1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2021 Rockchip Inc.
5 * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
6 */
7
8#include <common.h>
9#include <asm/io.h>
10#include <clk.h>
11#include <dm.h>
12#include <dm/device_compat.h>
13#include <dm/devres.h>
14#include <fdtdec.h>
15#include <inttypes.h>
16#include <linux/delay.h>
17#include <linux/dma-direction.h>
18#include <linux/dma-mapping.h>
19#include <linux/io.h>
20#include <linux/kernel.h>
21#include <linux/mtd/mtd.h>
22#include <linux/mtd/nand.h>
23#include <linux/mtd/partitions.h>
24#include <linux/mtd/rawnand.h>
25#include <memalign.h>
26#include <nand.h>
27
28/*
29 * NFC Page Data Layout:
30 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
31 *	1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
32 *	......
33 * NAND Page Data Layout:
34 *	1024 * n data + m Bytes oob
35 * Original Bad Block Mask Location:
36 *	First byte of oob(spare).
37 * nand_chip->oob_poi data layout:
38 *	4Bytes sys data + .... + 4Bytes sys data + ECC data.
39 */
40
41/* NAND controller register definition */
42#define NFC_READ			(0)
43#define NFC_WRITE			(1)
44
45#define NFC_FMCTL			(0x00)
46#define   FMCTL_CE_SEL_M		0xFF
47#define   FMCTL_CE_SEL(x)		(1 << (x))
48#define   FMCTL_WP			BIT(8)
49#define   FMCTL_RDY			BIT(9)
50
51#define NFC_FMWAIT			(0x04)
52#define   FLCTL_RST			BIT(0)
53#define   FLCTL_WR			(1)	/* 0: read, 1: write */
54#define   FLCTL_XFER_ST			BIT(2)
55#define   FLCTL_XFER_EN			BIT(3)
56#define   FLCTL_ACORRECT		BIT(10) /* Auto correct error bits. */
57#define   FLCTL_XFER_READY		BIT(20)
58#define   FLCTL_XFER_SECTOR		(22)
59#define   FLCTL_TOG_FIX			BIT(29)
60
61#define   BCHCTL_BANK_M			(7 << 5)
62#define   BCHCTL_BANK			(5)
63
64#define   DMA_ST			BIT(0)
65#define   DMA_WR			(1)	/* 0: write, 1: read */
66#define   DMA_EN			BIT(2)
67#define   DMA_AHB_SIZE			(3)	/* 0: 1, 1: 2, 2: 4 */
68#define   DMA_BURST_SIZE		(6)	/* 0: 1, 3: 4, 5: 8, 7: 16 */
69#define   DMA_INC_NUM			(9)	/* 1 - 16 */
70
71#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
72		(((x) >> (e).high) & (e).high_mask) << (e).low_bn)
73#define   INT_DMA			BIT(0)
74#define NFC_BANK			(0x800)
75#define NFC_BANK_STEP			(0x100)
76#define   BANK_DATA			(0x00)
77#define   BANK_ADDR			(0x04)
78#define   BANK_CMD			(0x08)
79#define NFC_SRAM0			(0x1000)
80#define NFC_SRAM1			(0x1400)
81#define NFC_SRAM_SIZE			(0x400)
82#define NFC_TIMEOUT_MS			(500)
83#define NFC_MAX_OOB_PER_STEP		128
84#define NFC_MIN_OOB_PER_STEP		64
85#define MAX_DATA_SIZE			0xFFFC
86#define MAX_ADDRESS_CYC			6
87#define NFC_ECC_MAX_MODES		4
88#define NFC_RB_DELAY_US			50
89#define NFC_MAX_PAGE_SIZE		(16 * 1024)
90#define NFC_MAX_OOB_SIZE		(16 * 128)
91#define NFC_MAX_NSELS			(8) /* Some Socs only have 1 or 2 CSs. */
92#define NFC_SYS_DATA_SIZE		(4) /* 4 bytes sys data in oob pre 1024 data.*/
93#define RK_DEFAULT_CLOCK_RATE		(150 * 1000 * 1000) /* 150 Mhz */
94#define ACCTIMING(csrw, rwpw, rwcs)	((csrw) << 12 | (rwpw) << 5 | (rwcs))
95
96enum nfc_type {
97	NFC_V6,
98	NFC_V8,
99	NFC_V9,
100};
101
102/**
103 * struct rk_ecc_cnt_status: represent a ecc status data.
104 * @err_flag_bit: error flag bit index at register.
105 * @low: ECC count low bit index at register.
106 * @low_mask: mask bit.
107 * @low_bn: ECC count low bit number.
108 * @high: ECC count high bit index at register.
