1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright �� 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright �� 2006      Red Hat UK Limited
8 *
9 */
10
11#ifndef __UBOOT__
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/ptrace.h>
15#include <linux/seq_file.h>
16#include <linux/string.h>
17#include <linux/timer.h>
18#include <linux/major.h>
19#include <linux/fs.h>
20#include <linux/err.h>
21#include <linux/ioctl.h>
22#include <linux/init.h>
23#include <linux/proc_fs.h>
24#include <linux/idr.h>
25#include <linux/backing-dev.h>
26#include <linux/gfp.h>
27#include <linux/slab.h>
28#else
29#include <linux/bitops.h>
30#include <linux/bug.h>
31#include <linux/err.h>
32#include <ubi_uboot.h>
33#endif
34
35#include <linux/log2.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/partitions.h>
38
39#include "mtdcore.h"
40
41#ifndef __UBOOT__
42/*
43 * backing device capabilities for non-mappable devices (such as NAND flash)
44 * - permits private mappings, copies are taken of the data
45 */
46static struct backing_dev_info mtd_bdi_unmappable = {
47	.capabilities	= BDI_CAP_MAP_COPY,
48};
49
50/*
51 * backing device capabilities for R/O mappable devices (such as ROM)
52 * - permits private mappings, copies are taken of the data
53 * - permits non-writable shared mappings
54 */
55static struct backing_dev_info mtd_bdi_ro_mappable = {
56	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
57			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
58};
59
60/*
61 * backing device capabilities for writable mappable devices (such as RAM)
62 * - permits private mappings, copies are taken of the data
63 * - permits non-writable shared mappings
64 */
65static struct backing_dev_info mtd_bdi_rw_mappable = {
66	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
67			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
68			   BDI_CAP_WRITE_MAP),
69};
70
71static int mtd_cls_suspend(struct device *dev, pm_message_t state);
72static int mtd_cls_resume(struct device *dev);
73
74static struct class mtd_class = {
75	.name = "mtd",
76	.owner = THIS_MODULE,
77	.suspend = mtd_cls_suspend,
78	.resume = mtd_cls_resume,
79};
80#else
81#define MAX_IDR_ID	64
82
83struct idr_layer {
84	int	used;
85	void	*ptr;
86};
87
88struct idr {
89	struct idr_layer id[MAX_IDR_ID];
90	bool updated;
91};
92
93#define DEFINE_IDR(name)	struct idr name;
94
95void idr_remove(struct idr *idp, int id)
96{
97	if (idp->id[id].used) {
98		idp->id[id].used = 0;
99		idp->updated = true;
100	}
101
102	return;
103}
104void *idr_find(struct idr *idp, int id)
105{
106	if (idp->id[id].used)
107		return idp->id[id].ptr;
108
109	return NULL;
110}
111
112void *idr_get_next(struct idr *idp, int *next)
113{
114	void *ret;
115	int id = *next;
116
117	ret = idr_find(idp, id);
118	if (ret) {
119		id ++;
120		if (!idp->id[id].used)
121			id = 0;
122		*next = id;
123	} else {
124		*next = 0;
125	}
126
127	return ret;
128}
129
130int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
131{
132	struct idr_layer *idl;
133	int i = 0;
134
135	while (i < MAX_IDR_ID) {
136		idl = &idp->id[i];
137		if (idl->used == 0) {
138			idl->used = 1;
139			idl->ptr = ptr;
140			idp->updated = true;
141			return i;
142		}
143		i++;
144	}
145	return -ENOSPC;
146}
147#endif
148
149static DEFINE_IDR(mtd_idr);
150
151/* These are exported solely for the purpose of mtd_blkdevs.c. You
152   should not use them for _anything_ else */
153DEFINE_MUTEX(mtd_table_mutex);
154EXPORT_SYMBOL_GPL(mtd_table_mutex);
155
156struct mtd_info *__mtd_next_device(int i)
157{
158	return idr_get_next(&mtd_idr, &i);
159}
160EXPORT_SYMBOL_GPL(__mtd_next_device);
161
162bool mtd_dev_list_updated(void)
163{
164	if (mtd_idr.updated) {
165		mtd_idr.updated = false;
166		return true;
167	}
168
169	return false;
170}
171
172#ifndef __UBOOT__
173static LIST_HEAD(mtd_notifiers);
174
175
176#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
177
178/* REVISIT once MTD uses the driver model better, whoever allocates
179 * the mtd_info will probably want to use the release() hook...
180 */
181static void mtd_release(struct device *dev)
182{
183	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
184	dev_t index = MTD_DEVT(mtd->index);
185
186	/* remove /dev/mtdXro node if needed */
187	if (index)
188		device_destroy(&mtd_class, index + 1);
189}
190
191static int mtd_cls_suspend(struct device *dev, pm_message_t state)
192{
193	struct mtd_info *mtd = dev_get_drvdata(dev);
194
195	return mtd ? mtd_suspend(mtd) : 0;
196}
197
198static int mtd_cls_resume(struct device *dev)
199{
200	struct mtd_info *mtd = dev_get_drvdata(dev);
201
202	if (mtd)
203		mtd_resume(mtd);
204	return 0;
205}
206
207static ssize_t mtd_type_show(struct device *dev,
208		struct device_attribute *attr, char *buf)
209{
210	struct mtd_info *mtd = dev_get_drvdata(dev);
211	char *type;
212
213	switch (mtd->type) {
214	case MTD_ABSENT:
215		type = "absent";
216		break;
217	case MTD_RAM:
218		type = "ram";
219		break;
220	case MTD_ROM:
221		type = "rom";
222		break;
223	case MTD_NORFLASH:
224		type = "nor";
225		break;
226	case MTD_NANDFLASH:
227		type = "nand";
228		break;
229	case MTD_DATAFLASH:
230		type = "dataflash";
231		break;
232	case MTD_UBIVOLUME:
233		type = "ubi";
234		break;
235	case MTD_MLCNANDFLASH:
236		type = "mlc-nand";
237		break;
238	default:
239		type = "unknown";
240	}
241
242	return snprintf(buf, PAGE_SIZE, "%s\n", type);
243}
244static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
245
246static ssize_t mtd_flags_show(struct device *dev,
247		struct device_attribute *attr, char *buf)
248{
249	struct mtd_info *mtd = dev_get_drvdata(dev);
250
251	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
252
253}
254static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
255
256static ssize_t mtd_size_show(struct device *dev,
257		struct device_attribute *attr, char *buf)
258{
259	struct mtd_info *mtd = dev_get_drvdata(dev);
260
261	return snprintf(buf, PAGE_SIZE, "%llu\n",
262		(unsigned long long)mtd->size);
263
264}
265static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
266
267static ssize_t mtd_erasesize_show(struct device *dev,
268		struct device_attribute *attr, char *buf)
269{
270	struct mtd_info *mtd = dev_get_drvdata(dev);
271
272	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
273
274}
275static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
276
277static ssize_t mtd_writesize_show(struct device *dev,
278		struct device_attribute *attr, char *buf)
279{
280	struct mtd_info *mtd = dev_get_drvdata(dev);
281
282	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
283
284}
285static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
286
287static ssize_t mtd_subpagesize_show(struct device *dev,
