1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Device manager
4 *
5 * Copyright (c) 2013 Google, Inc
6 *
7 * (C) Copyright 2012
8 * Pavel Herrmann <morpheus.ibis@gmail.com>
9 */
10
11#include <cpu_func.h>
12#include <errno.h>
13#include <event.h>
14#include <log.h>
15#include <asm/global_data.h>
16#include <asm/io.h>
17#include <clk.h>
18#include <fdtdec.h>
19#include <fdt_support.h>
20#include <malloc.h>
21#include <asm/cache.h>
22#include <dm/device.h>
23#include <dm/device-internal.h>
24#include <dm/lists.h>
25#include <dm/of_access.h>
26#include <dm/pinctrl.h>
27#include <dm/platdata.h>
28#include <dm/read.h>
29#include <dm/uclass.h>
30#include <dm/uclass-internal.h>
31#include <dm/util.h>
32#include <iommu.h>
33#include <linux/err.h>
34#include <linux/list.h>
35#include <power-domain.h>
36#include <linux/printk.h>
37
38DECLARE_GLOBAL_DATA_PTR;
39
40static int device_bind_common(struct udevice *parent, const struct driver *drv,
41			      const char *name, void *plat,
42			      ulong driver_data, ofnode node,
43			      uint of_plat_size, struct udevice **devp)
44{
45	struct udevice *dev;
46	struct uclass *uc;
47	int size, ret = 0;
48	bool auto_seq = true;
49	void *ptr;
50
51	if (CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND))
52		return -ENOSYS;
53
54	if (devp)
55		*devp = NULL;
56	if (!name)
57		return -EINVAL;
58
59	ret = uclass_get(drv->id, &uc);
60	if (ret) {
61		debug("Missing uclass for driver %s\n", drv->name);
62		return ret;
63	}
64
65	dev = calloc(1, sizeof(struct udevice));
66	if (!dev)
67		return -ENOMEM;
68
69	INIT_LIST_HEAD(&dev->sibling_node);
70	INIT_LIST_HEAD(&dev->child_head);
71	INIT_LIST_HEAD(&dev->uclass_node);
72#if CONFIG_IS_ENABLED(DEVRES)
73	INIT_LIST_HEAD(&dev->devres_head);
74#endif
75	dev_set_plat(dev, plat);
76	dev->driver_data = driver_data;
77	dev->name = name;
78	dev_set_ofnode(dev, node);
79	dev->parent = parent;
80	dev->driver = drv;
81	dev->uclass = uc;
82
83	dev->seq_ = -1;
84	if (CONFIG_IS_ENABLED(DM_SEQ_ALIAS) &&
85	    (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS)) {
86		/*
87		 * Some devices, such as a SPI bus, I2C bus and serial ports
88		 * are numbered using aliases.
89		 */
90		if (CONFIG_IS_ENABLED(OF_CONTROL) &&
91		    !CONFIG_IS_ENABLED(OF_PLATDATA)) {
92			if (uc->uc_drv->name && ofnode_valid(node)) {
93				if (!dev_read_alias_seq(dev, &dev->seq_)) {
94					auto_seq = false;
95					log_debug("   - seq=%d\n", dev->seq_);
96					}
97			}
98		}
99	}
100	if (auto_seq && !(uc->uc_drv->flags & DM_UC_FLAG_NO_AUTO_SEQ))
101		dev->seq_ = uclass_find_next_free_seq(uc);
102
103	/* Check if we need to allocate plat */
104	if (drv->plat_auto) {
105		bool alloc = !plat;
106
107		/*
108		 * For of-platdata, we try use the existing data, but if
109		 * plat_auto is larger, we must allocate a new space
110		 */
111		if (CONFIG_IS_ENABLED(OF_PLATDATA)) {
112			if (of_plat_size)
113				dev_or_flags(dev, DM_FLAG_OF_PLATDATA);
114			if (of_plat_size < drv->plat_auto)
115				alloc = true;
116		}
117		if (alloc) {
118			dev_or_flags(dev, DM_FLAG_ALLOC_PDATA);
119			ptr = calloc(1, drv->plat_auto);
120			if (!ptr) {
121				ret = -ENOMEM;
122				goto fail_alloc1;
123			}
124
125			/*
126			 * For of-platdata, copy the old plat into the new
127			 * space
128			 */
129			if (CONFIG_IS_ENABLED(OF_PLATDATA) && plat)
130				memcpy(ptr, plat, of_plat_size);
131			dev_set_plat(dev, ptr);
132		}
133	}
134
135	size = uc->uc_drv->per_device_plat_auto;
136	if (size) {
137		dev_or_flags(dev, DM_FLAG_ALLOC_UCLASS_PDATA);
138		ptr = calloc(1, size);
139		if (!ptr) {
140			ret = -ENOMEM;
141			goto fail_alloc2;
142		}
143		dev_set_uclass_plat(dev, ptr);
144	}
145
146	if (parent) {
147		size = parent->driver->per_child_plat_auto;
148		if (!size)
149			size = parent->uclass->uc_drv->per_child_plat_auto;
150		if (size) {
151			dev_or_flags(dev, DM_FLAG_ALLOC_PARENT_PDATA);
152			ptr = calloc(1, size);
153			if (!ptr) {
154				ret = -ENOMEM;
155				goto fail_alloc3;
156			}
157			dev_set_parent_plat(dev, ptr);
158		}
