1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2022 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 *   Copyright 2003 Rick Bronson
12 *
13 *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 *   Derived from drivers/mtd/spia.c (removed in v3.8)
17 *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *
20 *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21 *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22 *
23 *   Derived from Das U-Boot source code
24 *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25 *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26 *
27 *   Add Programmable Multibit ECC support for various AT91 SoC
28 *	Copyright 2012 ATMEL, Hong Xu
29 *
30 *   Add Nand Flash Controller support for SAMA5 SoC
31 *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32 *
33 *   Port from Linux
34 *	Balamanikandan Gunasundar(balamanikandan.gunasundar@microchip.com)
35 *	Copyright (C) 2022 Microchip Technology Inc.
36 *
37 * A few words about the naming convention in this file. This convention
38 * applies to structure and function names.
39 *
40 * Prefixes:
41 *
42 * - atmel_nand_: all generic structures/functions
43 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
44 *		      (at91sam9 and avr32 SoCs)
45 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
46 *		       (sama5 SoCs and later)
47 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
48 *		 that is available in the HSMC block
49 * - <soc>_nand_: all SoC specific structures/functions
50 */
51
52#include <asm-generic/gpio.h>
53#include <clk.h>
54#include <dm/device_compat.h>
55#include <dm/devres.h>
56#include <dm/of_addr.h>
57#include <dm/of_access.h>
58#include <dm/uclass.h>
59#include <linux/completion.h>
60#include <linux/io.h>
61#include <linux/iopoll.h>
62#include <linux/ioport.h>
63#include <linux/mfd/syscon/atmel-matrix.h>
64#include <linux/mfd/syscon/atmel-smc.h>
65#include <linux/mtd/rawnand.h>
66#include <linux/mtd/mtd.h>
67#include <linux/time.h>
68#include <mach/at91_sfr.h>
69#include <nand.h>
70#include <regmap.h>
71#include <syscon.h>
72
73#include "pmecc.h"
74
75#define ATMEL_HSMC_NFC_CFG			0x0
76#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
77#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
78#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
79#define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
80#define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
81#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
82#define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
83#define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
84#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
85#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
86
87#define ATMEL_HSMC_NFC_CTRL			0x4
88#define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
89#define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
90
91#define ATMEL_HSMC_NFC_SR			0x8
92#define ATMEL_HSMC_NFC_IER			0xc
93#define ATMEL_HSMC_NFC_IDR			0x10
94#define ATMEL_HSMC_NFC_IMR			0x14
95#define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
96#define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
97#define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
98#define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
99#define ATMEL_HSMC_NFC_SR_WR			BIT(11)
100#define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
101#define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
102#define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
103#define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
104#define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
105#define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
106#define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
107#define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
108						 ATMEL_HSMC_NFC_SR_UNDEF | \
109						 ATMEL_HSMC_NFC_SR_AWB | \
110						 ATMEL_HSMC_NFC_SR_NFCASE)
111#define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
112
113#define ATMEL_HSMC_NFC_ADDR			0x18
114#define ATMEL_HSMC_NFC_BANK			0x1c
115
116#define ATMEL_NFC_MAX_RB_ID			7
117
118#define ATMEL_NFC_SRAM_SIZE			0x2400
119
120#define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
121#define ATMEL_NFC_VCMD2				BIT(18)
122#define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
123#define ATMEL_NFC_CSID(cs)			((cs) << 22)
124#define ATMEL_NFC_DATAEN			BIT(25)
125#define ATMEL_NFC_NFCWR				BIT(26)
126
127#define ATMEL_NFC_MAX_ADDR_CYCLES		5
128
129#define ATMEL_NAND_ALE_OFFSET			BIT(21)
130#define ATMEL_NAND_CLE_OFFSET			BIT(22)
131
132#define DEFAULT_TIMEOUT_MS			1000
133#define MIN_DMA_LEN				128
134
135static struct nand_ecclayout atmel_pmecc_oobinfo;
136
137struct nand_controller_ops {
138	int (*attach_chip)(struct nand_chip *chip);
139	int (*setup_data_interface)(struct mtd_info *mtd, int chipnr,
140				    const struct nand_data_interface *conf);
141};
142
143struct nand_controller {
144	const struct nand_controller_ops *ops;
145};
146
147enum atmel_nand_rb_type {
148	ATMEL_NAND_NO_RB,
149	ATMEL_NAND_NATIVE_RB,
150	ATMEL_NAND_GPIO_RB,
151};
152
153struct atmel_nand_rb {
154	enum atmel_nand_rb_type type;
155	union {
156		struct gpio_desc gpio;
157		int id;
158	};
159};
160
161struct atmel_nand_cs {
162	int id;
163	struct atmel_nand_rb rb;
164	struct gpio_desc csgpio;
165	struct {
166		void __iomem *virt;
167		dma_addr_t dma;
168	} io;
169
170	struct atmel_smc_cs_conf smcconf;
171};
172
173struct atmel_nand {
174	struct list_head node;
175	struct udevice *dev;
176	struct nand_chip base;
177	struct atmel_nand_cs *activecs;
178	struct atmel_pmecc_user *pmecc;
179	struct gpio_desc cdgpio;
180	int numcs;
181	struct nand_controller *controller;
182	struct atmel_nand_cs cs[];
183};
184
185static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
186{
187	return container_of(chip, struct atmel_nand, base);
188}
189
190enum atmel_nfc_data_xfer {
191	ATMEL_NFC_NO_DATA,
192	ATMEL_NFC_READ_DATA,
193	ATMEL_NFC_WRITE_DATA,
194};
195
196struct atmel_nfc_op {
197	u8 cs;
198	u8 ncmds;
199	u8 cmds[2];
200	u8 naddrs;
201	u8 addrs[5];
202	enum atmel_nfc_data_xfer data;
203	u32 wait;
204	u32 errors;
205};
206
207struct atmel_nand_controller;
208struct atmel_nand_controller_caps;
209
210struct atmel_nand_controller_ops {
211	int (*probe)(struct udevice *udev,
212		     const struct atmel_nand_controller_caps *caps);
213	int (*remove)(struct atmel_nand_controller *nc);
214	void (*nand_init)(struct atmel_nand_controller *nc,
215			  struct atmel_nand *nand);
216	int (*ecc_init)(struct nand_chip *chip);
217	int (*setup_data_interface)(struct atmel_nand *nand, int csline,
218				    const struct nand_data_interface *conf);
219};
220
221struct atmel_nand_controller_caps {
222	bool has_dma;
223	bool legacy_of_bindings;
224	u32 ale_offs;
225	u32 cle_offs;
226	const char *ebi_csa_regmap_name;
227	const struct atmel_nand_controller_ops *ops;
228};
229
230struct atmel_nand_controller {
231	struct nand_controller base;
232	const struct atmel_nand_controller_caps *caps;
233	struct udevice *dev;
234	struct regmap *smc;
235	struct dma_chan *dmac;
236	struct atmel_pmecc *pmecc;
237	struct list_head chips;
238	struct clk *mck;
239};
240
241static inline struct atmel_nand_controller *
242to_nand_controller(struct nand_controller *ctl)
243{
244	return container_of(ctl, struct atmel_nand_controller, base);
245}
246
247struct atmel_smc_nand_ebi_csa_cfg {
248	u32 offs;
249	u32 nfd0_on_d16;
250};
251
252struct atmel_smc_nand_controller {
253	struct atmel_nand_controller base;
254	struct regmap *ebi_csa_regmap;
255	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
256};
257
258static inline struct atmel_smc_nand_controller *
259to_smc_nand_controller(struct nand_controller *ctl)
260{
261	return container_of(to_nand_controller(ctl),
262			    struct atmel_smc_nand_controller, base);
263}
264
265struct atmel_hsmc_nand_controller {
266	struct atmel_nand_controller base;
267	struct {
268		struct gen_pool *pool;
269		void __iomem *virt;
270		dma_addr_t dma;
271	} sram;
272	const struct atmel_hsmc_reg_layout *hsmc_layout;
273	struct regmap *io;
274	struct atmel_nfc_op op;
275	struct completion complete;
276	int irq;
277
278	/* Only used when instantiating from legacy DT bindings. */
279	struct clk *clk;
280};
281
282static inline struct atmel_hsmc_nand_controller *
283to_hsmc_nand_controller(struct nand_controller *ctl)
284{
285	return container_of(to_nand_controller(ctl),
286			    struct atmel_hsmc_nand_controller, base);
287}
288
289static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
290				    int oobsize, int ecc_len)
291{
292	int i;
293
294	layout->eccbytes = ecc_len;
295
296	/* ECC will occupy the last ecc_len bytes continuously */
297	for (i = 0; i < ecc_len; i++)
298		layout->eccpos[i] = oobsize - ecc_len + i;
299
300	layout->oobfree[0].offset = 2;
