1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2009
4 * Sergey Kubushyn, himself, ksi@koi8.net
5 *
6 * Changes for unified multibus/multiadapter I2C support.
7 *
8 * (C) Copyright 2001
9 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
10 */
11
12/*
13 * I2C Functions similar to the standard memory functions.
14 *
15 * There are several parameters in many of the commands that bear further
16 * explanations:
17 *
18 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
19 *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
20 *   the address is the upper seven bits and the LSB is the "read/write"
21 *   bit.  Note that the {i2c_chip} address specified on the command
22 *   line is not shifted up: e.g. a typical EEPROM memory chip may have
23 *   an I2C address of 0x50, but the data put on the bus will be 0xA0
24 *   for write and 0xA1 for read.  This "non shifted" address notation
25 *   matches at least half of the data sheets :-/.
26 *
27 * {addr} is the address (or offset) within the chip.  Small memory
28 *   chips have 8 bit addresses.  Large memory chips have 16 bit
29 *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
30 *   Many non-memory chips have multiple registers and {addr} is used
31 *   as the register index.  Some non-memory chips have only one register
32 *   and therefore don't need any {addr} parameter.
33 *
34 *   The default {addr} parameter is one byte (.1) which works well for
35 *   memories and registers with 8 bits of address space.
36 *
37 *   You can specify the length of the {addr} field with the optional .0,
38 *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
39 *   manipulating a single register device which doesn't use an address
40 *   field, use "0.0" for the address and the ".0" length field will
41 *   suppress the address in the I2C data stream.  This also works for
42 *   successive reads using the I2C auto-incrementing memory pointer.
43 *
44 *   If you are manipulating a large memory with 2-byte addresses, use
45 *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
46 *
47 *   Then there are the unfortunate memory chips that spill the most
48 *   significant 1, 2, or 3 bits of address into the chip address byte.
49 *   This effectively makes one chip (logically) look like 2, 4, or
50 *   8 chips.  This is handled (awkwardly) by #defining
51 *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
52 *   {addr} field (since .1 is the default, it doesn't actually have to
53 *   be specified).  Examples: given a memory chip at I2C chip address
54 *   0x50, the following would happen...
55 *     i2c md 50 0 10   display 16 bytes starting at 0x000
56 *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
57 *     i2c md 50 100 10 display 16 bytes starting at 0x100
58 *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
59 *     i2c md 50 210 10 display 16 bytes starting at 0x210
60 *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
61 *   This is awfully ugly.  It would be nice if someone would think up
62 *   a better way of handling this.
63 *
64 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
65 */
66
67#include <common.h>
68#include <bootretry.h>
69#include <cli.h>
70#include <command.h>
71#include <console.h>
72#include <dm.h>
73#include <edid.h>
74#include <errno.h>
75#include <i2c.h>
76#include <log.h>
77#include <malloc.h>
78#include <asm/byteorder.h>
79#include <linux/compiler.h>
80#include <linux/delay.h>
81#include <u-boot/crc.h>
82
83/* Display values from last command.
84 * Memory modify remembered values are different from display memory.
85 */
86static uint	i2c_dp_last_chip;
87static uint	i2c_dp_last_addr;
88static uint	i2c_dp_last_alen;
89static uint	i2c_dp_last_length = 0x10;
90
91static uint	i2c_mm_last_chip;
92static uint	i2c_mm_last_addr;
93static uint	i2c_mm_last_alen;
94
95/* If only one I2C bus is present, the list of devices to ignore when
96 * the probe command is issued is represented by a 1D array of addresses.