109 * @high_mask: mask bit
110 */
111struct ecc_cnt_status {
112	u8 err_flag_bit;
113	u8 low;
114	u8 low_mask;
115	u8 low_bn;
116	u8 high;
117	u8 high_mask;
118};
119
120/**
121 * @type: NFC version
122 * @ecc_strengths: ECC strengths
123 * @ecc_cfgs: ECC config values
124 * @flctl_off: FLCTL register offset
125 * @bchctl_off: BCHCTL register offset
126 * @dma_data_buf_off: DMA_DATA_BUF register offset
127 * @dma_oob_buf_off: DMA_OOB_BUF register offset
128 * @dma_cfg_off: DMA_CFG register offset
129 * @dma_st_off: DMA_ST register offset
130 * @bch_st_off: BCG_ST register offset
131 * @randmz_off: RANDMZ register offset
132 * @int_en_off: interrupt enable register offset
133 * @int_clr_off: interrupt clean register offset
134 * @int_st_off: interrupt status register offset
135 * @oob0_off: oob0 register offset
136 * @oob1_off: oob1 register offset
137 * @ecc0: represent ECC0 status data
138 * @ecc1: represent ECC1 status data
139 */
140struct nfc_cfg {
141	enum nfc_type type;
142	u8 ecc_strengths[NFC_ECC_MAX_MODES];
143	u32 ecc_cfgs[NFC_ECC_MAX_MODES];
144	u32 flctl_off;
145	u32 bchctl_off;
146	u32 dma_cfg_off;
147	u32 dma_data_buf_off;
148	u32 dma_oob_buf_off;
149	u32 dma_st_off;
150	u32 bch_st_off;
151	u32 randmz_off;
152	u32 int_en_off;
153	u32 int_clr_off;
154	u32 int_st_off;
155	u32 oob0_off;
156	u32 oob1_off;
157	struct ecc_cnt_status ecc0;
158	struct ecc_cnt_status ecc1;
159};
160
161struct rk_nfc_nand_chip {
162	struct nand_chip chip;
163
164	u16 boot_blks;
165	u16 metadata_size;
166	u32 boot_ecc;
167	u32 timing;
168
169	u8 nsels;
170	u8 sels[0];
171	/* Nothing after this field. */
172};
173
174struct rk_nfc {
175	struct nand_hw_control controller;
176	const struct nfc_cfg *cfg;
177	struct udevice *dev;
178
179	struct clk *nfc_clk;
180	struct clk *ahb_clk;
181	void __iomem *regs;
182
183	int selected_bank;
184	u32 band_offset;
185	u32 cur_ecc;
186	u32 cur_timing;
187
188	u8 *page_buf;
189	u32 *oob_buf;
190
191	unsigned long assigned_cs;
192};
193
194static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
195{
196	return container_of(chip, struct rk_nfc_nand_chip, chip);
197}
198
199static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
200{
201	return (u8 *)p + i * chip->ecc.size;
202}
203
204static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
205{
206	u8 *poi;
207
208	poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
209
210	return poi;
211}
212
213static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
214{
215	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
216	u8 *poi;
217
218	poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
219
220	return poi;
221}
222
223static inline int rk_nfc_data_len(struct nand_chip *chip)
224{
225	return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
226}
227
228static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
229{
230	struct rk_nfc *nfc = nand_get_controller_data(chip);
231
232	return nfc->page_buf + i * rk_nfc_data_len(chip);
233}
234
235static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
236{
237	struct rk_nfc *nfc = nand_get_controller_data(chip);
238
239	return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
240}
241
242static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
243{
244	struct rk_nfc *nfc = nand_get_controller_data(chip);
245	u32 reg, i;
246
247	for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
248		if (strength == nfc->cfg->ecc_strengths[i]) {
249			reg = nfc->cfg->ecc_cfgs[i];
250			break;
251		}
252	}
253
254	if (i >= NFC_ECC_MAX_MODES)
255		return -EINVAL;
256
257	writel(reg, nfc->regs + nfc->cfg->bchctl_off);
258
259	/* Save chip ECC setting */
260	nfc->cur_ecc = strength;
261
262	return 0;
263}
264
265static void rk_nfc_select_chip(struct mtd_info *mtd, int cs)
266{
267	struct nand_chip *chip = mtd_to_nand(mtd);
268	struct rk_nfc *nfc = nand_get_controller_data(chip);
269	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
270	struct nand_ecc_ctrl *ecc = &chip->ecc;
271	u32 val;
272
273	if (cs < 0) {
274		nfc->selected_bank = -1;
275		/* Deselect the currently selected target. */
276		val = readl(nfc->regs + NFC_FMCTL);
277		val &= ~FMCTL_CE_SEL_M;
278		writel(val, nfc->regs + NFC_FMCTL);
279		return;
280	}
281
282	nfc->selected_bank = rknand->sels[cs];
283	nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
284
285	val = readl(nfc->regs + NFC_FMCTL);
286	val &= ~FMCTL_CE_SEL_M;
287	val |= FMCTL_CE_SEL(nfc->selected_bank);
288
289	writel(val, nfc->regs + NFC_FMCTL);
290
291	/*
292	 * Compare current chip timing with selected chip timing and
293	 * change if needed.
294	 */
295	if (nfc->cur_timing != rknand->timing) {
296		writel(rknand->timing, nfc->regs + NFC_FMWAIT);
297		nfc->cur_timing = rknand->timing;
298	}
299
300	/*
301	 * Compare current chip ECC setting with selected chip ECC setting and
302	 * change if needed.