159		/* put dev into parent's successor list */
160		list_add_tail(&dev->sibling_node, &parent->child_head);
161	}
162
163	ret = uclass_bind_device(dev);
164	if (ret)
165		goto fail_uclass_bind;
166
167	/* if we fail to bind we remove device from successors and free it */
168	if (drv->bind) {
169		ret = drv->bind(dev);
170		if (ret)
171			goto fail_bind;
172	}
173	if (parent && parent->driver->child_post_bind) {
174		ret = parent->driver->child_post_bind(dev);
175		if (ret)
176			goto fail_child_post_bind;
177	}
178	if (uc->uc_drv->post_bind) {
179		ret = uc->uc_drv->post_bind(dev);
180		if (ret)
181			goto fail_uclass_post_bind;
182	}
183
184	if (parent)
185		pr_debug("Bound device %s to %s\n", dev->name, parent->name);
186	if (devp)
187		*devp = dev;
188
189	dev_or_flags(dev, DM_FLAG_BOUND);
190
191	return 0;
192
193fail_uclass_post_bind:
194	/* There is no child unbind() method, so no clean-up required */
195fail_child_post_bind:
196	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
197		if (drv->unbind && drv->unbind(dev)) {
198			dm_warn("unbind() method failed on dev '%s' on error path\n",
199				dev->name);
200		}
201	}
202
203fail_bind:
204	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
205		if (uclass_unbind_device(dev)) {
206			dm_warn("Failed to unbind dev '%s' on error path\n",
207				dev->name);
208		}
209	}
210fail_uclass_bind:
211	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
212		list_del(&dev->sibling_node);
213		if (dev_get_flags(dev) & DM_FLAG_ALLOC_PARENT_PDATA) {
214			free(dev_get_parent_plat(dev));
215			dev_set_parent_plat(dev, NULL);
216		}
217	}
218fail_alloc3:
219	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
220		if (dev_get_flags(dev) & DM_FLAG_ALLOC_UCLASS_PDATA) {
221			free(dev_get_uclass_plat(dev));
222			dev_set_uclass_plat(dev, NULL);
223		}
224	}
225fail_alloc2:
226	if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) {
227		if (dev_get_flags(dev) & DM_FLAG_ALLOC_PDATA) {
228			free(dev_get_plat(dev));
229			dev_set_plat(dev, NULL);
230		}
231	}
232fail_alloc1:
233	devres_release_all(dev);
234
235	free(dev);
236
237	return ret;
238}
239
240int device_bind_with_driver_data(struct udevice *parent,
241				 const struct driver *drv, const char *name,
242				 ulong driver_data, ofnode node,
243				 struct udevice **devp)
244{
245	return device_bind_common(parent, drv, name, NULL, driver_data, node,
246				  0, devp);
247}
248
249int device_bind(struct udevice *parent, const struct driver *drv,
250		const char *name, void *plat, ofnode node,
251		struct udevice **devp)
252{
253	return device_bind_common(parent, drv, name, plat, 0, node, 0,
254				  devp);
255}
256
257int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
258			const struct driver_info *info, struct udevice **devp)
259{
260	struct driver *drv;
261	uint plat_size = 0;
262	int ret;
263
264	drv = lists_driver_lookup_name(info->name);
265	if (!drv)
266		return -ENOENT;
267	if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
268		return -EPERM;
269
270#if CONFIG_IS_ENABLED(OF_PLATDATA)
271	plat_size = info->plat_size;
272#endif
273	ret = device_bind_common(parent, drv, info->name, (void *)info->plat, 0,
274				 ofnode_null(), plat_size, devp);
275	if (ret)
276		return ret;
277
278	return ret;
279}
280
281int device_reparent(struct udevice *dev, struct udevice *new_parent)
282{
283	struct udevice *pos, *n;
284
285	assert(dev);
286	assert(new_parent);
287
288	device_foreach_child_safe(pos, n, dev->parent) {
289		if (pos->driver != dev->driver)
290			continue;
291
292		list_del(&dev->sibling_node);
293		list_add_tail(&dev->sibling_node, &new_parent->child_head);
294		dev->parent = new_parent;
295
296		break;
297	}
298
299	return 0;
300}
301
302static void *alloc_priv(int size, uint flags)
303{
304	void *priv;
305
306	if (flags & DM_FLAG_ALLOC_PRIV_DMA) {
307		size = ROUND(size, ARCH_DMA_MINALIGN);
308		priv = memalign(ARCH_DMA_MINALIGN, size);
309		if (priv) {
310			memset(priv, '\0', size);
311
312			/*
313			 * Ensure that the zero bytes are flushed to memory.
