1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2021 Macronix International Co., Ltd.
4 *
5 * Author:
6 *	Zhengxun Li <zhengxunli@mxic.com.tw>
7 */
8
9#include <common.h>
10#include <clk.h>
11#include <dm.h>
12#include <malloc.h>
13#include <nand.h>
14#include <asm/io.h>
15#include <asm/arch/hardware.h>
16#include <dm/device_compat.h>
17#include <linux/bug.h>
18#include <linux/errno.h>
19#include <linux/iopoll.h>
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/rawnand.h>
22#include <linux/mtd/partitions.h>
23#include <linux/mtd/nand_ecc.h>
24#include <linux/delay.h>
25
26#define HC_CFG			0x0
27#define HC_CFG_IF_CFG(x)	((x) << 27)
28#define HC_CFG_DUAL_SLAVE	BIT(31)
29#define HC_CFG_INDIVIDUAL	BIT(30)
30#define HC_CFG_NIO(x)		(((x) / 4) << 27)
31#define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
32#define HC_CFG_TYPE_SPI_NOR	0
33#define HC_CFG_TYPE_SPI_NAND	1
34#define HC_CFG_TYPE_SPI_RAM	2
35#define HC_CFG_TYPE_RAW_NAND	3
36#define HC_CFG_SLV_ACT(x)	((x) << 21)
37#define HC_CFG_CLK_PH_EN	BIT(20)
38#define HC_CFG_CLK_POL_INV	BIT(19)
39#define HC_CFG_BIG_ENDIAN	BIT(18)
40#define HC_CFG_DATA_PASS	BIT(17)
41#define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
42#define HC_CFG_MAN_START_EN	BIT(3)
43#define HC_CFG_MAN_START	BIT(2)
44#define HC_CFG_MAN_CS_EN	BIT(1)
45#define HC_CFG_MAN_CS_ASSERT	BIT(0)
46
47#define INT_STS			0x4
48#define INT_STS_EN		0x8
49#define INT_SIG_EN		0xc
50#define INT_STS_ALL		GENMASK(31, 0)
51#define INT_RDY_PIN		BIT(26)
52#define INT_RDY_SR		BIT(25)
53#define INT_LNR_SUSP		BIT(24)
54#define INT_ECC_ERR		BIT(17)
55#define INT_CRC_ERR		BIT(16)
56#define INT_LWR_DIS		BIT(12)
57#define INT_LRD_DIS		BIT(11)
58#define INT_SDMA_INT		BIT(10)
59#define INT_DMA_FINISH		BIT(9)
60#define INT_RX_NOT_FULL		BIT(3)
61#define INT_RX_NOT_EMPTY	BIT(2)
62#define INT_TX_NOT_FULL		BIT(1)
63#define INT_TX_EMPTY		BIT(0)
64
65#define HC_EN			0x10
66#define HC_EN_BIT		BIT(0)
67
68#define TXD(x)			(0x14 + ((x) * 4))
69#define RXD			0x24
70
71#define SS_CTRL(s)		(0x30 + ((s) * 4))
72#define LRD_CFG			0x44
73#define LWR_CFG			0x80
74#define RWW_CFG			0x70
75#define OP_READ			BIT(23)
76#define OP_DUMMY_CYC(x)		((x) << 17)
77#define OP_ADDR_BYTES(x)	((x) << 14)
78#define OP_CMD_BYTES(x)		(((x) - 1) << 13)
79#define OP_OCTA_CRC_EN		BIT(12)
80#define OP_DQS_EN		BIT(11)
81#define OP_ENHC_EN		BIT(10)
82#define OP_PREAMBLE_EN		BIT(9)
83#define OP_DATA_DDR		BIT(8)
84#define OP_DATA_BUSW(x)		((x) << 6)
85#define OP_ADDR_DDR		BIT(5)
86#define OP_ADDR_BUSW(x)		((x) << 3)
87#define OP_CMD_DDR		BIT(2)
88#define OP_CMD_BUSW(x)		(x)
89#define OP_BUSW_1		0
90#define OP_BUSW_2		1
91#define OP_BUSW_4		2
92#define OP_BUSW_8		3
93
94#define OCTA_CRC		0x38
95#define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
96#define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
97#define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
98
99#define ONFI_DIN_CNT(s)		(0x3c + (s))
100
101#define LRD_CTRL		0x48
102#define RWW_CTRL		0x74
103#define LWR_CTRL		0x84
104#define LMODE_EN		BIT(31)
105#define LMODE_SLV_ACT(x)	((x) << 21)
106#define LMODE_CMD1(x)		((x) << 8)
107#define LMODE_CMD0(x)		(x)
108
109#define LRD_ADDR		0x4c
110#define LWR_ADDR		0x88
111#define LRD_RANGE		0x50
112#define LWR_RANGE		0x8c
113
114#define AXI_SLV_ADDR		0x54
115
116#define DMAC_RD_CFG		0x58
117#define DMAC_WR_CFG		0x94