303	 */
304	if (nfc->cur_ecc != ecc->strength)
305		rk_nfc_hw_ecc_setup(chip, ecc->strength);
306}
307
308static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
309{
310	u32 timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
311	u32 time_start;
312
313	time_start = get_timer(0);
314	do {
315		if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
316			return 0;
317	} while (get_timer(time_start) < timeout);
318
319	dev_err(nfc->dev, "wait for io ready timedout\n");
320	return -ETIMEDOUT;
321}
322
323static void rk_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
324{
325	struct nand_chip *chip = mtd_to_nand(mtd);
326	struct rk_nfc *nfc = nand_get_controller_data(chip);
327	void __iomem *bank_base;
328	int i = 0;
329
330	bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
331
332	for (i = 0; i < len; i++)
333		buf[i] = readl(bank_base);
334}
335
336static void rk_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
337{
338	struct nand_chip *chip = mtd_to_nand(mtd);
339	struct rk_nfc *nfc = nand_get_controller_data(chip);
340	void __iomem *bank_base;
341	int i = 0;
342
343	bank_base = nfc->regs + nfc->band_offset + BANK_DATA;
344
345	for (i = 0; i < len; i++)
346		writel(buf[i], bank_base);
347}
348
349static void rk_nfc_cmd(struct mtd_info *mtd, int dat, unsigned int ctrl)
350{
351	struct nand_chip *chip = mtd_to_nand(mtd);
352	struct rk_nfc *nfc = nand_get_controller_data(chip);
353	void __iomem *bank_base;
354
355	bank_base = nfc->regs + nfc->band_offset;
356
357	if (ctrl & NAND_CTRL_CHANGE) {
358		if (ctrl & NAND_ALE)
359			bank_base += BANK_ADDR;
360		else if (ctrl & NAND_CLE)
361			bank_base += BANK_CMD;
362		chip->IO_ADDR_W = bank_base;
363	}
364
365	if (dat != NAND_CMD_NONE)
366		writel(dat & 0xFF, chip->IO_ADDR_W);
367}
368
369static uint8_t rockchip_nand_read_byte(struct mtd_info *mtd)
370{
371	uint8_t ret;
372
373	rk_nfc_read_buf(mtd, &ret, 1);
374
375	return ret;
376}
377
378static int rockchip_nand_dev_ready(struct mtd_info *mtd)
379{
380	struct nand_chip *chip = mtd_to_nand(mtd);
381	struct rk_nfc *nfc = nand_get_controller_data(chip);
382
383	if (readl(nfc->regs + NFC_FMCTL) & FMCTL_RDY)
384		return 1;
385
386	return 0;
387}
388
389static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
390			      dma_addr_t dma_data, dma_addr_t dma_oob)
391{
392	u32 dma_reg, fl_reg, bch_reg;
393
394	dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
395	      (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
396
397	fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
398		 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
399
400	if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
401		bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
402		bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
403			  (nfc->selected_bank << BCHCTL_BANK);
404		writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
405	}
406
407	writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
408	writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
409	writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
410	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
411	fl_reg |= FLCTL_XFER_ST;
412	writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
413}
414
415static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
416{
417	unsigned long timeout = (CONFIG_SYS_HZ * NFC_TIMEOUT_MS) / 1000;
418	void __iomem *ptr = nfc->regs + nfc->cfg->flctl_off;
419	u32 time_start;
420
421	time_start = get_timer(0);
422
423	do {
424		if (readl(ptr) & FLCTL_XFER_READY)
425			return 0;
426	} while (get_timer(time_start) < timeout);
427
428	dev_err(nfc->dev, "wait for io ready timedout\n");
429	return -ETIMEDOUT;
430}
431
432static int rk_nfc_write_page_raw(struct mtd_info *mtd,
433				 struct nand_chip *chip,
434				 const u8 *buf,
435				 int oob_required,
436				 int page)
437{
438	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
439	struct rk_nfc *nfc = nand_get_controller_data(chip);
440	struct nand_ecc_ctrl *ecc = &chip->ecc;
441	int i, pages_per_blk;
442
443	pages_per_blk = mtd->erasesize / mtd->writesize;
444	if ((page < (pages_per_blk * rknand->boot_blks)) &&
445	    rknand->boot_ecc != ecc->strength) {
446		/*
447		 * There's currently no method to notify the MTD framework that
448		 * a different ECC strength is in use for the boot blocks.
449		 */
450		return -EIO;
451	}
452
453	if (!buf)
454		memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
455
456	for (i = 0; i < ecc->steps; i++) {
457		/* Copy data to the NFC buffer. */
458		if (buf)
459			memcpy(rk_nfc_data_ptr(chip, i),
460			       rk_nfc_buf_to_data_ptr(chip, buf, i),
461			       ecc->size);
462		/*
463		 * The first four bytes of OOB are reserved for the
464		 * boot ROM. In some debugging cases, such as with a
465		 * read, erase and write back test these 4 bytes stored
466		 * in OOB also need to be written back.
467		 *
468		 * The function nand_block_bad detects bad blocks like:
469		 *
470		 * bad = chip->oob_poi[chip->badblockpos];
471		 *
472		 * chip->badblockpos == 0 for a large page NAND Flash,
473		 * so chip->oob_poi[0] is the bad block mask (BBM).
474		 *
475		 * The OOB data layout on the NFC is:
476		 *
477		 *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
478		 *
479		 * or
480		 *
481		 *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
482		 *
483		 * The code here just swaps the first 4 bytes with the last
484		 * 4 bytes without losing any data.