288		struct device_attribute *attr, char *buf)
289{
290	struct mtd_info *mtd = dev_get_drvdata(dev);
291	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
292
293	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
294
295}
296static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
297
298static ssize_t mtd_oobsize_show(struct device *dev,
299		struct device_attribute *attr, char *buf)
300{
301	struct mtd_info *mtd = dev_get_drvdata(dev);
302
303	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
304
305}
306static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
307
308static ssize_t mtd_numeraseregions_show(struct device *dev,
309		struct device_attribute *attr, char *buf)
310{
311	struct mtd_info *mtd = dev_get_drvdata(dev);
312
313	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
314
315}
316static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
317	NULL);
318
319static ssize_t mtd_name_show(struct device *dev,
320		struct device_attribute *attr, char *buf)
321{
322	struct mtd_info *mtd = dev_get_drvdata(dev);
323
324	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
325
326}
327static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
328
329static ssize_t mtd_ecc_strength_show(struct device *dev,
330				     struct device_attribute *attr, char *buf)
331{
332	struct mtd_info *mtd = dev_get_drvdata(dev);
333
334	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
335}
336static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
337
338static ssize_t mtd_bitflip_threshold_show(struct device *dev,
339					  struct device_attribute *attr,
340					  char *buf)
341{
342	struct mtd_info *mtd = dev_get_drvdata(dev);
343
344	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
345}
346
347static ssize_t mtd_bitflip_threshold_store(struct device *dev,
348					   struct device_attribute *attr,
349					   const char *buf, size_t count)
350{
351	struct mtd_info *mtd = dev_get_drvdata(dev);
352	unsigned int bitflip_threshold;
353	int retval;
354
355	retval = kstrtouint(buf, 0, &bitflip_threshold);
356	if (retval)
357		return retval;
358
359	mtd->bitflip_threshold = bitflip_threshold;
360	return count;
361}
362static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
363		   mtd_bitflip_threshold_show,
364		   mtd_bitflip_threshold_store);
365
366static ssize_t mtd_ecc_step_size_show(struct device *dev,
367		struct device_attribute *attr, char *buf)
368{
369	struct mtd_info *mtd = dev_get_drvdata(dev);
370
371	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
372
373}
374static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
375
376static struct attribute *mtd_attrs[] = {
377	&dev_attr_type.attr,
378	&dev_attr_flags.attr,
379	&dev_attr_size.attr,
380	&dev_attr_erasesize.attr,
381	&dev_attr_writesize.attr,
382	&dev_attr_subpagesize.attr,
383	&dev_attr_oobsize.attr,
384	&dev_attr_numeraseregions.attr,
385	&dev_attr_name.attr,
386	&dev_attr_ecc_strength.attr,
387	&dev_attr_ecc_step_size.attr,
388	&dev_attr_bitflip_threshold.attr,
389	NULL,
390};
391ATTRIBUTE_GROUPS(mtd);
392
393static struct device_type mtd_devtype = {
394	.name		= "mtd",
395	.groups		= mtd_groups,
396	.release	= mtd_release,
397};
398#endif
399
400/**
401 *	add_mtd_device - register an MTD device
402 *	@mtd: pointer to new MTD device info structure
403 *
404 *	Add a device to the list of MTD devices present in the system, and
405 *	notify each currently active MTD 'user' of its arrival. Returns
406 *	zero on success or 1 on failure, which currently will only happen
407 *	if there is insufficient memory or a sysfs error.
408 */
409
410int add_mtd_device(struct mtd_info *mtd)
411{
412#ifndef __UBOOT__
413	struct mtd_notifier *not;
414#endif
415	int i, error;
416
417#ifndef __UBOOT__
418	if (!mtd->backing_dev_info) {
419		switch (mtd->type) {
420		case MTD_RAM:
421			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
422			break;
423		case MTD_ROM:
424			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
425			break;
426		default:
427			mtd->backing_dev_info = &mtd_bdi_unmappable;
428			break;
429		}
430	}
431#endif
432
433	BUG_ON(mtd->writesize == 0);
434	mutex_lock(&mtd_table_mutex);
435
436	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
437	if (i < 0)
438		goto fail_locked;
439
440	mtd->index = i;
441	mtd->usecount = 0;
442
443	INIT_LIST_HEAD(&mtd->partitions);
444
445	/* default value if not set by driver */
446	if (mtd->bitflip_threshold == 0)
447		mtd->bitflip_threshold = mtd->ecc_strength;
448
449	if (is_power_of_2(mtd->erasesize))
450		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
451	else
452		mtd->erasesize_shift = 0;
453
454	if (is_power_of_2(mtd->writesize))
455		mtd->writesize_shift = ffs(mtd->writesize) - 1;
456	else
457		mtd->writesize_shift = 0;
458
459	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
460	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
461
462	/* Some chips always power up locked. Unlock them now */
463	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
464		error = mtd_unlock(mtd, 0, mtd->size);
465		if (error && error != -EOPNOTSUPP)
466			printk(KERN_WARNING
467			       "%s: unlock failed, writes may not work\n",
468			       mtd->name);
469	}
470
471#ifndef __UBOOT__
472	/* Caller should have set dev.parent to match the
473	 * physical device.
474	 */
475	mtd->dev.type = &mtd_devtype;
476	mtd->dev.class = &mtd_class;
477	mtd->dev.devt = MTD_DEVT(i);
478	dev_set_name(&mtd->dev, "mtd%d", i);
479	dev_set_drvdata(&mtd->dev, mtd);
480	if (device_register(&mtd->dev) != 0)
481		goto fail_added;
482
483	if (MTD_DEVT(i))
484		device_create(&mtd_class, mtd->dev.parent,
485			      MTD_DEVT(i) + 1,
486			      NULL, "mtd%dro", i);
487
488	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
489	/* No need to get a refcount on the module containing
490	   the notifier, since we hold the mtd_table_mutex */
491	list_for_each_entry(not, &mtd_notifiers, list)
492		not->add(mtd);
493#else
494	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
495#endif
496
497	mutex_unlock(&mtd_table_mutex);
498	/* We _know_ we aren't being removed, because
499	   our caller is still holding us here. So none
500	   of this try_ nonsense, and no bitching about it
501	   either. :) */
502	__module_get(THIS_MODULE);
503	return 0;
504
505#ifndef __UBOOT__
506fail_added:
507	idr_remove(&mtd_idr, i);
508#endif
509fail_locked:
510	mutex_unlock(&mtd_table_mutex);
511	return 1;
512}
513
514/**
515 *	del_mtd_device - unregister an MTD device
516 *	@mtd: pointer to MTD device info structure
517 *
518 *	Remove a device from the list of MTD devices present in the system,
519 *	and notify each currently active MTD 'user' of its departure.