314			 * This prevents problems if the driver uses this as
315			 * both an input and an output buffer:
316			 *
317			 * 1. Zeroes written to buffer (here) and sit in the
318			 *	cache
319			 * 2. Driver issues a read command to DMA
320			 * 3. CPU runs out of cache space and evicts some cache
321			 *	data in the buffer, writing zeroes to RAM from
322			 *	the memset() above
323			 * 4. DMA completes
324			 * 5. Buffer now has some DMA data and some zeroes
325			 * 6. Data being read is now incorrect
326			 *
327			 * To prevent this, ensure that the cache is clean
328			 * within this range at the start. The driver can then
329			 * use normal flush-after-write, invalidate-before-read
330			 * procedures.
331			 */
332			flush_dcache_range((ulong)priv, (ulong)priv + size);
333		}
334	} else {
335		priv = calloc(1, size);
336	}
337
338	return priv;
339}
340
341/**
342 * device_alloc_priv() - Allocate priv/plat data required by the device
343 *
344 * @dev: Device to process
345 * Return: 0 if OK, -ENOMEM if out of memory
346 */
347static int device_alloc_priv(struct udevice *dev)
348{
349	const struct driver *drv;
350	void *ptr;
351	int size;
352
353	drv = dev->driver;
354	assert(drv);
355
356	/* Allocate private data if requested and not reentered */
357	if (drv->priv_auto && !dev_get_priv(dev)) {
358		ptr = alloc_priv(drv->priv_auto, drv->flags);
359		if (!ptr)
360			return -ENOMEM;
361		dev_set_priv(dev, ptr);
362	}
363
364	/* Allocate private data if requested and not reentered */
365	size = dev->uclass->uc_drv->per_device_auto;
366	if (size && !dev_get_uclass_priv(dev)) {
367		ptr = alloc_priv(size, dev->uclass->uc_drv->flags);
368		if (!ptr)
369			return -ENOMEM;
370		dev_set_uclass_priv(dev, ptr);
371	}
372
373	/* Allocate parent data for this child */
374	if (dev->parent) {
375		size = dev->parent->driver->per_child_auto;
376		if (!size)
377			size = dev->parent->uclass->uc_drv->per_child_auto;
378		if (size && !dev_get_parent_priv(dev)) {
379			ptr = alloc_priv(size, drv->flags);
380			if (!ptr)
381				return -ENOMEM;
382			dev_set_parent_priv(dev, ptr);
383		}
384	}
385
386	return 0;
387}
388
389int device_of_to_plat(struct udevice *dev)
390{
391	const struct driver *drv;
392	int ret;
393
394	if (!dev)
395		return -EINVAL;
396
397	if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
398		return 0;
399
400	/*
401	 * This is not needed if binding is disabled, since data is allocated
402	 * at build time.
403	 */
404	if (!CONFIG_IS_ENABLED(OF_PLATDATA_NO_BIND)) {
405		/* Ensure all parents have ofdata */
406		if (dev->parent) {
407			ret = device_of_to_plat(dev->parent);
408			if (ret)
409				goto fail;
410
411			/*
412			 * The device might have already been probed during
413			 * the call to device_probe() on its parent device
414			 * (e.g. PCI bridge devices). Test the flags again
415			 * so that we don't mess up the device.
416			 */
417			if (dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)
418				return 0;
419		}
420
421		ret = device_alloc_priv(dev);
422		if (ret)
423			goto fail;
424	}
425	drv = dev->driver;
426	assert(drv);
427
428	if (drv->of_to_plat &&
429	    (CONFIG_IS_ENABLED(OF_PLATDATA) || dev_has_ofnode(dev))) {
430		ret = drv->of_to_plat(dev);
431		if (ret)
432			goto fail;
433	}
434
435	dev_or_flags(dev, DM_FLAG_PLATDATA_VALID);
436
437	return 0;
438fail:
439	device_free(dev);
440
441	return ret;
442}
443
444/**
445 * device_get_dma_constraints() - Populate device's DMA constraints
446 *
447 * Gets a device's DMA constraints from firmware. This information is later
448 * used by drivers to translate physcal addresses to the device's bus address
449 * space. For now only device-tree is supported.