118#define DMAC_CFG_PERIPH_EN	BIT(31)
119#define DMAC_CFG_ALLFLUSH_EN	BIT(30)
120#define DMAC_CFG_LASTFLUSH_EN	BIT(29)
121#define DMAC_CFG_QE(x)		(((x) + 1) << 16)
122#define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
123#define DMAC_CFG_BURST_SZ(x)	((x) << 8)
124#define DMAC_CFG_DIR_READ	BIT(1)
125#define DMAC_CFG_START		BIT(0)
126
127#define DMAC_RD_CNT		0x5c
128#define DMAC_WR_CNT		0x98
129
130#define SDMA_ADDR		0x60
131
132#define DMAM_CFG		0x64
133#define DMAM_CFG_START		BIT(31)
134#define DMAM_CFG_CONT		BIT(30)
135#define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
136#define DMAM_CFG_DIR_READ	BIT(1)
137#define DMAM_CFG_EN		BIT(0)
138
139#define DMAM_CNT		0x68
140
141#define LNR_TIMER_TH		0x6c
142
143#define RDM_CFG0		0x78
144#define RDM_CFG0_POLY(x)	(x)
145
146#define RDM_CFG1		0x7c
147#define RDM_CFG1_RDM_EN		BIT(31)
148#define RDM_CFG1_SEED(x)	(x)
149
150#define LWR_SUSP_CTRL		0x90
151#define LWR_SUSP_CTRL_EN	BIT(31)
152
153#define DMAS_CTRL		0x9c
154#define DMAS_CTRL_EN		BIT(31)
155#define DMAS_CTRL_DIR_READ	BIT(30)
156
157#define DATA_STROB		0xa0
158#define DATA_STROB_EDO_EN	BIT(2)
159#define DATA_STROB_INV_POL	BIT(1)
160#define DATA_STROB_DELAY_2CYC	BIT(0)
161
162#define IDLY_CODE(x)		(0xa4 + ((x) * 4))
163#define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
164
165#define GPIO			0xc4
166#define GPIO_PT(x)		BIT(3 + ((x) * 16))
167#define GPIO_RESET(x)		BIT(2 + ((x) * 16))
168#define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
169#define GPIO_WPB(x)		BIT((x) * 16)
170
171#define HC_VER			0xd0
172
173#define HW_TEST(x)		(0xe0 + ((x) * 4))
174
175#define MXIC_NFC_MAX_CLK_HZ	50000000
176#define IRQ_TIMEOUT		1000
177
178struct mxic_nand_ctrl {
179	struct clk *send_clk;
180	struct clk *send_dly_clk;
181	void __iomem *regs;
182	struct nand_chip nand_chip;
183};
184
185/*
186 * struct mxic_nfc_command_format - Defines NAND flash command format
187 * @start_cmd:		First cycle command (Start command)
188 * @end_cmd:		Second cycle command (Last command)
189 * @addr_len:		Number of address cycles required to send the address
190 * @read:		Direction of command
191 */
192
193struct mxic_nfc_command_format {
194	int start_cmd;
195	int end_cmd;
196	u8 addr_len;
197	bool read;
198};
199
200/*  The NAND flash operations command format */
201static const struct mxic_nfc_command_format mxic_nand_commands[] = {
202	{NAND_CMD_READ0,	NAND_CMD_READSTART, 5, 1 },
203	{NAND_CMD_RNDOUT,	NAND_CMD_RNDOUTSTART, 2, 1 },
204	{NAND_CMD_READID,	NAND_CMD_NONE, 1, 1 },
205	{NAND_CMD_STATUS,	NAND_CMD_NONE, 0, 1 },
206	{NAND_CMD_SEQIN,	NAND_CMD_NONE, 5, 0 },
207	{NAND_CMD_PAGEPROG,	NAND_CMD_NONE, 0, 0 },
208	{NAND_CMD_CACHEDPROG,	NAND_CMD_NONE, 0, 0 },
209	{NAND_CMD_RNDIN,	NAND_CMD_NONE, 2, 0 },
210	{NAND_CMD_ERASE1,	NAND_CMD_NONE, 3, 0 },
211	{NAND_CMD_ERASE2,	NAND_CMD_NONE, 0, 0 },
212	{NAND_CMD_RESET,	NAND_CMD_NONE, 0, 0 },
213	{NAND_CMD_PARAM,	NAND_CMD_NONE, 1, 1 },
214	{NAND_CMD_GET_FEATURES,	NAND_CMD_NONE, 1, 1 },
215	{NAND_CMD_SET_FEATURES,	NAND_CMD_NONE, 1, 0 },
216	{NAND_CMD_NONE,		NAND_CMD_NONE, 0, 0 },
217};
218
219static int mxic_nfc_clk_enable(struct mxic_nand_ctrl *nfc)
220{
221	int ret;
222
223	ret = clk_prepare_enable(nfc->send_clk);
224	if (ret)
225		return ret;
226
227	ret = clk_prepare_enable(nfc->send_dly_clk);
228	if (ret)
229		goto err_send_dly_clk;
230
231	return ret;
232
233err_send_dly_clk:
234	clk_disable_unprepare(nfc->send_clk);
235
236	return ret;
237}
238
239static void mxic_nfc_clk_disable(struct mxic_nand_ctrl *nfc)
240{
241	clk_disable_unprepare(nfc->send_clk);
242	clk_disable_unprepare(nfc->send_dly_clk);
243}
244
245static void mxic_nfc_set_input_delay(struct mxic_nand_ctrl *nfc, u8 idly_code)
246{
247	writel(IDLY_CODE_VAL(0, idly_code) |
248	       IDLY_CODE_VAL(1, idly_code) |
249	       IDLY_CODE_VAL(2, idly_code) |
250	       IDLY_CODE_VAL(3, idly_code),
251	       nfc->regs + IDLY_CODE(0));
252	writel(IDLY_CODE_VAL(4, idly_code) |
253	       IDLY_CODE_VAL(5, idly_code) |
254	       IDLY_CODE_VAL(6, idly_code) |
255	       IDLY_CODE_VAL(7, idly_code),
256	       nfc->regs + IDLY_CODE(1));
257}
258
259static int mxic_nfc_clk_setup(struct mxic_nand_ctrl *nfc, unsigned long freq)
260{
261	int ret;
262
263	ret = clk_set_rate(nfc->send_clk, freq);
264	if (ret)
265		return ret;
266
267	ret = clk_set_rate(nfc->send_dly_clk, freq);
268	if (ret)
269		return ret;
270
271	/*
272	 * A constant delay range from 0x0 ~ 0x1F for input delay,
273	 * the unit is 78 ps, the max input delay is 2.418 ns.
274	 */
275	mxic_nfc_set_input_delay(nfc, 0xf);
276
277	return 0;
278}
279
280static int mxic_nfc_set_freq(struct mxic_nand_ctrl *nfc, unsigned long freq)
281{
282	int ret;
283
284	if (freq > MXIC_NFC_MAX_CLK_HZ)
285		freq = MXIC_NFC_MAX_CLK_HZ;
286
287	mxic_nfc_clk_disable(nfc);
288	ret = mxic_nfc_clk_setup(nfc, freq);
289	if (ret)
290		return ret;
291
292	ret = mxic_nfc_clk_enable(nfc);
293	if (ret)
294		return ret;
295
296	return 0;
297}
298
299static void mxic_nfc_hw_init(struct mxic_nand_ctrl *nfc)
300{
301	writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
302	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
303	       HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
304	writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
305	writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
306	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
307	writel(0, nfc->regs + LRD_CFG);
308	writel(0, nfc->regs + LRD_CTRL);
309	writel(0x0, nfc->regs + HC_EN);
310}
311
312static void mxic_nfc_cs_enable(struct mxic_nand_ctrl *nfc)
313{
314	writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
315	       nfc->regs + HC_CFG);
316	writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
317	       nfc->regs + HC_CFG);
318}
319
320static void mxic_nfc_cs_disable(struct mxic_nand_ctrl *nfc)
321{
322	writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
323	       nfc->regs + HC_CFG);
324}
325
326static int mxic_nfc_data_xfer(struct mxic_nand_ctrl *nfc, const void *txbuf,
327			      void *rxbuf, unsigned int len)
328{
329	unsigned int pos = 0;
330
331	while (pos < len) {
332		unsigned int nbytes = len - pos;
333		u32 data = 0xffffffff;
334		u32 sts;
335		int ret;
336
337		if (nbytes > 4)
338			nbytes = 4;
339
340		if (txbuf)
341			memcpy(&data, txbuf + pos, nbytes);
342
343		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
344					 sts & INT_TX_EMPTY, 1000000);
345		if (ret)
346			return ret;
347
348		writel(data, nfc->regs + TXD(nbytes % 4));
349
350		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
351					 sts & INT_TX_EMPTY, 1000000);
352		if (ret)
353			return ret;
354
355		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
356					 sts & INT_RX_NOT_EMPTY, 1000000);
357		if (ret)