520 *	Returns zero on success or 1 on failure, which currently will happen
521 *	if the requested device does not appear to be present in the list.
522 */
523
524int del_mtd_device(struct mtd_info *mtd)
525{
526	int ret;
527#ifndef __UBOOT__
528	struct mtd_notifier *not;
529#endif
530
531	ret = del_mtd_partitions(mtd);
532	if (ret) {
533		debug("Failed to delete MTD partitions attached to %s (err %d)\n",
534		      mtd->name, ret);
535		return ret;
536	}
537
538	mutex_lock(&mtd_table_mutex);
539
540	if (idr_find(&mtd_idr, mtd->index) != mtd) {
541		ret = -ENODEV;
542		goto out_error;
543	}
544
545#ifndef __UBOOT__
546	/* No need to get a refcount on the module containing
547		the notifier, since we hold the mtd_table_mutex */
548	list_for_each_entry(not, &mtd_notifiers, list)
549		not->remove(mtd);
550#endif
551
552	if (mtd->usecount) {
553		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
554		       mtd->index, mtd->name, mtd->usecount);
555		ret = -EBUSY;
556	} else {
557#ifndef __UBOOT__
558		device_unregister(&mtd->dev);
559#endif
560
561		idr_remove(&mtd_idr, mtd->index);
562
563		module_put(THIS_MODULE);
564		ret = 0;
565	}
566
567out_error:
568	mutex_unlock(&mtd_table_mutex);
569	return ret;
570}
571
572#ifndef __UBOOT__
573/**
574 * mtd_device_parse_register - parse partitions and register an MTD device.
575 *
576 * @mtd: the MTD device to register
577 * @types: the list of MTD partition probes to try, see
578 *         'parse_mtd_partitions()' for more information
579 * @parser_data: MTD partition parser-specific data
580 * @parts: fallback partition information to register, if parsing fails;
581 *         only valid if %nr_parts > %0
582 * @nr_parts: the number of partitions in parts, if zero then the full
583 *            MTD device is registered if no partition info is found
584 *
585 * This function aggregates MTD partitions parsing (done by
586 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
587 * basically follows the most common pattern found in many MTD drivers:
588 *
589 * * It first tries to probe partitions on MTD device @mtd using parsers
590 *   specified in @types (if @types is %NULL, then the default list of parsers
591 *   is used, see 'parse_mtd_partitions()' for more information). If none are
592 *   found this functions tries to fallback to information specified in
593 *   @parts/@nr_parts.
594 * * If any partitioning info was found, this function registers the found
595 *   partitions.
596 * * If no partitions were found this function just registers the MTD device
597 *   @mtd and exits.
598 *
599 * Returns zero in case of success and a negative error code in case of failure.
600 */
601int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
602			      struct mtd_part_parser_data *parser_data,
603			      const struct mtd_partition *parts,
604			      int nr_parts)
605{
606	int err;
607	struct mtd_partition *real_parts;
608
609	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
610	if (err <= 0 && nr_parts && parts) {
611		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
612				     GFP_KERNEL);
613		if (!real_parts)
614			err = -ENOMEM;
615		else
616			err = nr_parts;
617	}
618
619	if (err > 0) {
620		err = add_mtd_partitions(mtd, real_parts, err);
621		kfree(real_parts);
622	} else if (err == 0) {
623		err = add_mtd_device(mtd);
624		if (err == 1)
625			err = -ENODEV;
626	}
627
628	return err;
629}
630EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631
632/**
633 * mtd_device_unregister - unregister an existing MTD device.
634 *
635 * @master: the MTD device to unregister.  This will unregister both the master
636 *          and any partitions if registered.
637 */
638int mtd_device_unregister(struct mtd_info *master)
639{
640	int err;
641
642	err = del_mtd_partitions(master);
643	if (err)
644		return err;
645
646	if (!device_is_registered(&master->dev))
647		return 0;
648
649	return del_mtd_device(master);
650}
651EXPORT_SYMBOL_GPL(mtd_device_unregister);
652
653/**
654 *	register_mtd_user - register a 'user' of MTD devices.
655 *	@new: pointer to notifier info structure
656 *
657 *	Registers a pair of callbacks function to be called upon addition
658 *	or removal of MTD devices. Causes the 'add' callback to be immediately
659 *	invoked for each MTD device currently present in the system.
660 */
661void register_mtd_user (struct mtd_notifier *new)
662{
663	struct mtd_info *mtd;
664
665	mutex_lock(&mtd_table_mutex);
666
667	list_add(&new->list, &mtd_notifiers);
668
669	__module_get(THIS_MODULE);
670
671	mtd_for_each_device(mtd)
672		new->add(mtd);
673
674	mutex_unlock(&mtd_table_mutex);
675}
676EXPORT_SYMBOL_GPL(register_mtd_user);
677
678/**
679 *	unregister_mtd_user - unregister a 'user' of MTD devices.
680 *	@old: pointer to notifier info structure
681 *
682 *	Removes a callback function pair from the list of 'users' to be
683 *	notified upon addition or removal of MTD devices. Causes the
684 *	'remove' callback to be immediately invoked for each MTD device
685 *	currently present in the system.
686 */
687int unregister_mtd_user (struct mtd_notifier *old)
688{
689	struct mtd_info *mtd;
690
691	mutex_lock(&mtd_table_mutex);
692
693	module_put(THIS_MODULE);
694
695	mtd_for_each_device(mtd)
696		old->remove(mtd);
697
698	list_del(&old->list);
699	mutex_unlock(&mtd_table_mutex);
700	return 0;
701}
702EXPORT_SYMBOL_GPL(unregister_mtd_user);
703#endif
704
705/**
706 *	get_mtd_device - obtain a validated handle for an MTD device
707 *	@mtd: last known address of the required MTD device
708 *	@num: internal device number of the required MTD device
709 *
710 *	Given a number and NULL address, return the num'th entry in the device
711 *	table, if any.	Given an address and num == -1, search the device table
712 *	for a device with that address and return if it's still present. Given
713 *	both, return the num'th driver only if its address matches. Return
714 *	error code if not.