301	layout->oobfree[0].length =
302		oobsize - ecc_len - layout->oobfree[0].offset;
303}
304
305static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
306{
307	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
308	op->wait ^= status & op->wait;
309
310	return !op->wait || op->errors;
311}
312
313static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
314			  unsigned int timeout_ms)
315{
316	int ret;
317	u32 status;
318
319	if (!timeout_ms)
320		timeout_ms = DEFAULT_TIMEOUT_MS;
321
322	if (poll)
323		ret = regmap_read_poll_timeout(nc->base.smc,
324					       ATMEL_HSMC_NFC_SR, status,
325					       atmel_nfc_op_done(&nc->op,
326								 status),
327					       0, timeout_ms);
328	else
329		return -EOPNOTSUPP;
330
331	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
332		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
333		ret = -ETIMEDOUT;
334	}
335
336	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
337		dev_err(nc->base.dev, "Access to an undefined area\n");
338		ret = -EIO;
339	}
340
341	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
342		dev_err(nc->base.dev, "Access while busy\n");
343		ret = -EIO;
344	}
345
346	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
347		dev_err(nc->base.dev, "Wrong access size\n");
348		ret = -EIO;
349	}
350
351	return ret;
352}
353
354static u8 atmel_nand_read_byte(struct mtd_info *mtd)
355{
356	struct nand_chip *chip = mtd_to_nand(mtd);
357	struct atmel_nand *nand = to_atmel_nand(chip);
358
359	return ioread8(nand->activecs->io.virt);
360}
361
362static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
363{
364	struct nand_chip *chip = mtd_to_nand(mtd);
365	struct atmel_nand *nand = to_atmel_nand(chip);
366
367	if (chip->options & NAND_BUSWIDTH_16)
368		iowrite16(byte | (byte << 8), nand->activecs->io.virt);
369	else
370		iowrite8(byte, nand->activecs->io.virt);
371}
372
373static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
374{
375	struct nand_chip *chip = mtd_to_nand(mtd);
376	struct atmel_nand *nand = to_atmel_nand(chip);
377
378	if (chip->options & NAND_BUSWIDTH_16)
379		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
380	else
381		ioread8_rep(nand->activecs->io.virt, buf, len);
382}
383
384static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
385{
386	struct nand_chip *chip = mtd_to_nand(mtd);
387	struct atmel_nand *nand = to_atmel_nand(chip);
388
389	if (chip->options & NAND_BUSWIDTH_16)
390		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
391	else
392		iowrite8_rep(nand->activecs->io.virt, buf, len);
393}
394
395static int atmel_nand_dev_ready(struct mtd_info *mtd)
396{
397	struct nand_chip  *chip = mtd_to_nand(mtd);
398	struct atmel_nand *nand = to_atmel_nand(chip);
399
400	return dm_gpio_get_value(&nand->activecs->rb.gpio);
401}
402
403static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
404{
405	struct nand_chip *chip =  mtd_to_nand(mtd);
406	struct atmel_nand *nand = to_atmel_nand(chip);
407
408	if (cs < 0 || cs >= nand->numcs) {
409		nand->activecs = NULL;
410		chip->dev_ready = NULL;
411		return;
412	}
413
414	nand->activecs = &nand->cs[cs];
415
416	if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
417		chip->dev_ready = atmel_nand_dev_ready;
418}
419
420static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
421{
422	struct nand_chip *chip = mtd_to_nand(mtd);
423	struct atmel_nand *nand = to_atmel_nand(chip);
424	struct atmel_hsmc_nand_controller *nc;
425	u32 status;
426
427	nc = to_hsmc_nand_controller(nand->controller);
428
429	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
430
431	return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
432}
433
434static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
435{
436	struct nand_chip *chip = mtd_to_nand(mtd);
437	struct atmel_nand *nand = to_atmel_nand(chip);
438	struct atmel_hsmc_nand_controller *nc;
439
440	nc = to_hsmc_nand_controller(nand->controller);
441
442	atmel_nand_select_chip(mtd, cs);
443
444	if (!nand->activecs) {
445		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
446			     ATMEL_HSMC_NFC_CTRL_DIS);
447		return;
448	}
449
450	if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
451		chip->dev_ready = atmel_hsmc_nand_dev_ready;
452
453	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
454			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
455			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
456			   ATMEL_HSMC_NFC_CFG_RSPARE |
457			   ATMEL_HSMC_NFC_CFG_WSPARE,
458			   ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
459			   ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
460			   ATMEL_HSMC_NFC_CFG_RSPARE);
461	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
462		     ATMEL_HSMC_NFC_CTRL_EN);
463}
464
465static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
466{
467	u8 *addrs = nc->op.addrs;
468	unsigned int op = 0;
469	u32 addr, val;
470	int i, ret;
471
472	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
473
474	for (i = 0; i < nc->op.ncmds; i++)
475		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
476
477	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
478		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
479
480	op |= ATMEL_NFC_CSID(nc->op.cs) |
481	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
482
483	if (nc->op.ncmds > 1)
484		op |= ATMEL_NFC_VCMD2;
485
486	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
487	       (addrs[3] << 24);
488
489	if (nc->op.data != ATMEL_NFC_NO_DATA) {
490		op |= ATMEL_NFC_DATAEN;
491		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
492
493		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
494			op |= ATMEL_NFC_NFCWR;
495	}
496
497	/* Clear all flags. */
498	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
499
500	/* Send the command. */
501	regmap_write(nc->io, op, addr);
502
503	ret = atmel_nfc_wait(nc, poll, 0);
504	if (ret)
505		dev_err(nc->base.dev,
506			"Failed to send NAND command (err = %d)!",
507			ret);
508
509	/* Reset the op state. */
510	memset(&nc->op, 0, sizeof(nc->op));
511
512	return ret;
513}
514
515static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
516				     unsigned int ctrl)
517{
518	struct nand_chip *chip = mtd_to_nand(mtd);
519	struct atmel_nand *nand = to_atmel_nand(chip);
520	struct atmel_hsmc_nand_controller *nc;
521
522	nc = to_hsmc_nand_controller(nand->controller);
523
524	if (ctrl & NAND_ALE) {
525		if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
526			return;
527
528		nc->op.addrs[nc->op.naddrs++] = dat;
529	} else if (ctrl & NAND_CLE) {
530		if (nc->op.ncmds > 1)
531			return;
532
533		nc->op.cmds[nc->op.ncmds++] = dat;
534	}
535
536	if (dat == NAND_CMD_NONE) {
537		nc->op.cs = nand->activecs->id;
538		atmel_nfc_exec_op(nc, true);
539	}
540}
541
542static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
543				unsigned int ctrl)
544{
545	struct nand_chip *chip = mtd_to_nand(mtd);
546	struct atmel_nand *nand = to_atmel_nand(chip);
547	struct atmel_nand_controller *nc;
548
549	nc = to_nand_controller(nand->controller);
550
551	if ((ctrl & NAND_CTRL_CHANGE) &&
552	    dm_gpio_is_valid(&nand->activecs->csgpio)) {
553		if (ctrl & NAND_NCE)
554			dm_gpio_set_value(&nand->activecs->csgpio, 0);
555		else
556			dm_gpio_set_value(&nand->activecs->csgpio, 1);
557	}
558
559	if (ctrl & NAND_ALE)
560		writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
561	else if (ctrl & NAND_CLE)
562		writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
563}
564
565static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
566				   bool oob_required)
567{
568	struct mtd_info *mtd = nand_to_mtd(chip);
569	struct atmel_nand *nand = to_atmel_nand(chip);
570	struct atmel_hsmc_nand_controller *nc;
571	int ret = -EIO;
572
573	nc = to_hsmc_nand_controller(nand->controller);
574
575	if (ret)
576		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
577
578	if (oob_required)
579		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
580			    mtd->oobsize);
581}
582
583static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
584				     bool oob_required)
585{
586	struct mtd_info *mtd = nand_to_mtd(chip);
587	struct atmel_nand *nand = to_atmel_nand(chip);
588	struct atmel_hsmc_nand_controller *nc;
589	int ret = -EIO;
590
591	nc = to_hsmc_nand_controller(nand->controller);
592
593	if (ret)
594		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
595
596	if (oob_required)
597		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
598			      mtd->oobsize);
599}
600
601static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
602{
603	struct mtd_info *mtd = nand_to_mtd(chip);
604	struct atmel_nand *nand = to_atmel_nand(chip);
605	struct atmel_hsmc_nand_controller *nc;
606
607	nc = to_hsmc_nand_controller(nand->controller);
608
609	if (column >= 0) {
610		nc->op.addrs[nc->op.naddrs++] = column;
611
612		/*
613		 * 2 address cycles for the column offset on large page NANDs.