97 * When multiple buses are present, the list is an array of bus-address
98 * pairs.  The following macros take care of this */
99
100#if defined(CFG_SYS_I2C_NOPROBES)
101#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
102static struct
103{
104	uchar	bus;
105	uchar	addr;
106} i2c_no_probes[] = CFG_SYS_I2C_NOPROBES;
107#define GET_BUS_NUM	i2c_get_bus_num()
108#define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
109#define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
110#define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
111#else		/* single bus */
112static uchar i2c_no_probes[] = CFG_SYS_I2C_NOPROBES;
113#define GET_BUS_NUM	0
114#define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
115#define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
116#define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
117#endif	/* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
118#endif
119
120#define DISP_LINE_LEN	16
121
122/*
123 * Default for driver model is to use the chip's existing address length.
124 * For legacy code, this is not stored, so we need to use a suitable
125 * default.
126 */
127#if CONFIG_IS_ENABLED(DM_I2C)
128#define DEFAULT_ADDR_LEN	(-1)
129#else
130#define DEFAULT_ADDR_LEN	1
131#endif
132
133#if CONFIG_IS_ENABLED(DM_I2C)
134static struct udevice *i2c_cur_bus;
135
136static int cmd_i2c_set_bus_num(unsigned int busnum)
137{
138	struct udevice *bus;
139	int ret;
140
141	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
142	if (ret) {
143		debug("%s: No bus %d\n", __func__, busnum);
144		return ret;
145	}
146	i2c_cur_bus = bus;
147
148	return 0;
149}
150
151static int i2c_get_cur_bus(struct udevice **busp)
152{
153#ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
154	if (!i2c_cur_bus) {
155		if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
156			printf("Default I2C bus %d not found\n",
157			       CONFIG_I2C_DEFAULT_BUS_NUMBER);
158			return -ENODEV;
159		}
160	}
161#endif
162
163	if (!i2c_cur_bus) {
164		puts("No I2C bus selected\n");
165		return -ENODEV;
166	}
167	*busp = i2c_cur_bus;
168
169	return 0;
170}
171
172static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
173{
174	struct udevice *bus;
175	int ret;
176
177	ret = i2c_get_cur_bus(&bus);
178	if (ret)
179		return ret;
180
181	return i2c_get_chip(bus, chip_addr, 1, devp);
182}
183
184#endif
185
186/**
187 * i2c_init_board() - Board-specific I2C bus init
188 *
189 * This function is the default no-op implementation of I2C bus
190 * initialization. This function can be overridden by board-specific
191 * implementation if needed.
192 */
193__weak
194void i2c_init_board(void)
195{
196}
197
198/**
199 * get_alen() - Small parser helper function to get address length
200 *
201 * Returns the address length.
202 */
203static uint get_alen(char *arg, int default_len)
204{
205	int	j;
206	int	alen;
207
208	alen = default_len;
209	for (j = 0; j < 8; j++) {
210		if (arg[j] == '.') {
211			alen = arg[j+1] - '0';
212			break;
213		} else if (arg[j] == '\0')
214			break;
215	}
216	return alen;
217}
218
219enum i2c_err_op {
220	I2C_ERR_READ,
221	I2C_ERR_WRITE,
222};
223
224static int i2c_report_err(int ret, enum i2c_err_op op)
225{
226	printf("Error %s the chip: %d\n",
227	       op == I2C_ERR_READ ? "reading" : "writing", ret);
228
229	return CMD_RET_FAILURE;
230}
231
232/**
233 * do_i2c_read() - Handle the "i2c read" command-line command
234 * @cmdtp:	Command data struct pointer
235 * @flag:	Command flag
236 * @argc:	Command-line argument count
237 * @argv:	Array of command-line arguments
238 *
239 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
240 * on error.
241 *
242 * Syntax:
243 *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
244 */
245static int do_i2c_read(struct cmd_tbl *cmdtp, int flag, int argc,
246		       char *const argv[])
247{
248	uint	chip;
249	uint	devaddr, length;
250	int alen;
251	u_char  *memaddr;
252	int ret;
253#if CONFIG_IS_ENABLED(DM_I2C)
254	struct udevice *dev;
255#endif
256
257	if (argc != 5)
258		return CMD_RET_USAGE;
259
260	/*
261	 * I2C chip address
262	 */
263	chip = hextoul(argv[1], NULL);
264
265	/*
266	 * I2C data address within the chip.  This can be 1 or
267	 * 2 bytes long.  Some day it might be 3 bytes long :-).