358			return ret;
359
360		data = readl(nfc->regs + RXD);
361		if (rxbuf) {
362			data >>= (8 * (4 - nbytes));
363			memcpy(rxbuf + pos, &data, nbytes);
364		}
365
366		WARN_ON(readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY);
367
368		pos += nbytes;
369	}
370
371	return 0;
372}
373
374static uint8_t mxic_nfc_read_byte(struct mtd_info *mtd)
375{
376	struct nand_chip *chip = mtd_to_nand(mtd);
377	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
378	u8 data;
379
380	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
381	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
382	       OP_READ, nfc->regs + SS_CTRL(0));
383
384	mxic_nfc_data_xfer(nfc, NULL, &data, 1);
385
386	return data;
387}
388
389static void mxic_nfc_read_buf(struct mtd_info *mtd, uint8_t *rxbuf, int rlen)
390{
391	struct nand_chip *chip = mtd_to_nand(mtd);
392	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
393
394	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
395	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
396			    OP_READ, nfc->regs + SS_CTRL(0));
397
398	mxic_nfc_data_xfer(nfc, NULL, rxbuf, rlen);
399}
400
401static void mxic_nfc_write_buf(struct mtd_info *mtd, const uint8_t *txbuf,
402			       int wlen)
403{
404	struct nand_chip *chip = mtd_to_nand(mtd);
405	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
406
407	writel(wlen, nfc->regs + ONFI_DIN_CNT(0));
408	writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
409	       nfc->regs + SS_CTRL(0));
410
411	mxic_nfc_data_xfer(nfc, txbuf, NULL, wlen);
412}
413
414static void mxic_nfc_cmd_function(struct mtd_info *mtd, unsigned int command,
415				  int column, int page_addr)
416{
417	struct nand_chip *chip = mtd_to_nand(mtd);
418	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
419	const struct mxic_nfc_command_format *cmd = NULL;
420	u32 sts;
421	u8 index, addr[5];
422
423	/* Emulate NAND_CMD_READOOB */
424	if (command == NAND_CMD_READOOB) {
425		column += mtd->writesize;
426		command = NAND_CMD_READ0;
427	}
428
429	/* Get the command format */
430	for (index = 0; index < ARRAY_SIZE(mxic_nand_commands); index++)
431		if (command == mxic_nand_commands[index].start_cmd)
432			break;
433
434	cmd = &mxic_nand_commands[index];
435
436	if (!(command == NAND_CMD_PAGEPROG ||
437	      command == NAND_CMD_CACHEDPROG ||
438	      command == NAND_CMD_ERASE2))
439		mxic_nfc_cs_disable(nfc);
440
441	mxic_nfc_cs_enable(nfc);
442
443	if (column != -1) {
444		addr[0] = column;
445		addr[1] = column >> 8;
446
447		if (page_addr != -1) {
448			addr[2] = page_addr;
449			addr[3] = page_addr >> 8;
450			addr[4] = page_addr >> 16;
451		}
452	} else if (page_addr != -1) {
453		addr[0] = page_addr;
454		addr[1] = page_addr >> 8;
455		addr[2] = page_addr >> 16;
456	}
457
458	writel(0, nfc->regs + HC_EN);
459	writel(HC_EN_BIT, nfc->regs + HC_EN);
460	writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) | OP_CMD_BYTES(0),
461	       nfc->regs + SS_CTRL(0));
462
463	mxic_nfc_data_xfer(nfc, &cmd->start_cmd, NULL, 1);
464
465	if (cmd->addr_len) {
466		writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
467		       OP_ADDR_BYTES(cmd->addr_len), nfc->regs + SS_CTRL(0));
468
469		mxic_nfc_data_xfer(nfc, &addr, NULL, cmd->addr_len);
470	}
471
472	if (cmd->end_cmd != NAND_CMD_NONE) {
473		writel(0, nfc->regs + HC_EN);
474		writel(HC_EN_BIT, nfc->regs + HC_EN);