614		 */
615		if (mtd->writesize > 512)
616			nc->op.addrs[nc->op.naddrs++] = column >> 8;
617	}
618
619	if (page >= 0) {
620		nc->op.addrs[nc->op.naddrs++] = page;
621		nc->op.addrs[nc->op.naddrs++] = page >> 8;
622
623		if (chip->options & NAND_ROW_ADDR_3)
624			nc->op.addrs[nc->op.naddrs++] = page >> 16;
625	}
626}
627
628static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
629{
630	struct atmel_nand *nand = to_atmel_nand(chip);
631	struct atmel_nand_controller *nc;
632	int ret;
633
634	nc = to_nand_controller(nand->controller);
635
636	if (raw)
637		return 0;
638
639	ret = atmel_pmecc_enable(nand->pmecc, op);
640	if (ret)
641		dev_err(nc->dev,
642			"Failed to enable ECC engine (err = %d)\n", ret);
643
644	return ret;
645}
646
647static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
648{
649	struct atmel_nand *nand = to_atmel_nand(chip);
650
651	if (!raw)
652		atmel_pmecc_disable(nand->pmecc);
653}
654
655static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
656{
657	struct atmel_nand *nand = to_atmel_nand(chip);
658	struct mtd_info *mtd = nand_to_mtd(chip);
659	struct atmel_nand_controller *nc;
660	struct mtd_oob_region oobregion;
661	void *eccbuf;
662	int ret, i;
663
664	nc = to_nand_controller(nand->controller);
665
666	if (raw)
667		return 0;
668
669	ret = atmel_pmecc_wait_rdy(nand->pmecc);
670	if (ret) {
671		dev_err(nc->dev,
672			"Failed to transfer NAND page data (err = %d)\n",
673			ret);
674		return ret;
675	}
676
677	mtd_ooblayout_ecc(mtd, 0, &oobregion);
678	eccbuf = chip->oob_poi + oobregion.offset;
679
680	for (i = 0; i < chip->ecc.steps; i++) {
681		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
682						   eccbuf);
683		eccbuf += chip->ecc.bytes;
684	}
685
686	return 0;
687}
688
689static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
690					 bool raw)
691{
692	struct atmel_nand *nand = to_atmel_nand(chip);
693	struct mtd_info *mtd = nand_to_mtd(chip);
694	struct atmel_nand_controller *nc;
695	struct mtd_oob_region oobregion;
696	int ret, i, max_bitflips = 0;
697	void *databuf, *eccbuf;
698
699	nc = to_nand_controller(nand->controller);
700
701	if (raw)
702		return 0;
703
704	ret = atmel_pmecc_wait_rdy(nand->pmecc);
705	if (ret) {
706		dev_err(nc->dev,
707			"Failed to read NAND page data (err = %d)\n", ret);
708		return ret;
709	}
710
711	mtd_ooblayout_ecc(mtd, 0, &oobregion);
712	eccbuf = chip->oob_poi + oobregion.offset;
713	databuf = buf;
714
715	for (i = 0; i < chip->ecc.steps; i++) {
716		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
717						 eccbuf);
718		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
719			ret = nand_check_erased_ecc_chunk(databuf,
720							  chip->ecc.size,
721							  eccbuf,
722							  chip->ecc.bytes,
723							  NULL, 0,
724							  chip->ecc.strength);
725
726		if (ret >= 0)
727			max_bitflips = max(ret, max_bitflips);
728		else
729			mtd->ecc_stats.failed++;
730
731		databuf += chip->ecc.size;
732		eccbuf += chip->ecc.bytes;
733	}
734
735	return max_bitflips;
736}
737
738static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
739				     bool oob_required, int page, bool raw)
740{
741	struct mtd_info *mtd = nand_to_mtd(chip);
742	struct atmel_nand *nand = to_atmel_nand(chip);
743	int ret;
744
745	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
746
747	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
748	if (ret)
749		return ret;
750
751	atmel_nand_write_buf(mtd, buf, mtd->writesize);
752
753	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
754	if (ret) {
755		atmel_pmecc_disable(nand->pmecc);
756		return ret;
757	}
758
759	atmel_nand_pmecc_disable(chip, raw);
760
761	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
762
763	return nand_prog_page_end_op(chip);
764}
765
766static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
767				       struct nand_chip *chip, const u8 *buf,
768				       int oob_required, int page)
769{
770	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
771}
772
773static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
774					   struct nand_chip *chip,
775					   const u8 *buf, int oob_required,
776					   int page)
777{
778	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
779}
780
781static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
782				    bool oob_required, int page, bool raw)
783{
784	struct mtd_info *mtd = nand_to_mtd(chip);
785	int ret;
786
787	nand_read_page_op(chip, page, 0, NULL, 0);
788
789	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
790	if (ret)
791		return ret;
792
793	atmel_nand_read_buf(mtd, buf, mtd->writesize);
794	atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
795
796	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
797
798	atmel_nand_pmecc_disable(chip, raw);
799
800	return ret;
801}
802
803static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
804				      struct nand_chip *chip, u8 *buf,
805				      int oob_required, int page)
806{
807	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
808}
809
810static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
811					  struct nand_chip *chip, u8 *buf,
812					  int oob_required, int page)
813{
814	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
815}
816
817static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
818					  const u8 *buf, bool oob_required,
819					  int page, bool raw)
820{
821	struct mtd_info *mtd = nand_to_mtd(chip);
822	struct atmel_nand *nand = to_atmel_nand(chip);
823	struct atmel_hsmc_nand_controller *nc;
824	int ret, status;
825
826	nc = to_hsmc_nand_controller(nand->controller);
827
828	atmel_nfc_copy_to_sram(chip, buf, false);
829
830	nc->op.cmds[0] = NAND_CMD_SEQIN;
831	nc->op.ncmds = 1;
832	atmel_nfc_set_op_addr(chip, page, 0x0);
833	nc->op.cs = nand->activecs->id;
834	nc->op.data = ATMEL_NFC_WRITE_DATA;
835
836	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
837	if (ret)
838		return ret;
839
840	ret = atmel_nfc_exec_op(nc, true);
841	if (ret) {
842		atmel_nand_pmecc_disable(chip, raw);
843		dev_err(nc->base.dev,
844			"Failed to transfer NAND page data (err = %d)\n",
845			ret);
846		return ret;
847	}
848
849	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
850
851	atmel_nand_pmecc_disable(chip, raw);
852
853	if (ret)
854		return ret;
855
856	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
857
858	nc->op.cmds[0] = NAND_CMD_PAGEPROG;
859	nc->op.ncmds = 1;
860	nc->op.cs = nand->activecs->id;
861	ret = atmel_nfc_exec_op(nc, true);
862	if (ret)
863		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
864			ret);
865
866	status = chip->waitfunc(mtd, chip);
867	if (status & NAND_STATUS_FAIL)
868		return -EIO;
869
870	return ret;
871}
872
873static int
874atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
875				 const u8 *buf, int oob_required,
876				 int page)
877{
878	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
879					      false);
880}
881
882static int
883atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
884				     const u8 *buf,
885				     int oob_required, int page)
886{
887	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
888					      true);
889}
890
891static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
892					 bool oob_required, int page,
893					 bool raw)
894{
895	struct mtd_info *mtd = nand_to_mtd(chip);
896	struct atmel_nand *nand = to_atmel_nand(chip);
897	struct atmel_hsmc_nand_controller *nc;
898	int ret;
899
900	nc = to_hsmc_nand_controller(nand->controller);
901
902	/*
903	 * Optimized read page accessors only work when the NAND R/B pin is
904	 * connected to a native SoC R/B pin. If that's not the case, fallback
905	 * to the non-optimized one.