268	 */
269	devaddr = hextoul(argv[2], NULL);
270	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
271	if (alen > 3)
272		return CMD_RET_USAGE;
273
274	/*
275	 * Length is the number of objects, not number of bytes.
276	 */
277	length = hextoul(argv[3], NULL);
278
279	/*
280	 * memaddr is the address where to store things in memory
281	 */
282	memaddr = (u_char *)hextoul(argv[4], NULL);
283
284#if CONFIG_IS_ENABLED(DM_I2C)
285	ret = i2c_get_cur_bus_chip(chip, &dev);
286	if (!ret && alen != -1)
287		ret = i2c_set_chip_offset_len(dev, alen);
288	if (!ret)
289		ret = dm_i2c_read(dev, devaddr, memaddr, length);
290#else
291	ret = i2c_read(chip, devaddr, alen, memaddr, length);
292#endif
293	if (ret)
294		return i2c_report_err(ret, I2C_ERR_READ);
295
296	return 0;
297}
298
299static int do_i2c_write(struct cmd_tbl *cmdtp, int flag, int argc,
300			char *const argv[])
301{
302	uint	chip;
303	uint	devaddr, length;
304	int alen;
305	u_char  *memaddr;
306	int ret;
307#if CONFIG_IS_ENABLED(DM_I2C)
308	struct udevice *dev;
309	struct dm_i2c_chip *i2c_chip;
310#endif
311
312	if ((argc < 5) || (argc > 6))
313		return cmd_usage(cmdtp);
314
315	/*
316	 * memaddr is the address where to store things in memory
317	 */
318	memaddr = (u_char *)hextoul(argv[1], NULL);
319
320	/*
321	 * I2C chip address
322	 */
323	chip = hextoul(argv[2], NULL);
324
325	/*
326	 * I2C data address within the chip.  This can be 1 or
327	 * 2 bytes long.  Some day it might be 3 bytes long :-).
328	 */
329	devaddr = hextoul(argv[3], NULL);
330	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
331	if (alen > 3)
332		return cmd_usage(cmdtp);
333
334	/*
335	 * Length is the number of bytes.
336	 */
337	length = hextoul(argv[4], NULL);
338
339#if CONFIG_IS_ENABLED(DM_I2C)
340	ret = i2c_get_cur_bus_chip(chip, &dev);
341	if (!ret && alen != -1)
342		ret = i2c_set_chip_offset_len(dev, alen);
343	if (ret)
344		return i2c_report_err(ret, I2C_ERR_WRITE);
345	i2c_chip = dev_get_parent_plat(dev);
346	if (!i2c_chip)
347		return i2c_report_err(ret, I2C_ERR_WRITE);
348#endif
349
350	if (argc == 6 && !strcmp(argv[5], "-s")) {
351		/*
352		 * Write all bytes in a single I2C transaction. If the target
353		 * device is an EEPROM, it is your responsibility to not cross
354		 * a page boundary. No write delay upon completion, take this
355		 * into account if linking commands.
356		 */
357#if CONFIG_IS_ENABLED(DM_I2C)
358		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
359		ret = dm_i2c_write(dev, devaddr, memaddr, length);
360#else
361		ret = i2c_write(chip, devaddr, alen, memaddr, length);
362#endif
363		if (ret)
364			return i2c_report_err(ret, I2C_ERR_WRITE);
365	} else {
366		/*
367		 * Repeated addressing - perform <length> separate
368		 * write transactions of one byte each
369		 */
370		while (length-- > 0) {
371#if CONFIG_IS_ENABLED(DM_I2C)
372			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
373			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
374#else
375			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
376#endif
377			if (ret)
378				return i2c_report_err(ret, I2C_ERR_WRITE);
379/*
380 * No write delay with FRAM devices.