715 */
716struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
717{
718	struct mtd_info *ret = NULL, *other;
719	int err = -ENODEV;
720
721	mutex_lock(&mtd_table_mutex);
722
723	if (num == -1) {
724		mtd_for_each_device(other) {
725			if (other == mtd) {
726				ret = mtd;
727				break;
728			}
729		}
730	} else if (num >= 0) {
731		ret = idr_find(&mtd_idr, num);
732		if (mtd && mtd != ret)
733			ret = NULL;
734	}
735
736	if (!ret) {
737		ret = ERR_PTR(err);
738		goto out;
739	}
740
741	err = __get_mtd_device(ret);
742	if (err)
743		ret = ERR_PTR(err);
744out:
745	mutex_unlock(&mtd_table_mutex);
746	return ret;
747}
748EXPORT_SYMBOL_GPL(get_mtd_device);
749
750
751int __get_mtd_device(struct mtd_info *mtd)
752{
753	int err;
754
755	if (!try_module_get(mtd->owner))
756		return -ENODEV;
757
758	if (mtd->_get_device) {
759		err = mtd->_get_device(mtd);
760
761		if (err) {
762			module_put(mtd->owner);
763			return err;
764		}
765	}
766	mtd->usecount++;
767	return 0;
768}
769EXPORT_SYMBOL_GPL(__get_mtd_device);
770
771#if CONFIG_IS_ENABLED(DM) && CONFIG_IS_ENABLED(OF_CONTROL)
772static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
773{
774	struct udevice *dev = NULL;
775	bool is_part;
776
777	/*
778	 * If the first character of mtd name is '/', try interpreting as OF
779	 * path. Otherwise try comparing by mtd->name and mtd->dev->name.
780	 */
781	if (*name == '/')
782		device_get_global_by_ofnode(ofnode_path(name), &dev);
783
784	is_part = mtd_is_partition(mtd);
785
786	return (!is_part && dev && mtd->dev == dev) ||
787	       !strcmp(name, mtd->name) ||
788	       (is_part && mtd->dev && !strcmp(name, mtd->dev->name));
789}
790#else
791static bool mtd_device_matches_name(struct mtd_info *mtd, const char *name)
792{
793	return !strcmp(name, mtd->name);
794}
795#endif
796
797/**
798 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
799 *	device name
800 *	@name: MTD device name to open
801 *
802 *	This function returns MTD device description structure in case of
803 *	success and an error code in case of failure.
804 */
805struct mtd_info *get_mtd_device_nm(const char *name)
806{
807	int err = -ENODEV;
808	struct mtd_info *mtd = NULL, *other;
809
810	mutex_lock(&mtd_table_mutex);
811
812	mtd_for_each_device(other) {
813#ifdef __UBOOT__
814		if (mtd_device_matches_name(other, name)) {
815			if (mtd)
816				printf("\nWarning: MTD name \"%s\" is not unique!\n\n",
817				       name);
818			mtd = other;
819		}
820#else /* !__UBOOT__ */
821		if (!strcmp(name, other->name)) {
822			mtd = other;
823			break;
824		}
825#endif /* !__UBOOT__ */
826	}
827
828	if (!mtd)
829		goto out_unlock;
830
831	err = __get_mtd_device(mtd);
832	if (err)
833		goto out_unlock;
834
835	mutex_unlock(&mtd_table_mutex);
836	return mtd;
837
838out_unlock:
839	mutex_unlock(&mtd_table_mutex);
840	return ERR_PTR(err);
841}
842EXPORT_SYMBOL_GPL(get_mtd_device_nm);
843
844#if defined(CONFIG_CMD_MTDPARTS_SPREAD)
845/**
846 * mtd_get_len_incl_bad
847 *
848 * Check if length including bad blocks fits into device.
849 *
850 * @param mtd an MTD device
851 * @param offset offset in flash
852 * @param length image length
853 * Return: image length including bad blocks in *len_incl_bad and whether or not
854 *         the length returned was truncated in *truncated
855 */
856void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
857			  const uint64_t length, uint64_t *len_incl_bad,
858			  int *truncated)
859{
860	*truncated = 0;
861	*len_incl_bad = 0;
862
863	if (!mtd->_block_isbad) {
864		*len_incl_bad = length;
865		return;
866	}
867
868	uint64_t len_excl_bad = 0;
869	uint64_t block_len;
870
871	while (len_excl_bad < length) {
872		if (offset >= mtd->size) {
873			*truncated = 1;
874			return;
875		}
876
877		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
878
879		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
880			len_excl_bad += block_len;
881
882		*len_incl_bad += block_len;
883		offset       += block_len;
884	}
885}
886#endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
887
888void put_mtd_device(struct mtd_info *mtd)
889{
890	mutex_lock(&mtd_table_mutex);
891	__put_mtd_device(mtd);
892	mutex_unlock(&mtd_table_mutex);
893
894}
895EXPORT_SYMBOL_GPL(put_mtd_device);
896
897void __put_mtd_device(struct mtd_info *mtd)
898{
899	--mtd->usecount;
900	BUG_ON(mtd->usecount < 0);
901
902	if (mtd->_put_device)
903		mtd->_put_device(mtd);
904
905	module_put(mtd->owner);
906}
907EXPORT_SYMBOL_GPL(__put_mtd_device);
908
909int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
910{
911	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
912		return -EINVAL;
913	if (!(mtd->flags & MTD_WRITEABLE))
914		return -EROFS;
915	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
916	if (!instr->len) {
917		instr->state = MTD_ERASE_DONE;
918		return 0;
919	}
920	return mtd->_erase(mtd, instr);
921}
922EXPORT_SYMBOL_GPL(mtd_erase);
923
924#ifndef __UBOOT__
925/*
926 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
927 */
928int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
929	      void **virt, resource_size_t *phys)
930{
931	*retlen = 0;
932	*virt = NULL;
933	if (phys)
934		*phys = 0;
935	if (!mtd->_point)
936		return -EOPNOTSUPP;
937	if (from < 0 || from > mtd->size || len > mtd->size - from)
938		return -EINVAL;
939	if (!len)
940		return 0;
941	return mtd->_point(mtd, from, len, retlen, virt, phys);
942}
943EXPORT_SYMBOL_GPL(mtd_point);
944
945/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
946int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
947{
948	if (!mtd->_point)
949		return -EOPNOTSUPP;
950	if (from < 0 || from > mtd->size || len > mtd->size - from)
951		return -EINVAL;
952	if (!len)
953		return 0;
954	return mtd->_unpoint(mtd, from, len);
955}
956EXPORT_SYMBOL_GPL(mtd_unpoint);
957#endif
958
959/*
960 * Allow NOMMU mmap() to directly map the device (if not NULL)
961 * - return the address to which the offset maps
962 * - return -ENOSYS to indicate refusal to do the mapping
963 */
964unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
965				    unsigned long offset, unsigned long flags)
966{
967	if (!mtd->_get_unmapped_area)
968		return -EOPNOTSUPP;
969	if (offset > mtd->size || len > mtd->size - offset)
970		return -EINVAL;
971	return mtd->_get_unmapped_area(mtd, len, offset, flags);
972}
973EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
974
975int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
976	     u_char *buf)
977{
978	int ret_code;
979	*retlen = 0;
980	if (from < 0 || from > mtd->size || len > mtd->size - from)
981		return -EINVAL;
982	if (!len)
983		return 0;
984
985	/*
986	 * In the absence of an error, drivers return a non-negative integer
987	 * representing the maximum number of bitflips that were corrected on
988	 * any one ecc region (if applicable; zero otherwise).