450 *
451 * @dev: Pointer to target device
452 * Return: 0 if OK or if no DMA constraints were found, error otherwise
453 */
454static int device_get_dma_constraints(struct udevice *dev)
455{
456	struct udevice *parent = dev->parent;
457	phys_addr_t cpu = 0;
458	dma_addr_t bus = 0;
459	u64 size = 0;
460	int ret;
461
462	if (!CONFIG_IS_ENABLED(DM_DMA) || !parent || !dev_has_ofnode(parent))
463		return 0;
464
465	/*
466	 * We start parsing for dma-ranges from the device's bus node. This is
467	 * specially important on nested buses.
468	 */
469	ret = dev_get_dma_range(parent, &cpu, &bus, &size);
470	/* Don't return an error if no 'dma-ranges' were found */
471	if (ret && ret != -ENOENT) {
472		dm_warn("%s: failed to get DMA range, %d\n", dev->name, ret);
473		return ret;
474	}
475
476	dev_set_dma_offset(dev, cpu - bus);
477
478	return 0;
479}
480
481int device_probe(struct udevice *dev)
482{
483	const struct driver *drv;
484	int ret;
485
486	if (!dev)
487		return -EINVAL;
488
489	if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
490		return 0;
491
492	ret = device_notify(dev, EVT_DM_PRE_PROBE);
493	if (ret)
494		return ret;
495
496	drv = dev->driver;
497	assert(drv);
498
499	ret = device_of_to_plat(dev);
500	if (ret)
501		goto fail;
502
503	/* Ensure all parents are probed */
504	if (dev->parent) {
505		ret = device_probe(dev->parent);
506		if (ret)
507			goto fail;
508
509		/*
510		 * The device might have already been probed during
511		 * the call to device_probe() on its parent device
512		 * (e.g. PCI bridge devices). Test the flags again
513		 * so that we don't mess up the device.
514		 */
515		if (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
516			return 0;
517	}
518
519	dev_or_flags(dev, DM_FLAG_ACTIVATED);
520
521	if (CONFIG_IS_ENABLED(POWER_DOMAIN) && dev->parent &&
522	    (device_get_uclass_id(dev) != UCLASS_POWER_DOMAIN) &&
523	    !(drv->flags & DM_FLAG_DEFAULT_PD_CTRL_OFF)) {
524		ret = dev_power_domain_on(dev);
525		if (ret)
526			goto fail;
527	}
528
529	/*
530	 * Process pinctrl for everything except the root device, and
531	 * continue regardless of the result of pinctrl. Don't process pinctrl
532	 * settings for pinctrl devices since the device may not yet be
533	 * probed.
534	 *
535	 * This call can produce some non-intuitive results. For example, on an
536	 * x86 device where dev is the main PCI bus, the pinctrl device may be
537	 * child or grandchild of that bus, meaning that the child will be
538	 * probed here. If the child happens to be the P2SB and the pinctrl
539	 * device is a child of that, then both the pinctrl and P2SB will be
540	 * probed by this call. This works because the DM_FLAG_ACTIVATED flag
541	 * is set just above. However, the PCI bus' probe() method and
542	 * associated uclass methods have not yet been called.
543	 */
544	if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) {
545		ret = pinctrl_select_state(dev, "default");
546		if (ret && ret != -ENOSYS)
547			log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n",
548				  dev->name, ret, errno_str(ret));
549	}
550
551	if (CONFIG_IS_ENABLED(IOMMU) && dev->parent &&
552	    (device_get_uclass_id(dev) != UCLASS_IOMMU)) {
553		ret = dev_iommu_enable(dev);
554		if (ret)
555			goto fail;
556	}
557
558	ret = device_get_dma_constraints(dev);
559	if (ret)
560		goto fail;
561
562	ret = uclass_pre_probe_device(dev);
563	if (ret)
564		goto fail;
565
566	if (dev->parent && dev->parent->driver->child_pre_probe) {
567		ret = dev->parent->driver->child_pre_probe(dev);
568		if (ret)
569			goto fail;
570	}
571
572	/* Only handle devices that have a valid ofnode */
573	if (dev_has_ofnode(dev)) {
574		/*
575		 * Process 'assigned-{clocks/clock-parents/clock-rates}'
576		 * properties
577		 */
578		ret = clk_set_defaults(dev, CLK_DEFAULTS_PRE);
579		if (ret)
580			goto fail;
581	}
582
583	if (drv->probe) {
584		ret = drv->probe(dev);
585		if (ret)
586			goto fail;
587	}
588
589	ret = uclass_post_probe_device(dev);