381 */
382#if !defined(CONFIG_SYS_I2C_FRAM)
383			udelay(11000);
384#endif
385		}
386	}
387	return 0;
388}
389
390#if CONFIG_IS_ENABLED(DM_I2C)
391static int do_i2c_flags(struct cmd_tbl *cmdtp, int flag, int argc,
392			char *const argv[])
393{
394	struct udevice *dev;
395	uint flags;
396	int chip;
397	int ret;
398
399	if (argc < 2)
400		return CMD_RET_USAGE;
401
402	chip = hextoul(argv[1], NULL);
403	ret = i2c_get_cur_bus_chip(chip, &dev);
404	if (ret)
405		return i2c_report_err(ret, I2C_ERR_READ);
406
407	if (argc > 2) {
408		flags = hextoul(argv[2], NULL);
409		ret = i2c_set_chip_flags(dev, flags);
410	} else  {
411		ret = i2c_get_chip_flags(dev, &flags);
412		if (!ret)
413			printf("%x\n", flags);
414	}
415	if (ret)
416		return i2c_report_err(ret, I2C_ERR_READ);
417
418	return 0;
419}
420
421static int do_i2c_olen(struct cmd_tbl *cmdtp, int flag, int argc,
422		       char *const argv[])
423{
424	struct udevice *dev;
425	uint olen;
426	int chip;
427	int ret;
428
429	if (argc < 2)
430		return CMD_RET_USAGE;
431
432	chip = hextoul(argv[1], NULL);
433	ret = i2c_get_cur_bus_chip(chip, &dev);
434	if (ret)
435		return i2c_report_err(ret, I2C_ERR_READ);
436
437	if (argc > 2) {
438		olen = hextoul(argv[2], NULL);
439		ret = i2c_set_chip_offset_len(dev, olen);
440	} else  {
441		ret = i2c_get_chip_offset_len(dev);
442		if (ret >= 0) {
443			printf("%x\n", ret);
444			ret = 0;
445		}
446	}
447	if (ret)
448		return i2c_report_err(ret, I2C_ERR_READ);
449
450	return 0;
451}
452#endif
453
454/**
455 * do_i2c_md() - Handle the "i2c md" command-line command
456 * @cmdtp:	Command data struct pointer
457 * @flag:	Command flag
458 * @argc:	Command-line argument count
459 * @argv:	Array of command-line arguments
460 *
461 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
462 * on error.
463 *
464 * Syntax:
465 *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
466 */
467static int do_i2c_md(struct cmd_tbl *cmdtp, int flag, int argc,
468		     char *const argv[])
469{
470	uint	chip;
471	uint	addr, length;
472	int alen;
473	int j;
474	uint nbytes, linebytes;
475	int ret;
476#if CONFIG_IS_ENABLED(DM_I2C)
477	struct udevice *dev;
478#endif
479
480	/* We use the last specified parameters, unless new ones are
481	 * entered.
482	 */
483	chip   = i2c_dp_last_chip;
484	addr   = i2c_dp_last_addr;
485	alen   = i2c_dp_last_alen;
486	length = i2c_dp_last_length;
487
488	if (argc < 3)
489		return CMD_RET_USAGE;
490
491	if ((flag & CMD_FLAG_REPEAT) == 0) {
492		/*
493		 * New command specified.
494		 */
495
496		/*
497		 * I2C chip address
498		 */
499		chip = hextoul(argv[1], NULL);
500
501		/*
502		 * I2C data address within the chip.  This can be 1 or
503		 * 2 bytes long.  Some day it might be 3 bytes long :-).
504		 */
505		addr = hextoul(argv[2], NULL);
506		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
507		if (alen > 3)
508			return CMD_RET_USAGE;
509
510		/*
511		 * If another parameter, it is the length to display.
512		 * Length is the number of objects, not number of bytes.
