e61xx_phy_config,
1159	.startup = mv88e61xx_phy_startup,
1160	.shutdown = &genphy_shutdown,
1161};
1162
1163/*
1164 * Overload weak get_phy_id definition since we need non-standard functions
1165 * to read PHY registers
1166 */
1167int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
1168{
1169	struct phy_device temp_phy;
1170	struct mv88e61xx_phy_priv temp_priv;
1171	struct mii_dev temp_mii;
1172	int val;
1173
1174	/*
1175	 * Buid temporary data structures that the chip reading code needs to
1176	 * read the ID
1177	 */
1178	temp_priv.mdio_bus = bus;
1179	temp_priv.smi_addr = smi_addr;
1180	temp_phy.priv = &temp_priv;
1181	temp_mii.priv = &temp_phy;
1182
1183	/*
1184	 * get_phy_id() can be called by framework before mv88e61xx driver
1185	 * probing, in this case the global register offsets are not
1186	 * initialized yet. Do this initialization here before indirect
1187	 * PHY register access.
1188	 */
1189	val = mv88e61xx_priv_reg_offs_pre_init(&temp_phy);
1190	if (val < 0)
1191		return val;
1192
1193	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
1194	if (val < 0)
1195		return -EIO;
1196
1197	*phy_id = val << 16;
1198
1199	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
1200	if (val < 0)
1201		return -EIO;
1202
1203	*phy_id |= (val & 0xffff);
1204
1205	return 0;
1206}
1207