485		 *
486		 * The chip->oob_poi data layout:
487		 *
488		 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
489		 *
490		 * The oobfree structure already has reserved these 4 bytes
491		 * together with 2 bytes for BBM by reducing it's length:
492		 *
493		 * oobfree[0].length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
494		 */
495		if (!i)
496			memcpy(rk_nfc_oob_ptr(chip, i),
497			       rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
498			       NFC_SYS_DATA_SIZE);
499		else
500			memcpy(rk_nfc_oob_ptr(chip, i),
501			       rk_nfc_buf_to_oob_ptr(chip, i - 1),
502			       NFC_SYS_DATA_SIZE);
503		/* Copy ECC data to the NFC buffer. */
504		memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
505		       rk_nfc_buf_to_oob_ecc_ptr(chip, i),
506		       ecc->bytes);
507	}
508
509	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
510	rk_nfc_write_buf(mtd, buf, mtd->writesize + mtd->oobsize);
511	return nand_prog_page_end_op(chip);
512}
513
514static int rk_nfc_write_page_hwecc(struct mtd_info *mtd,
515				   struct nand_chip *chip,
516				   const u8 *buf,
517				   int oob_required,
518				   int page)
519{
520	struct rk_nfc *nfc = nand_get_controller_data(chip);
521	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
522	struct nand_ecc_ctrl *ecc = &chip->ecc;
523	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
524			NFC_MIN_OOB_PER_STEP;
525	int pages_per_blk = mtd->erasesize / mtd->writesize;
526	int ret = 0, i, boot_rom_mode = 0;
527	dma_addr_t dma_data, dma_oob;
528	u32 tmp;
529	u8 *oob;
530
531	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
532
533	if (buf)
534		memcpy(nfc->page_buf, buf, mtd->writesize);
535	else
536		memset(nfc->page_buf, 0xFF, mtd->writesize);
537
538	/*
539	 * The first blocks (4, 8 or 16 depending on the device) are used
540	 * by the boot ROM and the first 32 bits of OOB need to link to
541	 * the next page address in the same block. We can't directly copy
542	 * OOB data from the MTD framework, because this page address
543	 * conflicts for example with the bad block marker (BBM),
544	 * so we shift all OOB data including the BBM with 4 byte positions.
545	 * As a consequence the OOB size available to the MTD framework is
546	 * also reduced with 4 bytes.
547	 *
548	 *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
549	 *
550	 * If a NAND is not a boot medium or the page is not a boot block,
551	 * the first 4 bytes are left untouched by writing 0xFF to them.
552	 *
553	 *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
554	 *
555	 * The code here just swaps the first 4 bytes with the last
556	 * 4 bytes without losing any data.
557	 *
558	 * The chip->oob_poi data layout:
559	 *
560	 *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
561	 *
562	 * Configure the ECC algorithm supported by the boot ROM.
563	 */
564	if (page < (pages_per_blk * rknand->boot_blks)) {
565		boot_rom_mode = 1;
566		if (rknand->boot_ecc != ecc->strength)
567			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
568	}
569
570	for (i = 0; i < ecc->steps; i++) {
571		if (!i)
572			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
573		else
574			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
575
576		tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
577
578		if (nfc->cfg->type == NFC_V9)
579			nfc->oob_buf[i] = tmp;
580		else
581			nfc->oob_buf[i * (oob_step / 4)] = tmp;
582	}
583
584	dma_data = dma_map_single((void *)nfc->page_buf,
585				  mtd->writesize, DMA_TO_DEVICE);
586	dma_oob = dma_map_single(nfc->oob_buf,
587				 ecc->steps * oob_step,
588				 DMA_TO_DEVICE);
589
590	rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
591			  dma_oob);
592	ret = rk_nfc_wait_for_xfer_done(nfc);
593
594	dma_unmap_single(dma_data, mtd->writesize,
595			 DMA_TO_DEVICE);
596	dma_unmap_single(dma_oob, ecc->steps * oob_step,
597			 DMA_TO_DEVICE);
598
599	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
600		rk_nfc_hw_ecc_setup(chip, ecc->strength);
601
602	if (ret) {
603		dev_err(nfc->dev, "write: wait transfer done timeout.\n");
604		return -ETIMEDOUT;
605	}
606
607	return nand_prog_page_end_op(chip);
608}
609
610static int rk_nfc_write_oob(struct mtd_info *mtd,
611			    struct nand_chip *chip, int page)
612{
613	return rk_nfc_write_page_hwecc(mtd, chip, NULL, 1, page);
614}
615
616static int rk_nfc_read_page_raw(struct mtd_info *mtd,
617				struct nand_chip *chip,
618				u8 *buf,
619				int oob_required,
620				int page)
621{
622	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
623	struct rk_nfc *nfc = nand_get_controller_data(chip);
624	struct nand_ecc_ctrl *ecc = &chip->ecc;
625	int i, pages_per_blk;
626
627	pages_per_blk = mtd->erasesize / mtd->writesize;
628	if ((page < (pages_per_blk * rknand->boot_blks)) &&
629	    nfc->selected_bank == 0 &&
630	    rknand->boot_ecc != ecc->strength) {
631		/*
632		 * There's currently no method to notify the MTD framework that
633		 * a different ECC strength is in use for the boot blocks.
634		 */
635		return -EIO;
636	}
637
638	nand_read_page_op(chip, page, 0, NULL, 0);
639	rk_nfc_read_buf(mtd, nfc->page_buf, mtd->writesize + mtd->oobsize);
640	for (i = 0; i < ecc->steps; i++) {
641		/*
642		 * The first four bytes of OOB are reserved for the
643		 * boot ROM. In some debugging cases, such as with a read,
644		 * erase and write back test, these 4 bytes also must be
645		 * saved somewhere, otherwise this information will be
646		 * lost during a write back.