989	 */
990	if (mtd->_read) {
991		ret_code = mtd->_read(mtd, from, len, retlen, buf);
992	} else if (mtd->_read_oob) {
993		struct mtd_oob_ops ops = {
994			.len = len,
995			.datbuf = buf,
996		};
997
998		ret_code = mtd->_read_oob(mtd, from, &ops);
999		*retlen = ops.retlen;
1000	} else {
1001		return -ENOTSUPP;
1002	}
1003
1004	if (unlikely(ret_code < 0))
1005		return ret_code;
1006	if (mtd->ecc_strength == 0)
1007		return 0;	/* device lacks ecc */
1008	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1009}
1010EXPORT_SYMBOL_GPL(mtd_read);
1011
1012int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1013	      const u_char *buf)
1014{
1015	*retlen = 0;
1016	if (to < 0 || to > mtd->size || len > mtd->size - to)
1017		return -EINVAL;
1018	if ((!mtd->_write && !mtd->_write_oob) ||
1019	    !(mtd->flags & MTD_WRITEABLE))
1020		return -EROFS;
1021	if (!len)
1022		return 0;
1023
1024	if (!mtd->_write) {
1025		struct mtd_oob_ops ops = {
1026			.len = len,
1027			.datbuf = (u8 *)buf,
1028		};
1029		int ret;
1030
1031		ret = mtd->_write_oob(mtd, to, &ops);
1032		*retlen = ops.retlen;
1033		return ret;
1034	}
1035
1036	return mtd->_write(mtd, to, len, retlen, buf);
1037}
1038EXPORT_SYMBOL_GPL(mtd_write);
1039
1040/*
1041 * In blackbox flight recorder like scenarios we want to make successful writes
1042 * in interrupt context. panic_write() is only intended to be called when its
1043 * known the kernel is about to panic and we need the write to succeed. Since
1044 * the kernel is not going to be running for much longer, this function can
1045 * break locks and delay to ensure the write succeeds (but not sleep).
1046 */
1047int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1048		    const u_char *buf)
1049{
1050	*retlen = 0;
1051	if (!mtd->_panic_write)
1052		return -EOPNOTSUPP;
1053	if (to < 0 || to > mtd->size || len > mtd->size - to)
1054		return -EINVAL;
1055	if (!(mtd->flags & MTD_WRITEABLE))
1056		return -EROFS;
1057	if (!len)
1058		return 0;
1059	return mtd->_panic_write(mtd, to, len, retlen, buf);
1060}
1061EXPORT_SYMBOL_GPL(mtd_panic_write);
1062
1063static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1064			     struct mtd_oob_ops *ops)
1065{
1066	/*
1067	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1068	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1069	 *  this case.
1070	 */
1071	if (!ops->datbuf)
1072		ops->len = 0;
1073
1074	if (!ops->oobbuf)
1075		ops->ooblen = 0;
1076
1077	if (offs < 0 || offs + ops->len > mtd->size)
1078		return -EINVAL;
1079
1080	if (ops->ooblen) {
1081		size_t maxooblen;
1082
1083		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1084			return -EINVAL;
1085
1086		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1087				      mtd_div_by_ws(offs, mtd)) *
1088			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1089		if (ops->ooblen > maxooblen)
1090			return -EINVAL;
1091	}
1092
1093	return 0;
1094}
1095
1096int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1097{
1098	int ret_code;
1099	ops->retlen = ops->oobretlen = 0;
1100
1101	ret_code = mtd_check_oob_ops(mtd, from, ops);
1102	if (ret_code)
1103		return ret_code;
1104
1105	/* Check the validity of a potential fallback on mtd->_read */
1106	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1107		return -EOPNOTSUPP;
1108
1109	if (mtd->_read_oob)
1110		ret_code = mtd->_read_oob(mtd, from, ops);
1111	else
1112		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1113				      ops->datbuf);
1114
1115	/*
1116	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1117	 * similar to mtd->_read(), returning a non-negative integer
1118	 * representing max bitflips. In other cases, mtd->_read_oob() may
1119	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1120	 */
1121	if (unlikely(ret_code < 0))
1122		return ret_code;
1123	if (mtd->ecc_strength == 0)
1124		return 0;	/* device lacks ecc */
1125	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1126}
1127EXPORT_SYMBOL_GPL(mtd_read_oob);
1128
1129int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1130				struct mtd_oob_ops *ops)
1131{
1132	int ret;
1133
1134	ops->retlen = ops->oobretlen = 0;
1135
1136	if (!(mtd->flags & MTD_WRITEABLE))
1137		return -EROFS;
1138
1139	ret = mtd_check_oob_ops(mtd, to, ops);
1140	if (ret)
1141		return ret;
1142
1143	/* Check the validity of a potential fallback on mtd->_write */
1144	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1145		return -EOPNOTSUPP;
1146
1147	if (mtd->_write_oob)
1148		return mtd->_write_oob(mtd, to, ops);
1149	else
1150		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1151				   ops->datbuf);
1152}
1153EXPORT_SYMBOL_GPL(mtd_write_oob);
1154
1155/**
1156 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1157 * @mtd: MTD device structure
1158 * @section: ECC section. Depending on the layout you may have all the ECC
1159 *	     bytes stored in a single contiguous section, or one section
1160 *	     per ECC chunk (and sometime several sections for a single ECC
1161 *	     ECC chunk)
1162 * @oobecc: OOB region struct filled with the appropriate ECC position
1163 *	    information
1164 *
1165 * This function returns ECC section information in the OOB area. If you want
1166 * to get all the ECC bytes information, then you should call
1167 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1168 *
1169 * Returns zero on success, a negative error code otherwise.