590	if (ret)
591		goto fail_uclass;
592
593	if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) {
594		ret = pinctrl_select_state(dev, "default");
595		if (ret && ret != -ENOSYS)
596			log_debug("Device '%s' failed to configure default pinctrl: %d (%s)\n",
597				  dev->name, ret, errno_str(ret));
598	}
599
600	ret = device_notify(dev, EVT_DM_POST_PROBE);
601	if (ret)
602		goto fail_event;
603
604	return 0;
605fail_event:
606fail_uclass:
607	if (device_remove(dev, DM_REMOVE_NORMAL)) {
608		dm_warn("%s: Device '%s' failed to remove on error path\n",
609			__func__, dev->name);
610	}
611fail:
612	dev_bic_flags(dev, DM_FLAG_ACTIVATED);
613
614	device_free(dev);
615
616	return ret;
617}
618
619void *dev_get_plat(const struct udevice *dev)
620{
621	if (!dev) {
622		dm_warn("%s: null device\n", __func__);
623		return NULL;
624	}
625
626	return dm_priv_to_rw(dev->plat_);
627}
628
629void *dev_get_parent_plat(const struct udevice *dev)
630{
631	if (!dev) {
632		dm_warn("%s: null device\n", __func__);
633		return NULL;
634	}
635
636	return dm_priv_to_rw(dev->parent_plat_);
637}
638
639void *dev_get_uclass_plat(const struct udevice *dev)
640{
641	if (!dev) {
642		dm_warn("%s: null device\n", __func__);
643		return NULL;
644	}
645
646	return dm_priv_to_rw(dev->uclass_plat_);
647}
648
649void *dev_get_priv(const struct udevice *dev)
650{
651	if (!dev) {
652		dm_warn("%s: null device\n", __func__);
653		return NULL;
654	}
655
656	return dm_priv_to_rw(dev->priv_);
657}
658
659/* notrace is needed as this is called by timer_get_rate() */
660notrace void *dev_get_uclass_priv(const struct udevice *dev)
661{
662	if (!dev) {
663		dm_warn("%s: null device\n", __func__);
664		return NULL;
665	}
666
667	return dm_priv_to_rw(dev->uclass_priv_);
668}
669
670void *dev_get_parent_priv(const struct udevice *dev)
671{
672	if (!dev) {
673		dm_warn("%s: null device\n", __func__);
674		return NULL;
675	}
676
677	return dm_priv_to_rw(dev->parent_priv_);
678}
679
680void *dev_get_attach_ptr(const struct udevice *dev, enum dm_tag_t tag)
681{
682	switch (tag) {
683	case DM_TAG_PLAT:
684		return dev_get_plat(dev);
685	case DM_TAG_PARENT_PLAT:
686		return dev_get_parent_plat(dev);
687	case DM_TAG_UC_PLAT:
688		return dev_get_uclass_plat(dev);
689	case DM_TAG_PRIV:
690		return dev_get_priv(dev);
691	case DM_TAG_PARENT_PRIV:
692		return dev_get_parent_priv(dev);
693	case DM_TAG_UC_PRIV:
694		return dev_get_uclass_priv(dev);
695	default:
696		return NULL;
697	}
698}
699
700int dev_get_attach_size(const struct udevice *dev, enum dm_tag_t tag)
701{
702	const struct udevice *parent = dev_get_parent(dev);
703	const struct uclass *uc = dev->uclass;
704	const struct uclass_driver *uc_drv = uc->uc_drv;
705	const struct driver *parent_drv = NULL;
706	int size = 0;
707
708	if (parent)
709		parent_drv = parent->driver;
710
711	switch (tag) {
712	case DM_TAG_PLAT:
713		size = dev->driver->plat_auto;
714		break;
715	case DM_TAG_PARENT_PLAT:
716		if (parent) {
717			size = parent_drv->per_child_plat_auto;
718			if (!size)
719				size = parent->uclass->uc_drv->per_child_plat_auto;
720		}
721		break;
722	case DM_TAG_UC_PLAT:
723		size = uc_drv->per_device_plat_auto;
724		break;
725	case DM_TAG_PRIV:
726		size = dev->driver->priv_auto;
727		break;
728	case DM_TAG_PARENT_PRIV:
729		if (parent) {
730			size = parent_drv->per_child_auto;
731			if (!size)
732				size = parent->uclass->uc_drv->per_child_auto;
733		}
734		break;
735	case DM_TAG_UC_PRIV:
736		size = uc_drv->per_device_auto;
737		break;
738	default:
739		break;
740	}
741
742	return size;
743}
744
745static int device_get_device_tail(struct udevice *dev, int ret,
746				  struct udevice **devp)
747{
748	if (ret)
749		return ret;
750
751	ret = device_probe(dev);
752	if (ret)
753		return ret;
754
755	*devp = dev;
756
757	return 0;
758}
759
760#if CONFIG_IS_ENABLED(OF_REAL)
761/**
762 * device_find_by_ofnode() - Return device associated with given ofnode
763 *
764 * The returned device is *not* activated.