513		 */
514		if (argc > 3)
515			length = hextoul(argv[3], NULL);
516	}
517
518#if CONFIG_IS_ENABLED(DM_I2C)
519	ret = i2c_get_cur_bus_chip(chip, &dev);
520	if (!ret && alen != -1)
521		ret = i2c_set_chip_offset_len(dev, alen);
522	if (ret)
523		return i2c_report_err(ret, I2C_ERR_READ);
524#endif
525
526	/*
527	 * Print the lines.
528	 *
529	 * We buffer all read data, so we can make sure data is read only
530	 * once.
531	 */
532	nbytes = length;
533	do {
534		unsigned char	linebuf[DISP_LINE_LEN];
535		unsigned char	*cp;
536
537		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
538
539#if CONFIG_IS_ENABLED(DM_I2C)
540		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
541#else
542		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
543#endif
544		if (ret)
545			return i2c_report_err(ret, I2C_ERR_READ);
546		else {
547			printf("%04x:", addr);
548			cp = linebuf;
549			for (j=0; j<linebytes; j++) {
550				printf(" %02x", *cp++);
551				addr++;
552			}
553			puts ("    ");
554			cp = linebuf;
555			for (j=0; j<linebytes; j++) {
556				if ((*cp < 0x20) || (*cp > 0x7e))
557					puts (".");
558				else
559					printf("%c", *cp);
560				cp++;
561			}
562			putc ('\n');
563		}
564		nbytes -= linebytes;
565	} while (nbytes > 0);
566
567	i2c_dp_last_chip   = chip;
568	i2c_dp_last_addr   = addr;
569	i2c_dp_last_alen   = alen;
570	i2c_dp_last_length = length;
571
572	return 0;
573}
574
575/**
576 * do_i2c_mw() - Handle the "i2c mw" command-line command
577 * @cmdtp:	Command data struct pointer
578 * @flag:	Command flag
579 * @argc:	Command-line argument count
580 * @argv:	Array of command-line arguments
581 *
582 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
583 * on error.
584 *
585 * Syntax:
586 *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
587 */
588static int do_i2c_mw(struct cmd_tbl *cmdtp, int flag, int argc,
589		     char *const argv[])
590{
591	uint	chip;
592	ulong	addr;
593	int	alen;
594	uchar	byte;
595	int	count;
596	int ret;
597#if CONFIG_IS_ENABLED(DM_I2C)
598	struct udevice *dev;
599#endif
600
601	if ((argc < 4) || (argc > 5))
602		return CMD_RET_USAGE;
603
604	/*
605	 * Chip is always specified.
606	 */
607	chip = hextoul(argv[1], NULL);
608
609	/*
610	 * Address is always specified.
611	 */
612	addr = hextoul(argv[2], NULL);
613	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
614	if (alen > 3)
615		return CMD_RET_USAGE;
616
617#if CONFIG_IS_ENABLED(DM_I2C)
618	ret = i2c_get_cur_bus_chip(chip, &dev);
619	if (!ret && alen != -1)
620		ret = i2c_set_chip_offset_len(dev, alen);
621	if (ret)
622		return i2c_report_err(ret, I2C_ERR_WRITE);
623#endif
624	/*
625	 * Value to write is always specified.
626	 */
627	byte = hextoul(argv[3], NULL);
628
629	/*
630	 * Optional count
631	 */
632	if (argc == 5)
633		count = hextoul(argv[4], NULL);
634	else
635		count = 1;
636
637	while (count-- > 0) {
638#if CONFIG_IS_ENABLED(DM_I2C)
639		ret = dm_i2c_write(dev, addr++, &byte, 1);
640#else
641		ret = i2c_write(chip, addr++, alen, &byte, 1);
642#endif
643		if (ret)
644			return i2c_report_err(ret, I2C_ERR_WRITE);
645		/*
646		 * Wait for the write to complete.  The write can take
647		 * up to 10mSec (we allow a little more time).