1170 */
1171int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1172		      struct mtd_oob_region *oobecc)
1173{
1174	memset(oobecc, 0, sizeof(*oobecc));
1175
1176	if (!mtd || section < 0)
1177		return -EINVAL;
1178
1179	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1180		return -ENOTSUPP;
1181
1182	return mtd->ooblayout->ecc(mtd, section, oobecc);
1183}
1184EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1185
1186/**
1187 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1188 *			section
1189 * @mtd: MTD device structure
1190 * @section: Free section you are interested in. Depending on the layout
1191 *	     you may have all the free bytes stored in a single contiguous
1192 *	     section, or one section per ECC chunk plus an extra section
1193 *	     for the remaining bytes (or other funky layout).
1194 * @oobfree: OOB region struct filled with the appropriate free position
1195 *	     information
1196 *
1197 * This function returns free bytes position in the OOB area. If you want
1198 * to get all the free bytes information, then you should call
1199 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1200 *
1201 * Returns zero on success, a negative error code otherwise.
1202 */
1203int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1204		       struct mtd_oob_region *oobfree)
1205{
1206	memset(oobfree, 0, sizeof(*oobfree));
1207
1208	if (!mtd || section < 0)
1209		return -EINVAL;
1210
1211	if (!mtd->ooblayout || !mtd->ooblayout->rfree)
1212		return -ENOTSUPP;
1213
1214	return mtd->ooblayout->rfree(mtd, section, oobfree);
1215}
1216EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1217
1218/**
1219 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1220 * @mtd: mtd info structure
1221 * @byte: the byte we are searching for
1222 * @sectionp: pointer where the section id will be stored
1223 * @oobregion: used to retrieve the ECC position
1224 * @iter: iterator function. Should be either mtd_ooblayout_free or
1225 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1226 *
1227 * This function returns the section id and oobregion information of a
1228 * specific byte. For example, say you want to know where the 4th ECC byte is
1229 * stored, you'll use:
1230 *
1231 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1232 *
1233 * Returns zero on success, a negative error code otherwise.
1234 */
1235static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1236				int *sectionp, struct mtd_oob_region *oobregion,
1237				int (*iter)(struct mtd_info *,
1238					    int section,
1239					    struct mtd_oob_region *oobregion))
1240{
1241	int pos = 0, ret, section = 0;
1242
1243	memset(oobregion, 0, sizeof(*oobregion));
1244
1245	while (1) {
1246		ret = iter(mtd, section, oobregion);
1247		if (ret)
1248			return ret;
1249
1250		if (pos + oobregion->length > byte)
1251			break;
1252
1253		pos += oobregion->length;
1254		section++;
1255	}
1256
1257	/*
1258	 * Adjust region info to make it start at the beginning at the
1259	 * 'start' ECC byte.
1260	 */
1261	oobregion->offset += byte - pos;
1262	oobregion->length -= byte - pos;
1263	*sectionp = section;
1264
1265	return 0;
1266}
1267
1268/**
1269 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1270 *				  ECC byte
1271 * @mtd: mtd info structure
1272 * @eccbyte: the byte we are searching for
1273 * @sectionp: pointer where the section id will be stored
1274 * @oobregion: OOB region information
1275 *
1276 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1277 * byte.
1278 *
1279 * Returns zero on success, a negative error code otherwise.
1280 */
1281int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1282				 int *section,
1283				 struct mtd_oob_region *oobregion)
1284{
1285	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1286					 mtd_ooblayout_ecc);
1287}
1288EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1289
1290/**
1291 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1292 * @mtd: mtd info structure
1293 * @buf: destination buffer to store OOB bytes
1294 * @oobbuf: OOB buffer
1295 * @start: first byte to retrieve
1296 * @nbytes: number of bytes to retrieve
1297 * @iter: section iterator
1298 *
1299 * Extract bytes attached to a specific category (ECC or free)
1300 * from the OOB buffer and copy them into buf.
1301 *
1302 * Returns zero on success, a negative error code otherwise.
1303 */
1304static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1305				const u8 *oobbuf, int start, int nbytes,
1306				int (*iter)(struct mtd_info *,
1307					    int section,
1308					    struct mtd_oob_region *oobregion))
1309{
1310	struct mtd_oob_region oobregion;
1311	int section, ret;
1312
1313	ret = mtd_ooblayout_find_region(mtd, start, &section,
1314					&oobregion, iter);
1315
1316	while (!ret) {
1317		int cnt;
1318
1319		cnt = min_t(int, nbytes, oobregion.length);
1320		memcpy(buf, oobbuf + oobregion.offset, cnt);
1321		buf += cnt;
1322		nbytes -= cnt;
1323
1324		if (!nbytes)
1325			break;
1326
1327		ret = iter(mtd, ++section, &oobregion);
1328	}
1329
1330	return ret;
1331}
1332
1333/**
1334 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1335 * @mtd: mtd info structure
1336 * @buf: source buffer to get OOB bytes from
1337 * @oobbuf: OOB buffer
1338 * @start: first OOB byte to set
1339 * @nbytes: number of OOB bytes to set
1340 * @iter: section iterator
1341 *
1342 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1343 * is selected by passing the appropriate iterator.
1344 *
1345 * Returns zero on success, a negative error code otherwise.
1346 */
1347static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1348				u8 *oobbuf, int start, int nbytes,
1349				int (*iter)(struct mtd_info *,
1350					    int section,
1351					    struct mtd_oob_region *oobregion))
1352{
1353	struct mtd_oob_region oobregion;
1354	int section, ret;
1355
1356	ret = mtd_ooblayout_find_region(mtd, start, &section,
1357					&oobregion, iter);
1358
1359	while (!ret) {
1360		int cnt;
1361
1362		cnt = min_t(int, nbytes, oobregion.length);
1363		memcpy(oobbuf + oobregion.offset, buf, cnt);
1364		buf += cnt;
1365		nbytes -= cnt;
1366
1367		if (!nbytes)
1368			break;
1369
1370		ret = iter(mtd, ++section, &oobregion);
1371	}
1372
1373	return ret;
1374}
1375
1376/**
1377 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1378 * @mtd: mtd info structure
1379 * @iter: category iterator
1380 *
1381 * Count the number of bytes in a given category.
1382 *
1383 * Returns a positive value on success, a negative error code otherwise.