906	 */
907	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
908		nand_read_page_op(chip, page, 0, NULL, 0);
909
910		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
911						raw);
912	}
913
914	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
915
916	if (mtd->writesize > 512)
917		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
918
919	atmel_nfc_set_op_addr(chip, page, 0x0);
920	nc->op.cs = nand->activecs->id;
921	nc->op.data = ATMEL_NFC_READ_DATA;
922
923	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
924	if (ret)
925		return ret;
926
927	ret = atmel_nfc_exec_op(nc, true);
928	if (ret) {
929		atmel_nand_pmecc_disable(chip, raw);
930		dev_err(nc->base.dev,
931			"Failed to load NAND page data (err = %d)\n",
932			ret);
933		return ret;
934	}
935
936	atmel_nfc_copy_from_sram(chip, buf, true);
937
938	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
939
940	atmel_nand_pmecc_disable(chip, raw);
941
942	return ret;
943}
944
945static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
946					   struct nand_chip *chip, u8 *buf,
947					   int oob_required, int page)
948{
949	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
950					     false);
951}
952
953static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
954					       struct nand_chip *chip,
955					       u8 *buf, int oob_required,
956					       int page)
957{
958	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
959					     true);
960}
961
962static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
963				 struct mtd_oob_region *oobregion)
964{
965	struct nand_chip *chip = mtd_to_nand(mtd);
966	struct nand_ecc_ctrl *ecc = &chip->ecc;
967
968	if (section || !ecc->total)
969		return -ERANGE;
970
971	oobregion->length = ecc->total;
972	oobregion->offset = mtd->oobsize - oobregion->length;
973
974	return 0;
975}
976
977static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
978				  struct mtd_oob_region *oobregion)
979{
980	struct nand_chip *chip = mtd_to_nand(mtd);
981	struct nand_ecc_ctrl *ecc = &chip->ecc;
982
983	if (section)
984		return -ERANGE;
985
986	oobregion->length = mtd->oobsize - ecc->total - 2;
987	oobregion->offset = 2;
988
989	return 0;
990}
991
992static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
993	.ecc = nand_ooblayout_ecc_lp,
994	.rfree = nand_ooblayout_free_lp,
995};
996
997const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
998{
999	return &nand_ooblayout_lp_ops;
1000}
1001
1002static int atmel_nand_pmecc_init(struct nand_chip *chip)
1003{
1004	struct mtd_info *mtd = nand_to_mtd(chip);
1005	struct atmel_nand *nand = to_atmel_nand(chip);
1006	struct atmel_nand_controller *nc;
1007	struct atmel_pmecc_user_req req;
1008
1009	nc = to_nand_controller(nand->controller);
1010
1011	if (!nc->pmecc) {
1012		dev_err(nc->dev, "HW ECC not supported\n");
1013		return -EOPNOTSUPP;
1014	}
1015
1016	if (nc->caps->legacy_of_bindings) {
1017		u32 val;
1018
1019		if (!ofnode_read_u32(nc->dev->node_, "atmel,pmecc-cap", &val))
1020			chip->ecc.strength = val;
1021
1022		if (!ofnode_read_u32(nc->dev->node_,
1023				     "atmel,pmecc-sector-size",
1024				     &val))
1025			chip->ecc.size = val;
1026	}
1027
1028	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1029		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1030	else if (chip->ecc.strength)
1031		req.ecc.strength = chip->ecc.strength;
1032	else
1033		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1034
1035	if (chip->ecc.size)
1036		req.ecc.sectorsize = chip->ecc.size;
1037	else
1038		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1039
1040	req.pagesize = mtd->writesize;
1041	req.oobsize = mtd->oobsize;
1042
1043	if (mtd->writesize <= 512) {
1044		req.ecc.bytes = 4;
1045		req.ecc.ooboffset = 0;
1046	} else {
1047		req.ecc.bytes = mtd->oobsize - 2;
1048		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1049	}
1050
1051	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1052	if (IS_ERR(nand->pmecc))
1053		return PTR_ERR(nand->pmecc);
1054
1055	chip->ecc.algo = NAND_ECC_BCH;
1056	chip->ecc.size = req.ecc.sectorsize;
1057	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1058	chip->ecc.strength = req.ecc.strength;
1059
1060	chip->options |= NAND_NO_SUBPAGE_WRITE;
1061
1062	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1063	pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1064				mtd->oobsize,
1065				chip->ecc.bytes);
1066	chip->ecc.layout = &atmel_pmecc_oobinfo;
1067
1068	return 0;
1069}
1070
1071static int atmel_nand_ecc_init(struct nand_chip *chip)
1072{
1073	struct atmel_nand_controller *nc;
1074	struct atmel_nand *nand = to_atmel_nand(chip);
1075	int ret;
1076
1077	nc = to_nand_controller(nand->controller);
1078
1079	switch (chip->ecc.mode) {
1080	case NAND_ECC_NONE:
1081	case NAND_ECC_SOFT:
1082		/*
1083		 * Nothing to do, the core will initialize everything for us.
1084		 */
1085		break;
1086
1087	case NAND_ECC_HW:
1088		ret = atmel_nand_pmecc_init(chip);
1089		if (ret)
1090			return ret;
1091
1092		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1093		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1094		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1095		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1096		break;
1097
1098	default:
1099		/* Other modes are not supported. */
1100		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1101			chip->ecc.mode);
1102		return -EOPNOTSUPP;
1103	}
1104
1105	return 0;
1106}
1107
1108static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1109{
1110	int ret;
1111
1112	ret = atmel_nand_ecc_init(chip);
1113	if (ret)
1114		return ret;
1115
1116	if (chip->ecc.mode != NAND_ECC_HW)
1117		return 0;
1118
1119	/* Adjust the ECC operations for the HSMC IP. */
1120	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1121	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1122	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1123	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1124
1125	return 0;
1126}
1127
1128static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1129					  const struct nand_data_interface *conf,
1130					  struct atmel_smc_cs_conf *smcconf)
1131{
1132	u32 ncycles, totalcycles, timeps, mckperiodps;
1133	struct atmel_nand_controller *nc;
1134	int ret;
1135
1136	nc = to_nand_controller(nand->controller);
1137
1138	/* DDR interface not supported. */
1139	if (conf->type != NAND_SDR_IFACE)
1140		return -EOPNOTSUPP;
1141
1142	/*
1143	 * tRC < 30ns implies EDO mode. This controller does not support this
1144	 * mode.
1145	 */
1146	if (conf->timings.sdr.tRC_min < 30000)
1147		return -EOPNOTSUPP;
1148
1149	atmel_smc_cs_conf_init(smcconf);
1150
1151	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1152	mckperiodps *= 1000;
1153
1154	/*
1155	 * Set write pulse timing. This one is easy to extract:
1156	 *
1157	 * NWE_PULSE = tWP
1158	 */
1159	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1160	totalcycles = ncycles;
1161	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1162					  ncycles);
1163	if (ret)
1164		return ret;
1165
1166	/*
1167	 * The write setup timing depends on the operation done on the NAND.
1168	 * All operations goes through the same data bus, but the operation
1169	 * type depends on the address we are writing to (ALE/CLE address
1170	 * lines).