647		 */
648		if (!i)
649			memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
650			       rk_nfc_oob_ptr(chip, i),
651			       NFC_SYS_DATA_SIZE);
652		else
653			memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
654			       rk_nfc_oob_ptr(chip, i),
655			       NFC_SYS_DATA_SIZE);
656
657		/* Copy ECC data from the NFC buffer. */
658		memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
659		       rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
660		       ecc->bytes);
661
662		/* Copy data from the NFC buffer. */
663		if (buf)
664			memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
665			       rk_nfc_data_ptr(chip, i),
666			       ecc->size);
667	}
668
669	return 0;
670}
671
672static int rk_nfc_read_page_hwecc(struct mtd_info *mtd,
673				  struct nand_chip *chip,
674				  u8 *buf,
675				  int oob_required,
676				  int page)
677{
678	struct rk_nfc *nfc = nand_get_controller_data(chip);
679	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
680	struct nand_ecc_ctrl *ecc = &chip->ecc;
681	int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
682			NFC_MIN_OOB_PER_STEP;
683	int pages_per_blk = mtd->erasesize / mtd->writesize;
684	dma_addr_t dma_data, dma_oob;
685	int ret = 0, i, cnt, boot_rom_mode = 0;
686	int max_bitflips = 0, bch_st, ecc_fail = 0;
687	u8 *oob;
688	u32 tmp;
689
690	nand_read_page_op(chip, page, 0, NULL, 0);
691
692	dma_data = dma_map_single(nfc->page_buf,
693				  mtd->writesize,
694				  DMA_FROM_DEVICE);
695	dma_oob = dma_map_single(nfc->oob_buf,
696				 ecc->steps * oob_step,
697				 DMA_FROM_DEVICE);
698
699	/*
700	 * The first blocks (4, 8 or 16 depending on the device)
701	 * are used by the boot ROM.
702	 * Configure the ECC algorithm supported by the boot ROM.
703	 */
704	if (page < (pages_per_blk * rknand->boot_blks) &&
705	    nfc->selected_bank == 0) {
706		boot_rom_mode = 1;
707		if (rknand->boot_ecc != ecc->strength)
708			rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
709	}
710
711	rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
712			  dma_oob);
713	ret = rk_nfc_wait_for_xfer_done(nfc);
714
715	dma_unmap_single(dma_data, mtd->writesize,
716			 DMA_FROM_DEVICE);
717	dma_unmap_single(dma_oob, ecc->steps * oob_step,
718			 DMA_FROM_DEVICE);
719
720	if (ret) {
721		ret = -ETIMEDOUT;
722		dev_err(nfc->dev, "read: wait transfer done timeout.\n");
723		goto timeout_err;
724	}
725
726	for (i = 0; i < ecc->steps; i++) {
727		if (!i)
728			oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
729		else
730			oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
731
732		if (nfc->cfg->type == NFC_V9)
733			tmp = nfc->oob_buf[i];
734		else
735			tmp = nfc->oob_buf[i * (oob_step / 4)];
736
737		*oob++ = (u8)tmp;
738		*oob++ = (u8)(tmp >> 8);
739		*oob++ = (u8)(tmp >> 16);
740		*oob++ = (u8)(tmp >> 24);
741	}
742
743	for (i = 0; i < (ecc->steps / 2); i++) {
744		bch_st = readl_relaxed(nfc->regs +
745				       nfc->cfg->bch_st_off + i * 4);
746		if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
747		    bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
748			mtd->ecc_stats.failed++;
749			ecc_fail = 1;
750		} else {
751			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
752			mtd->ecc_stats.corrected += cnt;
753			max_bitflips = max_t(u32, max_bitflips, cnt);
754
755			cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
756			mtd->ecc_stats.corrected += cnt;
757			max_bitflips = max_t(u32, max_bitflips, cnt);
758		}
759	}
760
761	if (buf)
762		memcpy(buf, nfc->page_buf, mtd->writesize);
763
764timeout_err:
765	if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
766		rk_nfc_hw_ecc_setup(chip, ecc->strength);
767
768	if (ret)
769		return ret;
770
771	if (ecc_fail) {
772		dev_err(nfc->dev, "read page: %x ecc error!\n", page);
773		return 0;
774	}
775
776	return max_bitflips;
777}
778
779static int rk_nfc_read_oob(struct mtd_info *mtd,
780			   struct nand_chip *chip, int page)
781{
782	return rk_nfc_read_page_hwecc(mtd, chip, NULL, 1, page);
783}
784
785static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
786{
787	/* Disable flash wp. */
788	writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
789	/* Config default timing 40ns at 150 Mhz NFC clock. */
790	writel(0x1081, nfc->regs + NFC_FMWAIT);
791	nfc->cur_timing = 0x1081;
792	/* Disable randomizer and DMA. */
793	writel(0, nfc->regs + nfc->cfg->randmz_off);
794	writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
795	writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
796}
797
798static int rk_nfc_enable_clks(struct udevice *dev, struct rk_nfc *nfc)
799{
800	int ret;
801
802	if (!IS_ERR(nfc->nfc_clk)) {
803		ret = clk_prepare_enable(nfc->nfc_clk);
804		if (ret)
805			dev_err(dev, "failed to enable NFC clk\n");
806	}
807
808	ret = clk_prepare_enable(nfc->ahb_clk);
809	if (ret) {
810		dev_err(dev, "failed to enable ahb clk\n");
811		if (!IS_ERR(nfc->nfc_clk))
812			clk_disable_unprepare(nfc->nfc_clk);
813	}
814
815	return 0;
816}
817
818static void rk_nfc_disable_clks(struct rk_nfc *nfc)
819{
820	if (!IS_ERR(nfc->nfc_clk))
821		clk_disable_unprepare(nfc->nfc_clk);
822	clk_disable_unprepare(nfc->ahb_clk);
823}
824
825static int rk_nfc_ecc_init(struct rk_nfc *nfc, struct nand_chip *chip)
826{
827	struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
828	const u8 *strengths = nfc->cfg->ecc_strengths;
829	struct mtd_info *mtd = nand_to_mtd(chip);
830	struct nand_ecc_ctrl *ecc = &chip->ecc;
831	u8 max_strength, nfc_max_strength;
832	int i;
833
834	nfc_max_strength = nfc->cfg->ecc_strengths[0];
835	/* If optional dt settings not present. */
836	if (!ecc->size || !ecc->strength ||
837	    ecc->strength > nfc_max_strength) {
838		chip->ecc.size = 1024;
839		ecc->steps = mtd->writesize / ecc->size;
840
841		/*
842		 * HW ECC always requests the number of ECC bytes per 1024 byte
843		 * blocks. The first 4 OOB bytes are reserved for sys data.