1384 */
1385static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1386				int (*iter)(struct mtd_info *,
1387					    int section,
1388					    struct mtd_oob_region *oobregion))
1389{
1390	struct mtd_oob_region oobregion;
1391	int section = 0, ret, nbytes = 0;
1392
1393	while (1) {
1394		ret = iter(mtd, section++, &oobregion);
1395		if (ret) {
1396			if (ret == -ERANGE)
1397				ret = nbytes;
1398			break;
1399		}
1400
1401		nbytes += oobregion.length;
1402	}
1403
1404	return ret;
1405}
1406
1407/**
1408 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1409 * @mtd: mtd info structure
1410 * @eccbuf: destination buffer to store ECC bytes
1411 * @oobbuf: OOB buffer
1412 * @start: first ECC byte to retrieve
1413 * @nbytes: number of ECC bytes to retrieve
1414 *
1415 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1416 *
1417 * Returns zero on success, a negative error code otherwise.
1418 */
1419int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1420			       const u8 *oobbuf, int start, int nbytes)
1421{
1422	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1423				       mtd_ooblayout_ecc);
1424}
1425EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1426
1427/**
1428 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1429 * @mtd: mtd info structure
1430 * @eccbuf: source buffer to get ECC bytes from
1431 * @oobbuf: OOB buffer
1432 * @start: first ECC byte to set
1433 * @nbytes: number of ECC bytes to set
1434 *
1435 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1436 *
1437 * Returns zero on success, a negative error code otherwise.
1438 */
1439int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1440			       u8 *oobbuf, int start, int nbytes)
1441{
1442	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1443				       mtd_ooblayout_ecc);
1444}
1445EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1446
1447/**
1448 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1449 * @mtd: mtd info structure
1450 * @databuf: destination buffer to store ECC bytes
1451 * @oobbuf: OOB buffer
1452 * @start: first ECC byte to retrieve
1453 * @nbytes: number of ECC bytes to retrieve
1454 *
1455 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1456 *
1457 * Returns zero on success, a negative error code otherwise.
1458 */
1459int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1460				const u8 *oobbuf, int start, int nbytes)
1461{
1462	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1463				       mtd_ooblayout_free);
1464}
1465EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1466
1467/**
1468 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1469 * @mtd: mtd info structure
1470 * @eccbuf: source buffer to get data bytes from
1471 * @oobbuf: OOB buffer
1472 * @start: first ECC byte to set
1473 * @nbytes: number of ECC bytes to set
1474 *
1475 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1476 *
1477 * Returns zero on success, a negative error code otherwise.
1478 */
1479int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1480				u8 *oobbuf, int start, int nbytes)
1481{
1482	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1483				       mtd_ooblayout_free);
1484}
1485EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1486
1487/**
1488 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1489 * @mtd: mtd info structure
1490 *
1491 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
1495int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1496{
1497	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1498}
1499EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1500
1501/**
1502 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1503 * @mtd: mtd info structure
1504 *
1505 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1506 *
1507 * Returns zero on success, a negative error code otherwise.
1508 */
1509int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1510{
1511	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1512}
1513EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1514
1515/*
1516 * Method to access the protection register area, present in some flash
1517 * devices. The user data is one time programmable but the factory data is read
1518 * only.
1519 */
1520int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1521			   struct otp_info *buf)
1522{
1523	if (!mtd->_get_fact_prot_info)
1524		return -EOPNOTSUPP;
1525	if (!len)
1526		return 0;
1527	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1528}
1529EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1530
1531int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1532			   size_t *retlen, u_char *buf)
1533{
1534	*retlen = 0;
1535	if (!mtd->_read_fact_prot_reg)
1536		return -EOPNOTSUPP;
1537	if (!len)
1538		return 0;
1539	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1540}
1541EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1542
1543int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1544			   struct otp_info *buf)
1545{
1546	if (!mtd->_get_user_prot_info)
1547		return -EOPNOTSUPP;
1548	if (!len)
1549		return 0;
1550	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1551}
1552EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1553
1554int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1555			   size_t *retlen, u_char *buf)
1556{
1557	*retlen = 0;
1558	if (!mtd->_read_user_prot_reg)
1559		return -EOPNOTSUPP;
1560	if (!len)
1561		return 0;
1562	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1563}
1564EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1565
1566int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1567			    size_t *retlen, u_char *buf)
1568{
1569	int ret;
1570
1571	*retlen = 0;
1572	if (!mtd->_write_user_prot_reg)
1573		return -EOPNOTSUPP;
1574	if (!len)
1575		return 0;
1576	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1577	if (ret)
1578		return ret;
1579
1580	/*
1581	 * If no data could be written at all, we are out of memory and
1582	 * must return -ENOSPC.
1583	 */
1584	return (*retlen) ? 0 : -ENOSPC;
1585}
1586EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1587
1588int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1589{
1590	if (!mtd->_lock_user_prot_reg)
1591		return -EOPNOTSUPP;
1592	if (!len)
1593		return 0;
1594	return mtd->_lock_user_prot_reg(mtd, from, len);
1595}
1596EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1597
1598/* Chip-supported device locking */
1599int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1600{
1601	if (!mtd->_lock)
1602		return -EOPNOTSUPP;
1603	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1604		return -EINVAL;
1605	if (!len)
1606		return 0;
1607	return mtd->_lock(mtd, ofs, len);
1608}
1609EXPORT_SYMBOL_GPL(mtd_lock);
1610
1611int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1612{
1613	if (!mtd->_unlock)
1614		return -EOPNOTSUPP;
1615	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1616		return -EINVAL;
1617	if (!len)
1618		return 0;
1619	return mtd->_unlock(mtd, ofs, len);
1620}
1621EXPORT_SYMBOL_GPL(mtd_unlock);
1622
1623int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1624{
1625	if (!mtd->_is_locked)
1626		return -EOPNOTSUPP;
1627	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1628		return -EINVAL;
1629	if (!len)
1630		return 0;
1631	return mtd->_is_locked(mtd, ofs, len);
1632}
1633EXPORT_SYMBOL_GPL(mtd_is_locked);
1634
1635int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1636{
1637	if (ofs < 0 || ofs > mtd->size)
1638		return -EINVAL;
1639	if (!mtd->_block_isreserved)
1640		return 0;
1641	return mtd->_block_isreserved(mtd, ofs);
1642}
1643EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1644
1645int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1646{
1647	if (ofs < 0 || ofs > mtd->size)
1648		return -EINVAL;
1649	if (!mtd->_block_isbad)
1650		return 0;
1651	return mtd->_block_isbad(mtd, ofs);
1652}
1653EXPORT_SYMBOL_GPL(mtd_block_isbad);
1654
1655int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1656{
1657	if (!mtd->_block_markbad)
1658		return -EOPNOTSUPP;
1659	if (ofs < 0 || ofs > mtd->size)
1660		return -EINVAL;
1661	if (!(mtd->flags & MTD_WRITEABLE))
1662		return -EROFS;
1663	return mtd->_block_markbad(mtd, ofs);
1664}
1665EXPORT_SYMBOL_GPL(mtd_block_markbad);
1666
1667#ifndef __UBOOT__
1668/*
1669 * default_mtd_writev - the default writev method
1670 * @mtd: mtd device description object pointer
1671 * @vecs: the vectors to write
1672 * @count: count of vectors in @vecs
1673 * @to: the MTD device offset to write to
1674 * @retlen: on exit contains the count of bytes written to the MTD device.