1171	 * Since we have no way to differentiate the different operations at
1172	 * the SMC level, we must consider the worst case (the biggest setup
1173	 * time among all operation types):
1174	 *
1175	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1176	 */
1177	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1178		      conf->timings.sdr.tALS_min);
1179	timeps = max(timeps, conf->timings.sdr.tDS_min);
1180	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1181	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1182	totalcycles += ncycles;
1183	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1184					  ncycles);
1185	if (ret)
1186		return ret;
1187
1188	/*
1189	 * As for the write setup timing, the write hold timing depends on the
1190	 * operation done on the NAND:
1191	 *
1192	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1193	 */
1194	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1195		      conf->timings.sdr.tALH_min);
1196	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1197		      conf->timings.sdr.tWH_min);
1198	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1199	totalcycles += ncycles;
1200
1201	/*
1202	 * The write cycle timing is directly matching tWC, but is also
1203	 * dependent on the other timings on the setup and hold timings we
1204	 * calculated earlier, which gives:
1205	 *
1206	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1207	 */
1208	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1209	ncycles = max(totalcycles, ncycles);
1210	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1211					  ncycles);
1212	if (ret)
1213		return ret;
1214
1215	/*
1216	 * We don't want the CS line to be toggled between each byte/word
1217	 * transfer to the NAND. The only way to guarantee that is to have the
1218	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1219	 *
1220	 * NCS_WR_PULSE = NWE_CYCLE
1221	 */
1222	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1223					  ncycles);
1224	if (ret)
1225		return ret;
1226
1227	/*
1228	 * As for the write setup timing, the read hold timing depends on the
1229	 * operation done on the NAND:
1230	 *
1231	 * NRD_HOLD = max(tREH, tRHOH)
1232	 */
1233	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1234	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1235	totalcycles = ncycles;
1236
1237	/*
1238	 * TDF = tRHZ - NRD_HOLD
1239	 */
1240	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1241	ncycles -= totalcycles;
1242
1243	/*
1244	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1245	 * we might end up with a config that does not fit in the TDF field.
1246	 * Just take the max value in this case and hope that the NAND is more
1247	 * tolerant than advertised.
1248	 */
1249	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1250		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1251	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1252		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1253
1254	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1255			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1256
1257	/*
1258	 * Read pulse timing directly matches tRP:
1259	 *
1260	 * NRD_PULSE = tRP
1261	 */
1262	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1263	totalcycles += ncycles;
1264	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1265					  ncycles);
1266	if (ret)
1267		return ret;
1268
1269	/*
1270	 * The read cycle timing is directly matching tRC, but is also
1271	 * dependent on the setup and hold timings we calculated earlier,
1272	 * which gives:
1273	 *
1274	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1275	 *
1276	 * NRD_SETUP is always 0.
1277	 */
1278	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1279	ncycles = max(totalcycles, ncycles);
1280	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1281					  ncycles);
1282	if (ret)
1283		return ret;
1284
1285	/*
1286	 * We don't want the CS line to be toggled between each byte/word
1287	 * transfer from the NAND. The only way to guarantee that is to have
1288	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1289	 *
1290	 * NCS_RD_PULSE = NRD_CYCLE
1291	 */
1292	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1293					  ncycles);
1294	if (ret)
1295		return ret;
1296
1297	/* Txxx timings are directly matching tXXX ones. */
1298	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1299	ret = atmel_smc_cs_conf_set_timing(smcconf,
1300					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1301					   ncycles);
1302	if (ret)
1303		return ret;
1304
1305	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1306	ret = atmel_smc_cs_conf_set_timing(smcconf,
1307					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1308					   ncycles);
1309	/*
1310	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1311	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1312	 * fit in the tADL field of the SMC reg. We need to relax the check and
1313	 * accept the -ERANGE return code.
1314	 *
1315	 * Note that previous versions of the ONFI spec had a lower tADL_min
1316	 * (100 or 200 ns). It's not clear why this timing constraint got
1317	 * increased but it seems most NANDs are fine with values lower than
1318	 * 400ns, so we should be safe.
1319	 */
1320	if (ret && ret != -ERANGE)
1321		return ret;
1322
1323	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1324	ret = atmel_smc_cs_conf_set_timing(smcconf,
1325					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1326					   ncycles);
1327	if (ret)
1328		return ret;
1329
1330	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1331	ret = atmel_smc_cs_conf_set_timing(smcconf,
1332					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1333					   ncycles);
1334	if (ret)
1335		return ret;
1336
1337	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1338	ret = atmel_smc_cs_conf_set_timing(smcconf,
1339					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1340					   ncycles);
1341	if (ret)
1342		return ret;
1343
1344	/* Attach the CS line to the NFC logic. */
1345	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1346
1347	/* Set the appropriate data bus width. */
1348	if (nand->base.options & NAND_BUSWIDTH_16)
1349		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1350
1351	/* Operate in NRD/NWE READ/WRITEMODE. */
1352	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1353			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1354
1355	return 0;
1356}
1357
1358static int
1359atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1360				    int csline,
1361				    const struct nand_data_interface *conf)
1362{
1363	struct atmel_nand_controller *nc;
1364	struct atmel_smc_cs_conf smcconf;
1365	struct atmel_nand_cs *cs;
1366	int ret;
1367
1368	nc = to_nand_controller(nand->controller);
1369
1370	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1371	if (ret)
1372		return ret;
1373
1374	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1375		return 0;
1376
1377	cs = &nand->cs[csline];
1378	cs->smcconf = smcconf;
1379
1380	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1381
1382	return 0;
1383}
1384
1385static int
1386atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1387				     int csline,
1388				     const struct nand_data_interface *conf)
1389{
1390	struct atmel_hsmc_nand_controller *nc;
1391	struct atmel_smc_cs_conf smcconf;
1392	struct atmel_nand_cs *cs;
1393	int ret;
1394
1395	nc = to_hsmc_nand_controller(nand->controller);
1396
1397	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1398	if (ret)
1399		return ret;
1400
1401	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1402		return 0;
1403
1404	cs = &nand->cs[csline];
1405	cs->smcconf = smcconf;
1406
1407	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1408		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1409
1410	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1411				 &cs->smcconf);
1412
1413	return 0;
1414}
1415
1416static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1417					   const struct nand_data_interface *conf)
1418{
1419	struct nand_chip *chip = mtd_to_nand(mtd);
1420	struct atmel_nand *nand = to_atmel_nand(chip);
1421	struct atmel_nand_controller *nc;
1422
1423	nc = to_nand_controller(nand->controller);
1424
1425	if (csline >= nand->numcs ||
1426	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1427		return -EINVAL;
1428
1429	return nc->caps->ops->setup_data_interface(nand, csline, conf);
1430}
1431
1432static void atmel_nand_init(struct atmel_nand_controller *nc,
1433			    struct atmel_nand *nand)
1434{
1435	struct nand_chip *chip = &nand->base;
1436	struct mtd_info *mtd = nand_to_mtd(chip);
1437
1438	mtd->dev->parent = nc->dev;
1439	nand->controller = &nc->base;
1440
1441	chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1442	chip->read_byte = atmel_nand_read_byte;
1443	chip->write_byte = atmel_nand_write_byte;
1444	chip->read_buf = atmel_nand_read_buf;
1445	chip->write_buf = atmel_nand_write_buf;
1446	chip->select_chip = atmel_nand_select_chip;
1447	chip->setup_data_interface = atmel_nand_setup_data_interface;
1448
1449	if (!nc->mck || !nc->caps->ops->setup_data_interface)