475		writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
476		       OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
477
478		mxic_nfc_data_xfer(nfc, &cmd->end_cmd, NULL, 1);
479	}
480
481	readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_RDY_PIN,
482			   1000000);
483
484	if (command == NAND_CMD_PAGEPROG ||
485	    command == NAND_CMD_CACHEDPROG ||
486	    command == NAND_CMD_ERASE2 ||
487	    command == NAND_CMD_RESET) {
488		mxic_nfc_cs_disable(nfc);
489	}
490}
491
492static int mxic_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
493					 const struct nand_data_interface *conf)
494{
495	struct nand_chip *chip = mtd_to_nand(mtd);
496	struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
497	const struct nand_sdr_timings *sdr;
498	unsigned long freq;
499	int ret;
500
501	sdr = nand_get_sdr_timings(conf);
502	if (IS_ERR(sdr))
503		return PTR_ERR(sdr);
504
505	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
506		return 0;
507
508	freq = 1000000000 / (sdr->tRC_min / 1000);
509
510	ret =  mxic_nfc_set_freq(nfc, freq);
511	if (ret)
512		WARN_ON("Set freq failed\n");
513
514	if (sdr->tRC_min < 30000)
515		writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
516
517	return 0;
518}
519
520/* Dummy implementation: we don't support multiple chips */
521static void mxic_nfc_select_chip(struct mtd_info *mtd, int chipnr)
522{
523	switch (chipnr) {
524	case -1:
525	case 0:
526		break;
527
528	default:
529		BUG();
530	}
531}
532
533static int mxic_nfc_probe(struct udevice *dev)
534{
535	struct mxic_nand_ctrl *nfc = dev_get_priv(dev);
536	struct nand_chip *nand_chip = &nfc->nand_chip;
537	struct mtd_info *mtd;
538	ofnode child;
539	int err;
540
541	nfc->regs = dev_read_addr_ptr(dev);
542
543	nfc->send_clk = devm_clk_get(dev, "send");
544	if (IS_ERR(nfc->send_clk))
545		return PTR_ERR(nfc->send_clk);
546
547	nfc->send_dly_clk = devm_clk_get(dev, "send_dly");
548	if (IS_ERR(nfc->send_dly_clk))
549		return PTR_ERR(nfc->send_dly_clk);
550
551	mtd = nand_to_mtd(nand_chip);
552
553	ofnode_for_each_subnode(child, dev_ofnode(dev))
554		nand_set_flash_node(nand_chip, child);
555
556	nand_set_controller_data(nand_chip, nfc);
557
558	nand_chip->select_chip = mxic_nfc_select_chip;
559	nand_chip->setup_data_interface = mxic_nfc_setup_data_interface;
560	nand_chip->cmdfunc = mxic_nfc_cmd_function;
561	nand_chip->read_byte = mxic_nfc_read_byte;
562	nand_chip->read_buf = mxic_nfc_read_buf;
563	nand_chip->write_buf = mxic_nfc_write_buf;
564
565	mxic_nfc_hw_init(nfc);
566
567	err = nand_scan(mtd, 1);
568	if (err)
569		return err;
570
571	err = nand_register(0, mtd);
572	if (err) {
573		dev_err(dev, "Failed to register MTD: %d\n", err);
574		return err;
575	}
576
577	return 0;
578}
579
580static const struct udevice_id mxic_nfc_of_ids[] = {
581	{ .compatible = "mxic,multi-itfc-v009-nand-controller" },
582	{ /* Sentinel */ }
583};
584
585U_BOOT_DRIVER(mxic_nfc) = {
586	.name = "mxic_nfc",
587	.id = UCLASS_MTD,
588	.of_match = mxic_nfc_of_ids,
589	.probe = mxic_nfc_probe,
590	.priv_auto = sizeof(struct mxic_nand_ctrl),
591};
592
593void board_nand_init(void)
594{
595	struct udevice *dev;
596	int ret;
597
598	ret = uclass_get_device_by_driver(UCLASS_MTD,
599					  DM_DRIVER_GET(mxic_nfc), &dev);
600	if (ret && ret != -ENODEV)
601		pr_err("Failed to initialize %s. (error %d)\n", dev->name,
602		       ret);
603}
604