765 *
766 * @node: The ofnode for which a associated device should be looked up
767 * @devp: Pointer to structure to hold the found device
768 * Return: 0 if OK, -ve on error
769 */
770static int device_find_by_ofnode(ofnode node, struct udevice **devp)
771{
772	struct uclass *uc;
773	struct udevice *dev;
774	int ret;
775
776	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
777		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node,
778						   &dev);
779		if (!ret || dev) {
780			*devp = dev;
781			return 0;
782		}
783	}
784
785	return -ENODEV;
786}
787#endif
788
789int device_get_child(const struct udevice *parent, int index,
790		     struct udevice **devp)
791{
792	struct udevice *dev;
793
794	device_foreach_child(dev, parent) {
795		if (!index--)
796			return device_get_device_tail(dev, 0, devp);
797	}
798
799	return -ENODEV;
800}
801
802int device_get_child_count(const struct udevice *parent)
803{
804	struct udevice *dev;
805	int count = 0;
806
807	device_foreach_child(dev, parent)
808		count++;
809
810	return count;
811}
812
813int device_get_decendent_count(const struct udevice *parent)
814{
815	const struct udevice *dev;
816	int count = 1;
817
818	device_foreach_child(dev, parent)
819		count += device_get_decendent_count(dev);
820
821	return count;
822}
823
824int device_find_child_by_seq(const struct udevice *parent, int seq,
825			     struct udevice **devp)
826{
827	struct udevice *dev;
828
829	*devp = NULL;
830
831	device_foreach_child(dev, parent) {
832		if (dev->seq_ == seq) {
833			*devp = dev;
834			return 0;
835		}
836	}
837
838	return -ENODEV;
839}
840
841int device_get_child_by_seq(const struct udevice *parent, int seq,
842			    struct udevice **devp)
843{
844	struct udevice *dev;
845	int ret;
846
847	*devp = NULL;
848	ret = device_find_child_by_seq(parent, seq, &dev);
849
850	return device_get_device_tail(dev, ret, devp);
851}
852
853int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
854				   struct udevice **devp)
855{
856	struct udevice *dev;
857
858	*devp = NULL;
859
860	device_foreach_child(dev, parent) {
861		if (dev_of_offset(dev) == of_offset) {
862			*devp = dev;
863			return 0;
864		}
865	}
866
867	return -ENODEV;
868}
869
870int device_get_child_by_of_offset(const struct udevice *parent, int node,
871				  struct udevice **devp)
872{
873	struct udevice *dev;
874	int ret;
875
876	*devp = NULL;
877	ret = device_find_child_by_of_offset(parent, node, &dev);
878	return device_get_device_tail(dev, ret, devp);
879}
880
881static struct udevice *_device_find_global_by_ofnode(struct udevice *parent,
882						     ofnode ofnode)
883{
884	struct udevice *dev, *found;
885
886	if (ofnode_equal(dev_ofnode(parent), ofnode))
887		return parent;
888
889	device_foreach_child(dev, parent) {
890		found = _device_find_global_by_ofnode(dev, ofnode);
891		if (found)
892			return found;
893	}
894
895	return NULL;
896}
897
898int device_find_global_by_ofnode(ofnode ofnode, struct udevice **devp)
899{
900	*devp = _device_find_global_by_ofnode(gd->dm_root, ofnode);
901
902	return *devp ? 0 : -ENOENT;
903}
904
905int device_get_global_by_ofnode(ofnode ofnode, struct udevice **devp)
906{
907	struct udevice *dev;
908
909	dev = _device_find_global_by_ofnode(gd->dm_root, ofnode);
910	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
911}
912
913#if CONFIG_IS_ENABLED(OF_PLATDATA)
914int device_get_by_ofplat_idx(uint idx, struct udevice **devp)
915{
916	struct udevice *dev;
917
918	if (CONFIG_IS_ENABLED(OF_PLATDATA_INST)) {
919		struct udevice *base = ll_entry_start(struct udevice, udevice);
920
921		dev = base + idx;
922	} else {
923		struct driver_rt *drt = gd_dm_driver_rt() + idx;
924
925		dev = drt->dev;
926	}
927	*devp = NULL;
928
929	return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp);
930}
931#endif
932
933int device_find_first_child(const struct udevice *parent, struct udevice **devp)