1450		chip->options |= NAND_KEEP_TIMINGS;
1451
1452	/* Some NANDs require a longer delay than the default one (20us). */
1453	chip->chip_delay = 40;
1454
1455	/* Default to HW ECC if pmecc is available. */
1456	if (nc->pmecc)
1457		chip->ecc.mode = NAND_ECC_HW;
1458}
1459
1460static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1461				struct atmel_nand *nand)
1462{
1463	struct atmel_smc_nand_controller *smc_nc;
1464	int i;
1465
1466	atmel_nand_init(nc, nand);
1467
1468	smc_nc = to_smc_nand_controller(nand->controller);
1469	if (!smc_nc->ebi_csa_regmap)
1470		return;
1471
1472	/* Attach the CS to the NAND Flash logic. */
1473	for (i = 0; i < nand->numcs; i++)
1474		regmap_update_bits(smc_nc->ebi_csa_regmap,
1475				   smc_nc->ebi_csa->offs,
1476				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1477
1478	if (smc_nc->ebi_csa->nfd0_on_d16)
1479		regmap_update_bits(smc_nc->ebi_csa_regmap,
1480				   smc_nc->ebi_csa->offs,
1481				   smc_nc->ebi_csa->nfd0_on_d16,
1482				   smc_nc->ebi_csa->nfd0_on_d16);
1483}
1484
1485static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1486				 struct atmel_nand *nand)
1487{
1488	struct nand_chip *chip = &nand->base;
1489
1490	atmel_nand_init(nc, nand);
1491
1492	/* Overload some methods for the HSMC controller. */
1493	chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1494	chip->select_chip = atmel_hsmc_nand_select_chip;
1495}
1496
1497static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1498{
1499	list_del(&nand->node);
1500
1501	return 0;
1502}
1503
1504static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1505					    ofnode np,
1506					    int reg_cells)
1507{
1508	struct atmel_nand *nand;
1509	ofnode n;
1510	int numcs = 0;
1511	int ret, i;
1512	u32 val;
1513	fdt32_t faddr;
1514	phys_addr_t base;
1515
1516	/* Count num of nand nodes */
1517	ofnode_for_each_subnode(n, ofnode_get_parent(np))
1518		numcs++;
1519	if (numcs < 1) {
1520		dev_err(nc->dev, "Missing or invalid reg property\n");
1521		return ERR_PTR(-EINVAL);
1522	}
1523
1524	nand = devm_kzalloc(nc->dev,
1525			    sizeof(struct atmel_nand) +
1526			    (numcs * sizeof(struct atmel_nand_cs)),
1527			    GFP_KERNEL);
1528	if (!nand) {
1529		dev_err(nc->dev, "Failed to allocate NAND object\n");
1530		return ERR_PTR(-ENOMEM);
1531	}
1532
1533	nand->numcs = numcs;
1534
1535	gpio_request_by_name_nodev(np, "det-gpios", 0, &nand->cdgpio,
1536				   GPIOD_IS_IN);
1537
1538	for (i = 0; i < numcs; i++) {
1539		ret = ofnode_read_u32(np, "reg", &val);
1540		if (ret) {
1541			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1542				ret);
1543			return ERR_PTR(ret);
1544		}
1545		nand->cs[i].id = val;
1546
1547		/* Read base address */
1548		struct resource res;
1549
1550		if (ofnode_read_resource(np, 0, &res)) {
1551			dev_err(nc->dev, "Unable to read resource\n");
1552			return ERR_PTR(-ENOMEM);
1553		}
1554
1555		faddr = cpu_to_fdt32(val);
1556		base = ofnode_translate_address(np, &faddr);
1557		nand->cs[i].io.virt = (void *)base;
1558
1559		if (!ofnode_read_u32(np, "atmel,rb", &val)) {
1560			if (val > ATMEL_NFC_MAX_RB_ID)
1561				return ERR_PTR(-EINVAL);
1562
1563			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1564			nand->cs[i].rb.id = val;
1565		} else {
1566			ret = gpio_request_by_name_nodev(np, "rb-gpios", 0,
1567							 &nand->cs[i].rb.gpio,
1568							 GPIOD_IS_IN);
1569			if (ret && ret != -ENOENT)
1570				dev_err(nc->dev, "Failed to get R/B gpio (err = %d)\n", ret);
1571			if (!ret)
1572				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1573		}
1574
1575		gpio_request_by_name_nodev(np, "cs-gpios", 0,
1576					   &nand->cs[i].csgpio,
1577					   GPIOD_IS_OUT);
1578	}
1579
1580	nand_set_flash_node(&nand->base, np);
1581
1582	return nand;
1583}
1584
1585static int nand_attach(struct nand_chip *chip)
1586{
1587	struct atmel_nand *nand = to_atmel_nand(chip);
1588
1589	if (nand->controller->ops && nand->controller->ops->attach_chip)
1590		return nand->controller->ops->attach_chip(chip);
1591
1592	return 0;
1593}
1594
1595int atmel_nand_scan(struct mtd_info *mtd, int maxchips)
1596{
1597	int ret;
1598
1599	ret = nand_scan_ident(mtd, maxchips, NULL);
1600	if (ret)
1601		return ret;
1602
1603	ret = nand_attach(mtd_to_nand(mtd));
1604	if (ret)
1605		return ret;
1606
1607	ret = nand_scan_tail(mtd);
1608	return ret;
1609}
1610
1611static int
1612atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1613			       struct atmel_nand *nand)
1614{
1615	struct nand_chip *chip = &nand->base;
1616	struct mtd_info *mtd = nand_to_mtd(chip);
1617	int ret;
1618
1619	/* No card inserted, skip this NAND. */
1620	if (dm_gpio_is_valid(&nand->cdgpio) &&
1621	    dm_gpio_get_value(&nand->cdgpio)) {
1622		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1623		return 0;
1624	}
1625
1626	nc->caps->ops->nand_init(nc, nand);
1627
1628	ret = atmel_nand_scan(mtd, nand->numcs);
1629	if (ret) {
1630		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1631		return ret;
1632	}
1633
1634	ret = nand_register(0, mtd);
1635	if (ret) {
1636		dev_err(nc->dev, "nand register failed: %d\n", ret);
1637		return ret;
1638	}
1639
1640	list_add_tail(&nand->node, &nc->chips);
1641
1642	return 0;
1643}
1644
1645static int
1646atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1647{
1648	struct atmel_nand *nand, *tmp;
1649	int ret;
1650
1651	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1652		ret = atmel_nand_controller_remove_nand(nand);
1653		if (ret)
1654			return ret;
1655	}
1656
1657	return 0;
1658}
1659
1660static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1661{
1662	ofnode np;
1663	ofnode nand_np;
1664	int ret, reg_cells;
1665	u32 val;
1666
1667	/* TODO:
1668	 * Add support for legacy nands
1669	 */
1670
1671	np = nc->dev->node_;
1672
1673	ret = ofnode_read_u32(np, "#address-cells", &val);
1674	if (ret) {
1675		dev_err(nc->dev, "missing #address-cells property\n");
1676		return ret;
1677	}
1678
1679	reg_cells = val;
1680
1681	ret = ofnode_read_u32(np, "#size-cells", &val);
1682	if (ret) {
1683		dev_err(nc->dev, "missing #size-cells property\n");
1684		return ret;
1685	}
1686
1687	reg_cells += val;
1688
1689	ofnode_for_each_subnode(nand_np, np) {
1690		struct atmel_nand *nand;
1691
1692		nand = atmel_nand_create(nc, nand_np, reg_cells);
1693		if (IS_ERR(nand)) {
1694			ret = PTR_ERR(nand);
1695			goto err;
1696		}
1697
1698		ret = atmel_nand_controller_add_nand(nc, nand);
1699		if (ret)
1700			goto err;
1701	}
1702
1703	return 0;
1704
1705err:
1706	atmel_nand_controller_remove_nands(nc);
1707
1708	return ret;
1709}
1710
1711static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1712	.offs = AT91SAM9260_MATRIX_EBICSA,
1713};
1714
1715static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1716	.offs = AT91SAM9261_MATRIX_EBICSA,
1717};
1718
1719static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1720	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1721};
1722
1723static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1724	.offs = AT91SAM9RL_MATRIX_EBICSA,
1725};
1726
1727static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1728	.offs = AT91SAM9G45_MATRIX_EBICSA,
1729};
1730
1731static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1732	.offs = AT91SAM9N12_MATRIX_EBICSA,
1733};
1734
1735static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1736	.offs = AT91SAM9X5_MATRIX_EBICSA,
1737};
1738
1739static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1740	.offs = AT91_SFR_CCFG_EBICSA,
1741	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1742};
1743
1744static const struct udevice_id atmel_ebi_csa_regmap_of_ids[] = {
1745	{
1746		.compatible = "atmel,at91sam9260-matrix",
1747		.data = (ulong)&at91sam9260_ebi_csa,
1748	},
1749	{
1750		.compatible = "atmel,at91sam9261-matrix",
1751		.data = (ulong)&at91sam9261_ebi_csa,
1752	},
1753	{
1754		.compatible = "atmel,at91sam9263-matrix",
1755		.data = (ulong)&at91sam9263_ebi_csa,
1756	},
1757	{
1758		.compatible = "atmel,at91sam9rl-matrix",
1759		.data = (ulong)&at91sam9rl_ebi_csa,
1760	},
1761	{
1762		.compatible = "atmel,at91sam9g45-matrix",
1763		.data = (ulong)&at91sam9g45_ebi_csa,
1764	},
1765	{
1766		.compatible = "atmel,at91sam9n12-matrix",
1767		.data = (ulong)&at91sam9n12_ebi_csa,
1768	},
1769	{
1770		.compatible = "atmel,at91sam9x5-matrix",
1771		.data = (ulong)&at91sam9x5_ebi_csa,
1772	},
1773	{
1774		.compatible = "microchip,sam9x60-sfr",
1775		.data = (ulong)&sam9x60_ebi_csa,
1776	},
1777	{ /* sentinel */ },
1778};
1779
1780static int atmel_nand_attach_chip(struct nand_chip *chip)
1781{
1782	struct atmel_nand *nand = to_atmel_nand(chip);
1783	struct atmel_nand_controller *nc = to_nand_controller(nand->controller);
1784	struct mtd_info *mtd = nand_to_mtd(chip);
1785	int ret;
1786
1787	ret = nc->caps->ops->ecc_init(chip);
1788	if (ret)
1789		return ret;
1790
1791	if (nc->caps->legacy_of_bindings || !ofnode_valid(nc->dev->node_)) {
1792		/*
1793		 * We keep the MTD name unchanged to avoid breaking platforms
1794		 * where the MTD cmdline parser is used and the bootloader
1795		 * has not been updated to use the new naming scheme.