648		 */
649/*
650 * No write delay with FRAM devices.
651 */
652#if !defined(CONFIG_SYS_I2C_FRAM)
653		udelay(11000);
654#endif
655	}
656
657	return 0;
658}
659
660/**
661 * do_i2c_crc() - Handle the "i2c crc32" command-line command
662 * @cmdtp:	Command data struct pointer
663 * @flag:	Command flag
664 * @argc:	Command-line argument count
665 * @argv:	Array of command-line arguments
666 *
667 * Calculate a CRC on memory
668 *
669 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
670 * on error.
671 *
672 * Syntax:
673 *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
674 */
675static int do_i2c_crc(struct cmd_tbl *cmdtp, int flag, int argc,
676		      char *const argv[])
677{
678	uint	chip;
679	ulong	addr;
680	int	alen;
681	int	count;
682	uchar	byte;
683	ulong	crc;
684	ulong	err;
685	int ret = 0;
686#if CONFIG_IS_ENABLED(DM_I2C)
687	struct udevice *dev;
688#endif
689
690	if (argc < 4)
691		return CMD_RET_USAGE;
692
693	/*
694	 * Chip is always specified.
695	 */
696	chip = hextoul(argv[1], NULL);
697
698	/*
699	 * Address is always specified.
700	 */
701	addr = hextoul(argv[2], NULL);
702	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
703	if (alen > 3)
704		return CMD_RET_USAGE;
705
706#if CONFIG_IS_ENABLED(DM_I2C)
707	ret = i2c_get_cur_bus_chip(chip, &dev);
708	if (!ret && alen != -1)
709		ret = i2c_set_chip_offset_len(dev, alen);
710	if (ret)
711		return i2c_report_err(ret, I2C_ERR_READ);
712#endif
713	/*
714	 * Count is always specified
715	 */
716	count = hextoul(argv[3], NULL);
717
718	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
719	/*
720	 * CRC a byte at a time.  This is going to be slooow, but hey, the
721	 * memories are small and slow too so hopefully nobody notices.
722	 */
723	crc = 0;
724	err = 0;
725	while (count-- > 0) {
726#if CONFIG_IS_ENABLED(DM_I2C)
727		ret = dm_i2c_read(dev, addr, &byte, 1);
728#else
729		ret = i2c_read(chip, addr, alen, &byte, 1);
730#endif
731		if (ret)
732			err++;
733		crc = crc32(crc, &byte, 1);
734		addr++;
735	}
736	if (err > 0)
737		i2c_report_err(ret, I2C_ERR_READ);
738	else
739		printf ("%08lx\n", crc);
740
741	return 0;
742}
743
744/**
745 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
746 * @cmdtp:	Command data struct pointer
747 * @flag:	Command flag
748 * @argc:	Command-line argument count
749 * @argv:	Array of command-line arguments
750 *
751 * Modify memory.
752 *
753 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
754 * on error.
755 *
756 * Syntax:
757 *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
758 *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
759 */
760static int mod_i2c_mem(struct cmd_tbl *cmdtp, int incrflag, int flag, int argc,
761		       char *const argv[])
762{
763	uint	chip;
764	ulong	addr;
765	int	alen;
766	ulong	data;
767	int	size = 1;
768	int	nbytes;
769	int ret;
770#if CONFIG_IS_ENABLED(DM_I2C)
771	struct udevice *dev;
772#endif
773
774	if (argc != 3)
775		return CMD_RET_USAGE;
776
777	bootretry_reset_cmd_timeout();	/* got a good command to get here */
778	/*
779	 * We use the last specified parameters, unless new ones are
780	 * entered.
781	 */
782	chip = i2c_mm_last_chip;
783	addr = i2c_mm_last_addr;
784	alen = i2c_mm_last_alen;
785
786	if ((flag & CMD_FLAG_REPEAT) == 0) {
787		/*
788		 * New command specified.  Check for a size specification.