934{
935	if (list_empty(&parent->child_head)) {
936		*devp = NULL;
937	} else {
938		*devp = list_first_entry(&parent->child_head, struct udevice,
939					 sibling_node);
940	}
941
942	return 0;
943}
944
945int device_find_next_child(struct udevice **devp)
946{
947	struct udevice *dev = *devp;
948	struct udevice *parent = dev->parent;
949
950	if (list_is_last(&dev->sibling_node, &parent->child_head)) {
951		*devp = NULL;
952	} else {
953		*devp = list_entry(dev->sibling_node.next, struct udevice,
954				   sibling_node);
955	}
956
957	return 0;
958}
959
960int device_find_first_inactive_child(const struct udevice *parent,
961				     enum uclass_id uclass_id,
962				     struct udevice **devp)
963{
964	struct udevice *dev;
965
966	*devp = NULL;
967	device_foreach_child(dev, parent) {
968		if (!device_active(dev) &&
969		    device_get_uclass_id(dev) == uclass_id) {
970			*devp = dev;
971			return 0;
972		}
973	}
974
975	return -ENODEV;
976}
977
978int device_find_first_child_by_uclass(const struct udevice *parent,
979				      enum uclass_id uclass_id,
980				      struct udevice **devp)
981{
982	struct udevice *dev;
983
984	*devp = NULL;
985	device_foreach_child(dev, parent) {
986		if (device_get_uclass_id(dev) == uclass_id) {
987			*devp = dev;
988			return 0;
989		}
990	}
991
992	return -ENODEV;
993}
994
995int device_find_child_by_namelen(const struct udevice *parent, const char *name,
996				 int len, struct udevice **devp)
997{
998	struct udevice *dev;
999
1000	*devp = NULL;
1001
1002	device_foreach_child(dev, parent) {
1003		if (!strncmp(dev->name, name, len) &&
1004		    strlen(dev->name) == len) {
1005			*devp = dev;
1006			return 0;
1007		}
1008	}
1009
1010	return -ENODEV;
1011}
1012
1013int device_find_child_by_name(const struct udevice *parent, const char *name,
1014			      struct udevice **devp)
1015{
1016	return device_find_child_by_namelen(parent, name, strlen(name), devp);
1017}
1018
1019int device_first_child_err(struct udevice *parent, struct udevice **devp)
1020{
1021	struct udevice *dev;
1022
1023	device_find_first_child(parent, &dev);
1024	if (!dev)
1025		return -ENODEV;
1026
1027	return device_get_device_tail(dev, 0, devp);
1028}
1029
1030int device_next_child_err(struct udevice **devp)
1031{
1032	struct udevice *dev = *devp;
1033
1034	device_find_next_child(&dev);
1035	if (!dev)
1036		return -ENODEV;
1037
1038	return device_get_device_tail(dev, 0, devp);
1039}
1040
1041int device_first_child_ofdata_err(struct udevice *parent, struct udevice **devp)
1042{
1043	struct udevice *dev;
1044	int ret;
1045
1046	device_find_first_child(parent, &dev);
1047	if (!dev)
1048		return -ENODEV;
1049
1050	ret = device_of_to_plat(dev);
1051	if (ret)
1052		return ret;
1053
1054	*devp = dev;
1055
1056	return 0;
1057}
1058
1059int device_next_child_ofdata_err(struct udevice **devp)
1060{
1061	struct udevice *dev = *devp;
1062	int ret;
1063
1064	device_find_next_child(&dev);
1065	if (!dev)
1066		return -ENODEV;
1067
1068	ret = device_of_to_plat(dev);
1069	if (ret)
1070		return ret;
1071
1072	*devp = dev;
1073
1074	return 0;
1075}
1076
1077struct udevice *dev_get_parent(const struct udevice *child)
1078{
1079	return child->parent;
1080}
1081
1082ulong dev_get_driver_data(const struct udevice *dev)
1083{
1084	return dev->driver_data;
1085}
1086
1087const void *dev_get_driver_ops(const struct udevice *dev)
1088{
1089	if (!dev || !dev->driver->ops)
1090		return NULL;
1091
1092	return dev->driver->ops;
1093}
1094
1095enum uclass_id device_get_uclass_id(const struct udevice *dev)
1096{
1097	return dev->uclass->uc_drv->id;
1098}
1099
1100const char *dev_get_uclass_name(const struct udevice *dev)
1101{
1102	if (!dev)
1103		return NULL;
1104
1105	return dev->uclass->uc_drv->name;
1106}
1107
1108bool device_has_children(const struct udevice *dev)
1109{
1110	return !list_empty(&dev->child_head);
1111}
1112