1796		 */
1797		mtd->name = "atmel_nand";
1798	} else if (!mtd->name) {
1799		/*
1800		 * If the new bindings are used and the bootloader has not been
1801		 * updated to pass a new mtdparts parameter on the cmdline, you
1802		 * should define the following property in your nand node:
1803		 *
1804		 *	label = "atmel_nand";
1805		 *
1806		 * This way, mtd->name will be set by the core when
1807		 * nand_set_flash_node() is called.
1808		 */
1809		sprintf(mtd->name, "%s:nand.%d", nc->dev->name, nand->cs[0].id);
1810	}
1811
1812	return 0;
1813}
1814
1815static const struct nand_controller_ops atmel_nand_controller_ops = {
1816	.attach_chip = atmel_nand_attach_chip,
1817};
1818
1819static int
1820atmel_nand_controller_init(struct atmel_nand_controller *nc,
1821			   struct udevice *dev,
1822			   const struct atmel_nand_controller_caps *caps)
1823{
1824	struct ofnode_phandle_args args;
1825	int ret;
1826
1827	nc->base.ops = &atmel_nand_controller_ops;
1828	INIT_LIST_HEAD(&nc->chips);
1829	nc->dev = dev;
1830	nc->caps = caps;
1831
1832	nc->pmecc = devm_atmel_pmecc_get(dev);
1833	if (IS_ERR(nc->pmecc)) {
1834		ret = PTR_ERR(nc->pmecc);
1835		if (ret != -EPROBE_DEFER)
1836			dev_err(dev, "Could not get PMECC object (err = %d)\n",
1837				ret);
1838		return ret;
1839	}
1840
1841	/* We do not retrieve the SMC syscon when parsing old DTs. */
1842	if (nc->caps->legacy_of_bindings)
1843		return 0;
1844
1845	nc->mck = devm_kzalloc(dev, sizeof(nc->mck), GFP_KERNEL);
1846	if (!nc->mck)
1847		return -ENOMEM;
1848
1849	clk_get_by_index(dev->parent, 0, nc->mck);
1850	if (IS_ERR(nc->mck)) {
1851		dev_err(dev, "Failed to retrieve MCK clk\n");
1852		return PTR_ERR(nc->mck);
1853	}
1854
1855	ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1856					     "atmel,smc", NULL, 0, 0, &args);
1857	if (ret) {
1858		dev_err(dev, "Missing or invalid atmel,smc property\n");
1859		return -EINVAL;
1860	}
1861
1862	nc->smc = syscon_node_to_regmap(args.node);
1863	if (IS_ERR(nc->smc)) {
1864		ret = PTR_ERR(nc->smc);
1865		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1866		return 0;
1867	}
1868
1869	return 0;
1870}
1871
1872static int
1873atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
1874{
1875	struct udevice *dev = nc->base.dev;
1876	struct ofnode_phandle_args args;
1877	const struct udevice_id *match = NULL;
1878	const char *name;
1879	int ret;
1880	int len;
1881	int i;
1882
1883	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
1884	if (nc->base.caps->legacy_of_bindings)
1885		return 0;
1886
1887	ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1888					     nc->base.caps->ebi_csa_regmap_name,
1889					     NULL, 0, 0, &args);
1890	if (ret) {
1891		dev_err(dev, "Unable to read ebi csa regmap\n");
1892		return -EINVAL;
1893	}
1894
1895	name = ofnode_get_property(args.node, "compatible", &len);
1896
1897	for (i = 0; i < ARRAY_SIZE(atmel_ebi_csa_regmap_of_ids); i++) {
1898		if (!strcmp(name, atmel_ebi_csa_regmap_of_ids[i].compatible)) {
1899			match = &atmel_ebi_csa_regmap_of_ids[i];
1900			break;
1901		}
1902	}
1903
1904	if (!match) {
1905		dev_err(dev, "Unable to find ebi csa conf");
1906		return -EINVAL;
1907	}
1908	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
1909
1910	nc->ebi_csa_regmap = syscon_node_to_regmap(args.node);
1911	if (IS_ERR(nc->ebi_csa_regmap)) {
1912		ret = PTR_ERR(nc->ebi_csa_regmap);
1913		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
1914		return ret;
1915	}
1916
1917	/* TODO:
1918	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
1919	 * add 4 to ->ebi_csa->offs.
1920	 */
1921
1922	return 0;
1923}
1924
1925static int atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
1926{
1927	struct udevice *dev = nc->base.dev;
1928	struct ofnode_phandle_args args;
1929	struct clk smc_clk;
1930	int ret;
1931	u32 addr;
1932
1933	ret = ofnode_parse_phandle_with_args(dev->parent->node_,
1934					     "atmel,smc", NULL, 0, 0, &args);
1935	if (ret) {
1936		dev_err(dev, "Missing or invalid atmel,smc property\n");
1937		return -EINVAL;
1938	}
1939
1940	nc->hsmc_layout = atmel_hsmc_get_reg_layout(args.node);
1941	if (IS_ERR(nc->hsmc_layout)) {
1942		dev_err(dev, "Could not get hsmc layout\n");
1943		return -EINVAL;
1944	}
1945
1946	/* Enable smc clock */
1947	ret = clk_get_by_index_nodev(args.node, 0, &smc_clk);
1948	if (ret) {
1949		dev_err(dev, "Unable to get smc clock (err = %d)", ret);
1950		return ret;
1951	}
1952
1953	ret = clk_prepare_enable(&smc_clk);
1954	if (ret)
1955		return ret;
1956
1957	ret = ofnode_parse_phandle_with_args(dev->node_,
1958					     "atmel,nfc-io", NULL, 0, 0, &args);
1959	if (ret) {
1960		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
1961		return -EINVAL;
1962	}
1963
1964	nc->io = syscon_node_to_regmap(args.node);
1965	if (IS_ERR(nc->io)) {
1966		ret = PTR_ERR(nc->io);
1967		dev_err(dev, "Could not get NFC IO regmap\n");
1968		return ret;
1969	}
1970
1971	ret = ofnode_parse_phandle_with_args(dev->node_,
1972					     "atmel,nfc-sram", NULL, 0, 0, &args);
1973	if (ret) {
1974		dev_err(dev, "Missing or invalid atmel,nfc-sram property\n");
1975		return ret;
1976	}
1977
1978	ret = ofnode_read_u32(args.node, "reg", &addr);
1979	if (ret) {
1980		dev_err(dev, "Could not read reg addr of nfc sram");
1981		return ret;
1982	}
1983	nc->sram.virt = (void *)addr;
1984
1985	return 0;
1986}
1987
1988static int
1989atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
1990{
1991	struct atmel_hsmc_nand_controller *hsmc_nc;
1992	int ret;
1993
1994	ret = atmel_nand_controller_remove_nands(nc);
1995	if (ret)
1996		return ret;
1997
1998	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
1999
2000	if (hsmc_nc->clk)
2001		clk_disable_unprepare(hsmc_nc->clk);
2002
2003	return 0;
2004}
2005
2006static int
2007atmel_hsmc_nand_controller_probe(struct udevice *dev,
2008				 const struct atmel_nand_controller_caps *caps)
2009{
2010	struct atmel_hsmc_nand_controller *nc;
2011	int ret;
2012
2013	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2014	if (!nc)
2015		return -ENOMEM;
2016
2017	ret = atmel_nand_controller_init(&nc->base, dev, caps);
2018	if (ret)
2019		return ret;
2020
2021	ret = atmel_hsmc_nand_controller_init(nc);
2022	if (ret)
2023		return ret;
2024
2025	/* Make sure all irqs are masked before registering our IRQ handler. */
2026	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2027