844		 */
845		max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
846				 fls(8 * 1024);
847		if (max_strength > nfc_max_strength)
848			max_strength = nfc_max_strength;
849
850		for (i = 0; i < 4; i++) {
851			if (max_strength >= strengths[i])
852				break;
853		}
854
855		if (i >= 4) {
856			dev_err(nfc->dev, "unsupported ECC strength\n");
857			return -EOPNOTSUPP;
858		}
859
860		ecc->strength = strengths[i];
861	}
862	ecc->steps = mtd->writesize / ecc->size;
863	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
864
865	if (ecc->bytes * ecc->steps > mtd->oobsize - rknand->metadata_size)
866		return -EINVAL;
867
868	ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
869	if (!ecc->layout)
870		return -ENOMEM;
871
872	ecc->layout->eccbytes = ecc->bytes * ecc->steps;
873
874	for (i = 0; i < ecc->layout->eccbytes; i++)
875		ecc->layout->eccpos[i] = rknand->metadata_size + i;
876
877	ecc->layout->oobfree[0].length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
878	ecc->layout->oobfree[0].offset = 2;
879
880	return 0;
881}
882
883static int rk_nfc_nand_chip_init(ofnode node, struct rk_nfc *nfc, int devnum)
884{
885	struct rk_nfc_nand_chip *rknand;
886	struct udevice *dev = nfc->dev;
887	struct nand_ecc_ctrl *ecc;
888	struct nand_chip *chip;
889	struct mtd_info *mtd;
890	u32 cs[NFC_MAX_NSELS];
891	int nsels, i, ret;
892	u32 tmp;
893
894	if (!ofnode_get_property(node, "reg", &nsels))
895		return -ENODEV;
896	nsels /= sizeof(u32);
897	if (!nsels || nsels > NFC_MAX_NSELS) {
898		dev_err(dev, "invalid reg property size %d\n", nsels);
899		return -EINVAL;
900	}
901
902	rknand = kzalloc(sizeof(*rknand) + nsels * sizeof(u8), GFP_KERNEL);
903	if (!rknand)
904		return -ENOMEM;
905
906	rknand->nsels = nsels;
907	rknand->timing = nfc->cur_timing;
908
909	ret = ofnode_read_u32_array(node, "reg", cs, nsels);
910	if (ret < 0) {
911		dev_err(dev, "Could not retrieve reg property\n");
912		return -EINVAL;
913	}
914
915	for (i = 0; i < nsels; i++) {
916		if (cs[i] >= NFC_MAX_NSELS) {
917			dev_err(dev, "invalid CS: %u\n", cs[i]);
918			return -EINVAL;
919		}
920
921		if (test_and_set_bit(cs[i], &nfc->assigned_cs)) {
922			dev_err(dev, "CS %u already assigned\n", cs[i]);
923			return -EINVAL;
924		}
925
926		rknand->sels[i] = cs[i];
927	}
928
929	chip = &rknand->chip;
930	ecc = &chip->ecc;
931	ecc->mode = NAND_ECC_HW_SYNDROME;
932
933	ret = ofnode_read_u32(node, "nand-ecc-strength", &tmp);
934	ecc->strength = ret ? 0 : tmp;
935
936	ret = ofnode_read_u32(node, "nand-ecc-step-size", &tmp);
937	ecc->size = ret ? 0 : tmp;
938
939	mtd = nand_to_mtd(chip);
940	mtd->owner = THIS_MODULE;
941	mtd->dev->parent = dev;
942
943	nand_set_controller_data(chip, nfc);
944
945	chip->flash_node = node;
946	chip->chip_delay = NFC_RB_DELAY_US;
947	chip->select_chip = rk_nfc_select_chip;
948	chip->cmd_ctrl = rk_nfc_cmd;
949	chip->read_buf = rk_nfc_read_buf;
950	chip->write_buf = rk_nfc_write_buf;
951	chip->read_byte = rockchip_nand_read_byte;
952	chip->dev_ready = rockchip_nand_dev_ready;
953	chip->controller = &nfc->controller;
954
955	chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
956	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
957
958	if (IS_ENABLED(CONFIG_ROCKCHIP_NAND_SKIP_BBTSCAN))
959		chip->options |= NAND_SKIP_BBTSCAN;
960
961	rk_nfc_hw_init(nfc);
962	ret = nand_scan_ident(mtd, nsels, NULL);
963	if (ret)
964		return ret;
965
966	ret = rk_nfc_ecc_init(nfc, chip);