1113bool device_has_active_children(const struct udevice *dev)
1114{
1115	struct udevice *child;
1116
1117	for (device_find_first_child(dev, &child);
1118	     child;
1119	     device_find_next_child(&child)) {
1120		if (device_active(child))
1121			return true;
1122	}
1123
1124	return false;
1125}
1126
1127bool device_is_last_sibling(const struct udevice *dev)
1128{
1129	struct udevice *parent = dev->parent;
1130
1131	if (!parent)
1132		return false;
1133	return list_is_last(&dev->sibling_node, &parent->child_head);
1134}
1135
1136void device_set_name_alloced(struct udevice *dev)
1137{
1138	dev_or_flags(dev, DM_FLAG_NAME_ALLOCED);
1139}
1140
1141int device_set_name(struct udevice *dev, const char *name)
1142{
1143	name = strdup(name);
1144	if (!name)
1145		return -ENOMEM;
1146	dev->name = name;
1147	device_set_name_alloced(dev);
1148
1149	return 0;
1150}
1151
1152void dev_set_priv(struct udevice *dev, void *priv)
1153{
1154	dev->priv_ = priv;
1155}
1156
1157void dev_set_parent_priv(struct udevice *dev, void *parent_priv)
1158{
1159	dev->parent_priv_ = parent_priv;
1160}
1161
1162void dev_set_uclass_priv(struct udevice *dev, void *uclass_priv)
1163{
1164	dev->uclass_priv_ = uclass_priv;
1165}
1166
1167void dev_set_plat(struct udevice *dev, void *plat)
1168{
1169	dev->plat_ = plat;
1170}
1171
1172void dev_set_parent_plat(struct udevice *dev, void *parent_plat)
1173{
1174	dev->parent_plat_ = parent_plat;
1175}
1176
1177void dev_set_uclass_plat(struct udevice *dev, void *uclass_plat)
1178{
1179	dev->uclass_plat_ = uclass_plat;
1180}
1181
1182#if CONFIG_IS_ENABLED(OF_REAL)
1183bool device_is_compatible(const struct udevice *dev, const char *compat)
1184{
1185	return ofnode_device_is_compatible(dev_ofnode(dev), compat);
1186}
1187
1188bool of_machine_is_compatible(const char *compat)
1189{
1190	return ofnode_device_is_compatible(ofnode_root(), compat);
1191}
1192
1193int dev_disable_by_path(const char *path)
1194{
1195	struct uclass *uc;
1196	ofnode node = ofnode_path(path);
1197	struct udevice *dev;
1198	int ret = 1;
1199
1200	if (!of_live_active())
1201		return -ENOSYS;
1202
1203	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1204		ret = uclass_find_device_by_ofnode(uc->uc_drv->id, node, &dev);
1205		if (!ret)
1206			break;
1207	}
1208
1209	if (ret)
1210		return ret;
1211
1212	ret = device_remove(dev, DM_REMOVE_NORMAL);
1213	if (ret)
1214		return ret;
1215
1216	ret = device_unbind(dev);
1217	if (ret)
1218		return ret;
1219
1220	return ofnode_set_enabled(node, false);
1221}
1222
1223int dev_enable_by_path(const char *path)
1224{
1225	ofnode node = ofnode_path(path);
1226	ofnode pnode = ofnode_get_parent(node);
1227	struct udevice *parent;
1228	int ret = 1;
1229
1230	if (!of_live_active())
1231		return -ENOSYS;
1232
1233	ret = device_find_by_ofnode(pnode, &parent);
1234	if (ret)
1235		return ret;
1236
1237	ret = ofnode_set_enabled(node, true);
1238	if (ret)
1239		return ret;
1240
1241	return lists_bind_fdt(parent, node, NULL, NULL, false);
1242}
1243#endif
1244
1245#if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
1246static struct udevice_rt *dev_get_rt(const struct udevice *dev)
1247{
1248	struct udevice *base = ll_entry_start(struct udevice, udevice);
1249	uint each_size = dm_udevice_size();
1250	int idx = ((void *)dev - (void *)base) / each_size;
1251
1252	struct udevice_rt *urt = gd_dm_udevice_rt() + idx;
1253
1254	return urt;
1255}
1256
1257u32 dev_get_flags(const struct udevice *dev)
1258{
1259	const struct udevice_rt *urt = dev_get_rt(dev);
1260
1261	return urt->flags_;
1262}
1263
1264void dev_or_flags(const struct udevice *dev, u32 or)
1265{
1266	struct udevice_rt *urt = dev_get_rt(dev);
1267
1268	urt->flags_ |= or;
1269}
1270
1271void dev_bic_flags(const struct udevice *dev, u32 bic)
1272{
1273	struct udevice_rt *urt = dev_get_rt(dev);
1274
1275	urt->flags_ &= ~bic;
1276}
1277#endif /* OF_PLATDATA_RT */
1278