1675 *
1676 * This function returns zero in case of success and a negative error code in
1677 * case of failure.
1678 */
1679static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1680			      unsigned long count, loff_t to, size_t *retlen)
1681{
1682	unsigned long i;
1683	size_t totlen = 0, thislen;
1684	int ret = 0;
1685
1686	for (i = 0; i < count; i++) {
1687		if (!vecs[i].iov_len)
1688			continue;
1689		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1690				vecs[i].iov_base);
1691		totlen += thislen;
1692		if (ret || thislen != vecs[i].iov_len)
1693			break;
1694		to += vecs[i].iov_len;
1695	}
1696	*retlen = totlen;
1697	return ret;
1698}
1699
1700/*
1701 * mtd_writev - the vector-based MTD write method
1702 * @mtd: mtd device description object pointer
1703 * @vecs: the vectors to write
1704 * @count: count of vectors in @vecs
1705 * @to: the MTD device offset to write to
1706 * @retlen: on exit contains the count of bytes written to the MTD device.
1707 *
1708 * This function returns zero in case of success and a negative error code in
1709 * case of failure.
1710 */
1711int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1712	       unsigned long count, loff_t to, size_t *retlen)
1713{
1714	*retlen = 0;
1715	if (!(mtd->flags & MTD_WRITEABLE))
1716		return -EROFS;
1717	if (!mtd->_writev)
1718		return default_mtd_writev(mtd, vecs, count, to, retlen);
1719	return mtd->_writev(mtd, vecs, count, to, retlen);
1720}
1721EXPORT_SYMBOL_GPL(mtd_writev);
1722
1723/**
1724 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1725 * @mtd: mtd device description object pointer
1726 * @size: a pointer to the ideal or maximum size of the allocation, points
1727 *        to the actual allocation size on success.
1728 *
1729 * This routine attempts to allocate a contiguous kernel buffer up to
1730 * the specified size, backing off the size of the request exponentially
1731 * until the request succeeds or until the allocation size falls below
1732 * the system page size. This attempts to make sure it does not adversely
1733 * impact system performance, so when allocating more than one page, we
1734 * ask the memory allocator to avoid re-trying, swapping, writing back
1735 * or performing I/O.
1736 *
1737 * Note, this function also makes sure that the allocated buffer is aligned to
1738 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1739 *
1740 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1741 * to handle smaller (i.e. degraded) buffer allocations under low- or
1742 * fragmented-memory situations where such reduced allocations, from a
1743 * requested ideal, are allowed.
1744 *
1745 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1746 */
1747void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1748{
1749	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1750		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1751	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1752	void *kbuf;
1753
1754	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1755
1756	while (*size > min_alloc) {
1757		kbuf = kmalloc(*size, flags);
1758		if (kbuf)
1759			return kbuf;
1760
1761		*size >>= 1;
1762		*size = ALIGN(*size, mtd->writesize);
1763	}
1764
1765	/*
1766	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1767	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1768	 */
1769	return kmalloc(*size, GFP_KERNEL);
1770}
1771EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1772#endif
1773
1774#ifdef CONFIG_PROC_FS
1775
1776/*====================================================================*/
1777/* Support for /proc/mtd */
1778
1779static int mtd_proc_show(struct seq_file *m, void *v)
1780{
1781	struct mtd_info *mtd;
1782
1783	seq_puts(m, "dev:    size   erasesize  name\n");
1784	mutex_lock(&mtd_table_mutex);
1785	mtd_for_each_device(mtd) {
1786		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1787			   mtd->index, (unsigned long long)mtd->size,
1788			   mtd->erasesize, mtd->name);
1789	}
1790	mutex_unlock(&mtd_table_mutex);
1791	return 0;
1792}
1793
1794static int mtd_proc_open(struct inode *inode, struct file *file)
1795{
1796	return single_open(file, mtd_proc_show, NULL);
1797}
1798
1799static const struct file_operations mtd_proc_ops = {
1800	.open		= mtd_proc_open,
1801	.read		= seq_read,
1802	.llseek		= seq_lseek,
1803	.release	= single_release,
1804};
1805#endif /* CONFIG_PROC_FS */
1806
1807/*====================================================================*/
1808/* Init code */
1809
1810#ifndef __UBOOT__
1811static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1812{
1813	int ret;
1814
1815	ret = bdi_init(bdi);
1816	if (!ret)
1817		ret = bdi_register(bdi, NULL, "%s", name);
1818
1819	if (ret)
1820		bdi_destroy(bdi);
1821
1822	return ret;
1823}
1824
1825static struct proc_dir_entry *proc_mtd;
1826
1827static int __init init_mtd(void)
1828{
1829	int ret;
1830
1831	ret = class_register(&mtd_class);
1832	if (ret)
1833		goto err_reg;
1834
1835	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1836	if (ret)
1837		goto err_bdi1;
1838
1839	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1840	if (ret)
1841		goto err_bdi2;
1842
1843	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1844	if (ret)
1845		goto err_bdi3;
1846
1847	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1848
1849	ret = init_mtdchar();
1850	if (ret)
1851		goto out_procfs;
1852
1853	return 0;
1854
1855out_procfs:
1856	if (proc_mtd)
1857		remove_proc_entry("mtd", NULL);
1858err_bdi3:
1859	bdi_destroy(&mtd_bdi_ro_mappable);
1860err_bdi2:
1861	bdi_destroy(&mtd_bdi_unmappable);
1862err_bdi1:
1863	class_unregister(&mtd_class);
1864err_reg:
1865	pr_err("Error registering mtd class or bdi: %d\n", ret);
1866	return ret;
1867}
1868
1869static void __exit cleanup_mtd(void)
1870{
1871	cleanup_mtdchar();
1872	if (proc_mtd)
1873		remove_proc_entry("mtd", NULL);
1874	class_unregister(&mtd_class);
1875	bdi_destroy(&mtd_bdi_unmappable);
1876	bdi_destroy(&mtd_bdi_ro_mappable);
1877	bdi_destroy(&mtd_bdi_rw_mappable);
1878}
1879
1880module_init(init_mtd);
1881module_exit(cleanup_mtd);
1882#endif
1883
1884MODULE_LICENSE("GPL");
1885MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1886MODULE_DESCRIPTION("Core MTD registration and access routines");
1887