2028	/* Initial NFC configuration. */
2029	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2030		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2031
2032	ret = atmel_nand_controller_add_nands(&nc->base);
2033	if (ret)
2034		goto err;
2035
2036	return 0;
2037
2038err:
2039	atmel_hsmc_nand_controller_remove(&nc->base);
2040
2041	return ret;
2042}
2043
2044static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2045	.probe = atmel_hsmc_nand_controller_probe,
2046	.remove = atmel_hsmc_nand_controller_remove,
2047	.ecc_init = atmel_hsmc_nand_ecc_init,
2048	.nand_init = atmel_hsmc_nand_init,
2049	.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2050};
2051
2052static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2053	.has_dma = true,
2054	.ale_offs = BIT(21),
2055	.cle_offs = BIT(22),
2056	.ops = &atmel_hsmc_nc_ops,
2057};
2058
2059static int
2060atmel_smc_nand_controller_probe(struct udevice *dev,
2061				const struct atmel_nand_controller_caps *caps)
2062{
2063	struct atmel_smc_nand_controller *nc;
2064	int ret;
2065
2066	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2067	if (!nc)
2068		return -ENOMEM;
2069
2070	ret = atmel_nand_controller_init(&nc->base, dev, caps);
2071	if (ret)
2072		return ret;
2073
2074	ret = atmel_smc_nand_controller_init(nc);
2075	if (ret)
2076		return ret;
2077
2078	return atmel_nand_controller_add_nands(&nc->base);
2079}
2080
2081static int
2082atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2083{
2084	int ret;
2085
2086	ret = atmel_nand_controller_remove_nands(nc);
2087	if (ret)
2088		return ret;
2089
2090	return 0;
2091}
2092
2093/*
2094 * The SMC reg layout of at91rm9200 is completely different which prevents us
2095 * from re-using atmel_smc_nand_setup_data_interface() for the
2096 * ->setup_data_interface() hook.
2097 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2098 * ->setup_data_interface() unassigned.
2099 */
2100static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2101	.probe = atmel_smc_nand_controller_probe,
2102	.remove = atmel_smc_nand_controller_remove,
2103	.ecc_init = atmel_nand_ecc_init,
2104	.nand_init = atmel_smc_nand_init,
2105};
2106
2107static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2108	.ale_offs = BIT(21),
2109	.cle_offs = BIT(22),
2110	.ebi_csa_regmap_name = "atmel,matrix",
2111	.ops = &at91rm9200_nc_ops,
2112};
2113
2114static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2115	.probe = atmel_smc_nand_controller_probe,
2116	.remove = atmel_smc_nand_controller_remove,
2117	.ecc_init = atmel_nand_ecc_init,
2118	.nand_init = atmel_smc_nand_init,
2119	.setup_data_interface = atmel_smc_nand_setup_data_interface,
2120};
2121
2122static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2123	.ale_offs = BIT(21),
2124	.cle_offs = BIT(22),
2125	.ebi_csa_regmap_name = "atmel,matrix",
2126	.ops = &atmel_smc_nc_ops,
2127};
2128
2129static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2130	.ale_offs = BIT(22),
2131	.cle_offs = BIT(21),
2132	.ebi_csa_regmap_name = "atmel,matrix",
2133	.ops = &atmel_smc_nc_ops,
2134};
2135
2136static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2137	.has_dma = true,
2138	.ale_offs = BIT(21),
2139	.cle_offs = BIT(22),
2140	.ebi_csa_regmap_name = "atmel,matrix",
2141	.ops = &atmel_smc_nc_ops,
2142};
2143
2144static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2145	.has_dma = true,
2146	.ale_offs = BIT(21),
2147	.cle_offs = BIT(22),
2148	.ebi_csa_regmap_name = "microchip,sfr",
2149	.ops = &atmel_smc_nc_ops,
2150};
2151
2152/* Only used to parse old bindings. */
2153static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2154	.ale_offs = BIT(21),
2155	.cle_offs = BIT(22),
2156	.ops = &atmel_smc_nc_ops,
2157	.legacy_of_bindings = true,
2158};
2159
2160static const struct udevice_id atmel_nand_controller_of_ids[] = {
2161	{
2162		.compatible = "atmel,at91rm9200-nand-controller",
2163		.data = (ulong)&atmel_rm9200_nc_caps,
2164	},
2165	{
2166		.compatible = "atmel,at91sam9260-nand-controller",
2167		.data = (ulong)&atmel_sam9260_nc_caps,
2168	},
2169	{
2170		.compatible = "atmel,at91sam9261-nand-controller",
2171		.data = (ulong)&atmel_sam9261_nc_caps,
2172	},
2173	{
2174		.compatible = "atmel,at91sam9g45-nand-controller",
2175		.data = (ulong)&atmel_sam9g45_nc_caps,
2176	},
2177	{
2178		.compatible = "atmel,sama5d3-nand-controller",
2179		.data = (ulong)&atmel_sama5_nc_caps,
2180	},
2181	{
2182		.compatible = "microchip,sam9x60-nand-controller",
2183		.data = (ulong)&microchip_sam9x60_nc_caps,
2184	},
2185	/* Support for old/deprecated bindings: */
2186	{
2187		.compatible = "atmel,at91rm9200-nand",
2188		.data = (ulong)&atmel_rm9200_nand_caps,
2189	},
2190	{
2191		.compatible = "atmel,sama5d4-nand",
2192		.data = (ulong)&atmel_rm9200_nand_caps,
2193	},
2194	{
2195		.compatible = "atmel,sama5d2-nand",
2196		.data = (ulong)&atmel_rm9200_nand_caps,
2197	},
2198	{ /* sentinel */ },
2199};
2200
2201static int atmel_nand_controller_probe(struct udevice *dev)
2202{
2203	const struct atmel_nand_controller_caps *caps;
2204	struct udevice *pmecc_dev;
2205
2206	caps = (struct atmel_nand_controller_caps *)dev_get_driver_data(dev);
2207	if (!caps) {
2208		printf("Could not retrieve NFC caps\n");
2209		return -EINVAL;
2210	}
2211
2212	/* Probe pmecc driver */
2213	if (uclass_get_device(UCLASS_MTD, 1, &pmecc_dev)) {
2214		printf("%s: get device fail\n", __func__);
2215		return -EINVAL;
2216	}
2217
2218	return caps->ops->probe(dev, caps);
2219}
2220
2221static int atmel_nand_controller_remove(struct udevice *dev)
2222{
2223	struct atmel_nand_controller *nc;
2224
2225	nc = (struct atmel_nand_controller *)dev_get_driver_data(dev);
2226
2227	return nc->caps->ops->remove(nc);
2228}
2229
2230U_BOOT_DRIVER(atmel_nand_controller) = {
2231	.name = "atmel-nand-controller",
2232	.id = UCLASS_MTD,
2233	.of_match = atmel_nand_controller_of_ids,
2234	.probe = atmel_nand_controller_probe,
2235	.remove = atmel_nand_controller_remove,
2236};
2237
2238void board_nand_init(void)
2239{
2240	struct udevice *dev;
2241	int ret;
2242
2243	ret = uclass_get_device_by_driver(UCLASS_MTD,
2244					  DM_DRIVER_GET(atmel_nand_controller),
2245					  &dev);
2246	if (ret && ret != -ENODEV)
2247		printf("Failed to initialize NAND controller. (error %d)\n",
2248		       ret);
2249}
2250