789		 * Defaults to byte if no or incorrect specification.
790		 */
791		size = cmd_get_data_size(argv[0], 1);
792
793		/*
794		 * Chip is always specified.
795		 */
796		chip = hextoul(argv[1], NULL);
797
798		/*
799		 * Address is always specified.
800		 */
801		addr = hextoul(argv[2], NULL);
802		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
803		if (alen > 3)
804			return CMD_RET_USAGE;
805	}
806
807#if CONFIG_IS_ENABLED(DM_I2C)
808	ret = i2c_get_cur_bus_chip(chip, &dev);
809	if (!ret && alen != -1)
810		ret = i2c_set_chip_offset_len(dev, alen);
811	if (ret)
812		return i2c_report_err(ret, I2C_ERR_WRITE);
813#endif
814
815	/*
816	 * Print the address, followed by value.  Then accept input for
817	 * the next value.  A non-converted value exits.
818	 */
819	do {
820		printf("%08lx:", addr);
821#if CONFIG_IS_ENABLED(DM_I2C)
822		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
823#else
824		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
825#endif
826		if (ret)
827			return i2c_report_err(ret, I2C_ERR_READ);
828
829		data = cpu_to_be32(data);
830		if (size == 1)
831			printf(" %02lx", (data >> 24) & 0x000000FF);
832		else if (size == 2)
833			printf(" %04lx", (data >> 16) & 0x0000FFFF);
834		else
835			printf(" %08lx", data);
836
837		nbytes = cli_readline(" ? ");
838		if (nbytes == 0) {
839			/*
840			 * <CR> pressed as only input, don't modify current
841			 * location and move to next.
842			 */
843			if (incrflag)
844				addr += size;
845			nbytes = size;
846			/* good enough to not time out */
847			bootretry_reset_cmd_timeout();
848		}
849#ifdef CONFIG_BOOT_RETRY_TIME
850		else if (nbytes == -2)
851			break;	/* timed out, exit the command	*/
852#endif
853		else {
854			char *endp;
855
856			data = hextoul(console_buffer, &endp);
857			if (size == 1)
858				data = data << 24;
859			else if (size == 2)
860				data = data << 16;
861			data = be32_to_cpu(data);
862			nbytes = endp - console_buffer;
863			if (nbytes) {
864				/*
865				 * good enough to not time out
866				 */
867				bootretry_reset_cmd_timeout();
868#if CONFIG_IS_ENABLED(DM_I2C)
869				ret = dm_i2c_write(dev, addr, (uchar *)&data,
870						   size);
871#else
872				ret = i2c_write(chip, addr, alen,
873						(uchar *)&data, size);
874#endif
875				if (ret)
876					return i2c_report_err(ret,
877							      I2C_ERR_WRITE);
878#if CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS > 0
879				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
880#endif
881				if (incrflag)
882					addr += size;
883			}
884		}
885	} while (nbytes);
886
887	i2c_mm_last_chip = chip;
888	i2c_mm_last_addr = addr;
889	i2c_mm_last_alen = alen;
890
891	return 0;
892}
893
894/**
895 * do_i2c_probe() - Handle the "i2c probe" command-line command
896 * @cmdtp:	Command data struct pointer
897 * @flag:	Command flag
898 * @argc:	Command-line argument count
899 * @argv:	Array of command-line arguments
900 *
901 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
902 * on error.