967	if (ret) {
968		dev_err(dev, "rk_nfc_ecc_init failed: %d\n", ret);
969		return ret;
970	}
971
972	ret = ofnode_read_u32(node, "rockchip,boot-blks", &tmp);
973	rknand->boot_blks = ret ? 0 : tmp;
974
975	ret = ofnode_read_u32(node, "rockchip,boot-ecc-strength", &tmp);
976	rknand->boot_ecc = ret ? ecc->strength : tmp;
977
978	rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
979
980	if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
981		dev_err(dev,
982			"driver needs at least %d bytes of meta data\n",
983			NFC_SYS_DATA_SIZE + 2);
984		return -EIO;
985	}
986
987	if (!nfc->page_buf) {
988		nfc->page_buf = kzalloc(NFC_MAX_PAGE_SIZE, GFP_KERNEL);
989		if (!nfc->page_buf) {
990			kfree(ecc->layout);
991			return -ENOMEM;
992		}
993	}
994
995	if (!nfc->oob_buf) {
996		nfc->oob_buf = kzalloc(NFC_MAX_OOB_SIZE, GFP_KERNEL);
997		if (!nfc->oob_buf) {
998			kfree(ecc->layout);
999			kfree(nfc->page_buf);
1000			nfc->page_buf = NULL;
1001			return -ENOMEM;
1002		}
1003	}
1004
1005	ecc->read_page = rk_nfc_read_page_hwecc;
1006	ecc->read_page_raw = rk_nfc_read_page_raw;
1007	ecc->read_oob = rk_nfc_read_oob;
1008	ecc->write_page = rk_nfc_write_page_hwecc;
1009	ecc->write_page_raw = rk_nfc_write_page_raw;
1010	ecc->write_oob = rk_nfc_write_oob;
1011
1012	ret = nand_scan_tail(mtd);
1013	if (ret) {
1014		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1015		return ret;
1016	}
1017
1018	return nand_register(devnum, mtd);
1019}
1020
1021static int rk_nfc_nand_chips_init(struct udevice *dev, struct rk_nfc *nfc)
1022{
1023	int ret, i = 0;
1024	ofnode child;
1025
1026	ofnode_for_each_subnode(child, dev_ofnode(dev)) {
1027		ret = rk_nfc_nand_chip_init(child, nfc, i++);
1028		if (ret)
1029			return ret;
1030	}
1031
1032	return 0;
1033}
1034
1035static struct nfc_cfg nfc_v6_cfg = {
1036		.type			= NFC_V6,
1037		.ecc_strengths		= {60, 40, 24, 16},
1038		.ecc_cfgs		= {
1039			0x00040011, 0x00040001, 0x00000011, 0x00000001,
1040		},
1041		.flctl_off		= 0x08,
1042		.bchctl_off		= 0x0C,
1043		.dma_cfg_off		= 0x10,
1044		.dma_data_buf_off	= 0x14,
1045		.dma_oob_buf_off	= 0x18,
1046		.dma_st_off		= 0x1C,
1047		.bch_st_off		= 0x20,
1048		.randmz_off		= 0x150,
1049		.int_en_off		= 0x16C,
1050		.int_clr_off		= 0x170,
1051		.int_st_off		= 0x174,
1052		.oob0_off		= 0x200,
1053		.oob1_off		= 0x230,
1054		.ecc0			= {
1055			.err_flag_bit	= 2,
1056			.low		= 3,
1057			.low_mask	= 0x1F,
1058			.low_bn		= 5,
1059			.high		= 27,
1060			.high_mask	= 0x1,
1061		},
1062		.ecc1			= {
1063			.err_flag_bit	= 15,
1064			.low		= 16,
1065			.low_mask	= 0x1F,
1066			.low_bn		= 5,
1067			.high		= 29,
1068			.high_mask	= 0x1,
1069		},
1070};
1071
1072static struct nfc_cfg nfc_v8_cfg = {
1073		.type			= NFC_V8,
1074		.ecc_strengths		= {16, 16, 16, 16},
1075		.ecc_cfgs		= {
1076			0x00000001, 0x00000001, 0x00000001, 0x00000001,
1077		},
1078		.flctl_off		= 0x08,
1079		.bchctl_off		= 0x0C,
1080		.dma_cfg_off		= 0x10,
1081		.dma_data_buf_off	= 0x14,
1082		.dma_oob_buf_off	= 0x18,
1083		.dma_st_off		= 0x1C,
1084		.bch_st_off		= 0x20,
1085		.randmz_off		= 0x150,
1086		.int_en_off		= 0x16C,
1087		.int_clr_off		= 0x170,
1088		.int_st_off		= 0x174,
1089		.oob0_off		= 0x200,
1090		.oob1_off		= 0x230,
1091		.ecc0			= {
1092			.err_flag_bit	= 2,
1093			.low		= 3,
1094			.low_mask	= 0x1F,
1095			.low_bn		= 5,
1096			.high		= 27,
1097			.high_mask	= 0x1,
1098		},
1099		.ecc1			= {
1100			.err_flag_bit	= 15,
1101			.low		= 16,
1102			.low_mask	= 0x1F,
1103			.low_bn		= 5,
1104			.high		= 29,
1105			.high_mask	= 0x1,
1106		},
1107};
1108
1109static struct nfc_cfg nfc_v9_cfg = {
1110		.type			= NFC_V9,
1111		.ecc_strengths		= {70, 60, 40, 16},
1112		.ecc_cfgs		= {
1113			0x00000001, 0x06000001, 0x04000001, 0x02000001,
1114		},
1115		.flctl_off		= 0x10,
1116		.bchctl_off		= 0x20,
1117		.dma_cfg_off		= 0x30,
1118		.dma_data_buf_off	= 0x34,
1119		.dma_oob_buf_off	= 0x38,
1120		.dma_st_off		= 0x3C,
1121		.bch_st_off		= 0x150,
1122		.randmz_off		= 0x208,
1123		.int_en_off		= 0x120,
1124		.int_clr_off		= 0x124,
1125		.int_st_off		= 0x128,
1126		.oob0_off		= 0x200,
1127		.oob1_off		= 0x204,
1128		.ecc0			= {
1129			.err_flag_bit	= 2,
1130			.low		= 3,
1131			.low_mask	= 0x7F,
1132			.low_bn		= 7,
1133			.high		= 0,
1134			.high_mask	= 0x0,
1135		},
1136		.ecc1			= {
1137			.err_flag_bit	= 18,
1138			.low		= 19,
1139			.low_mask	= 0x7F,
1140			.low_bn		= 7,
1141			.high		= 0,
1142			.high_mask	= 0x0,
1143		},
1144};
1145
1146static const struct udevice_id rk_nfc_id_table[] = {
1147	{
1148		.compatible = "rockchip,px30-nfc",
1149		.data = (unsigned long)&nfc_v9_cfg
1150	},
1151	{
1152		.compatible = "rockchip,rk2928-nfc",
1153		.data = (unsigned long)&nfc_v6_cfg
1154	},
1155	{
1156		.compatible = "rockchip,rv1108-nfc",
1157		.data = (unsigned long)&nfc_v8_cfg
1158	},
1159	{ /* sentinel */ }
1160};
1161
1162static int rk_nfc_probe(struct udevice *dev)
1163{
1164	struct rk_nfc *nfc = dev_get_priv(dev);
1165	int ret = 0;
1166
1167	nfc->cfg = (void *)dev_get_driver_data(dev);
1168	nfc->dev = dev;
1169
1170	nfc->regs = dev_read_addr_ptr(dev);
1171	if (!nfc->regs) {
1172		ret = -EINVAL;
1173		goto release_nfc;
1174	}
1175
1176	nfc->nfc_clk = devm_clk_get(dev, "nfc");
1177	if (IS_ERR(nfc->nfc_clk)) {
1178		dev_dbg(dev, "no NFC clk\n");
1179		/* Some earlier models, such as rk3066, have no NFC clk. */
1180	}
1181
1182	nfc->ahb_clk = devm_clk_get(dev, "ahb");
1183	if (IS_ERR(nfc->ahb_clk)) {
1184		dev_err(dev, "no ahb clk\n");
1185		ret = PTR_ERR(nfc->ahb_clk);
1186		goto release_nfc;
1187	}
1188
1189	ret = rk_nfc_enable_clks(dev, nfc);
1190	if (ret)
1191		goto release_nfc;
1192
1193	spin_lock_init(&nfc->controller.lock);
1194	init_waitqueue_head(&nfc->controller.wq);
1195
1196	rk_nfc_hw_init(nfc);
1197
1198	ret = rk_nfc_nand_chips_init(dev, nfc);
1199	if (ret) {
1200		dev_err(dev, "failed to init NAND chips\n");
1201		goto clk_disable;
1202	}
1203	return 0;
1204
1205clk_disable:
1206	rk_nfc_disable_clks(nfc);
1207release_nfc:
1208	return ret;
1209}
1210
1211U_BOOT_DRIVER(rockchip_nfc) = {
1212	.name = "rockchip_nfc",
1213	.id = UCLASS_MTD,
1214	.of_match = rk_nfc_id_table,
1215	.probe = rk_nfc_probe,
1216	.priv_auto = sizeof(struct rk_nfc),
1217};
1218
1219void board_nand_init(void)
1220{
1221	struct udevice *dev;
1222	int ret;
1223
1224	ret = uclass_get_device_by_driver(UCLASS_MTD,
1225					  DM_DRIVER_GET(rockchip_nfc),
1226					  &dev);
1227	if (ret && ret != -ENODEV)
1228		log_err("Failed to initialize ROCKCHIP NAND controller. (error %d)\n",
1229			ret);
1230}
1231
1232int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1233{
1234	struct mtd_info *mtd;
1235	size_t length = size;
1236
1237	mtd = get_nand_dev_by_index(0);
1238	return nand_read_skip_bad(mtd, offs, &length, NULL, size, (u_char *)dst);
1239}
1240
1241void nand_deselect(void) {}
1242