903 *
904 * Syntax:
905 *	i2c probe {addr}
906 *
907 * Returns zero (success) if one or more I2C devices was found
908 */
909static int do_i2c_probe(struct cmd_tbl *cmdtp, int flag, int argc,
910			char *const argv[])
911{
912	int j;
913	int addr = -1;
914	int found = 0;
915#if defined(CFG_SYS_I2C_NOPROBES)
916	int k, skip;
917	unsigned int bus = GET_BUS_NUM;
918#endif	/* NOPROBES */
919	int ret;
920#if CONFIG_IS_ENABLED(DM_I2C)
921	struct udevice *bus, *dev;
922
923	if (i2c_get_cur_bus(&bus))
924		return CMD_RET_FAILURE;
925#endif
926
927	if (argc == 2)
928		addr = simple_strtol(argv[1], 0, 16);
929
930	puts ("Valid chip addresses:");
931	for (j = 0; j < 128; j++) {
932		if ((0 <= addr) && (j != addr))
933			continue;
934
935#if defined(CFG_SYS_I2C_NOPROBES)
936		skip = 0;
937		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
938			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
939				skip = 1;
940				break;
941			}
942		}
943		if (skip)
944			continue;
945#endif
946#if CONFIG_IS_ENABLED(DM_I2C)
947		ret = dm_i2c_probe(bus, j, 0, &dev);
948#else
949		ret = i2c_probe(j);
950#endif
951		if (ret == 0) {
952			printf(" %02X", j);
953			found++;
954		}
955	}
956	putc ('\n');
957
958#if defined(CFG_SYS_I2C_NOPROBES)
959	puts ("Excluded chip addresses:");
960	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
961		if (COMPARE_BUS(bus,k))
962			printf(" %02X", NO_PROBE_ADDR(k));
963	}
964	putc ('\n');
965#endif
966
967	return (0 == found);
968}
969
970/**
971 * do_i2c_loop() - Handle the "i2c loop" command-line command
972 * @cmdtp:	Command data struct pointer
973 * @flag:	Command flag
974 * @argc:	Command-line argument count
975 * @argv:	Array of command-line arguments
976 *
977 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
978 * on error.
979 *
980 * Syntax:
981 *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
982 *	{length} - Number of bytes to read
983 *	{delay}  - A DECIMAL number and defaults to 1000 uSec
984 */
985static int do_i2c_loop(struct cmd_tbl *cmdtp, int flag, int argc,
986		       char *const argv[])
987{
988	uint	chip;
989	int alen;
990	uint	addr;
991	uint	length;
992	u_char	bytes[16];
993	int	delay;
994	int ret;
995#if CONFIG_IS_ENABLED(DM_I2C)
996	struct udevice *dev;
997#endif
998
999	if (argc < 3)
1000		return CMD_RET_USAGE;
1001
1002	/*
1003	 * Chip is always specified.
1004	 */
1005	chip = hextoul(argv[1], NULL);
1006
1007	/*
1008	 * Address is always specified.
1009	 */
1010	addr = hextoul(argv[2], NULL);
1011	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1012	if (alen > 3)
1013		return CMD_RET_USAGE;
1014#if CONFIG_IS_ENABLED(DM_I2C)
1015	ret = i2c_get_cur_bus_chip(chip, &dev);
1016	if (!ret && alen != -1)
1017		ret = i2c_set_chip_offset_len(dev, alen);
1018	if (ret)
1019		return i2c_report_err(ret, I2C_ERR_WRITE);
1020#endif
1021
1022	/*
1023	 * Length is the number of objects, not number of bytes.
1024	 */
1025	length = 1;
1026	length = hextoul(argv[3], NULL);
1027	if (length > sizeof(bytes))
1028		length = sizeof(bytes);
1029
1030	/*
1031	 * The delay time (uSec) is optional.
1032	 */
1033	delay = 1000;
1034	if (argc > 3)
1035		delay = dectoul(argv[4], NULL);
1036	/*
1037	 * Run the loop...
1038	 */
1039	while (1) {
1040#if CONFIG_IS_ENABLED(DM_I2C)
1041		ret = dm_i2c_read(dev, addr, bytes, length);
1042#else
1043		ret = i2c_read(chip, addr, alen, bytes, length);
1044#endif
1045		if (ret)
1046			i2c_report_err(ret, I2C_ERR_READ);
1047		udelay(delay);
1048	}
1049
1050	/* NOTREACHED */
1051	return 0;
1052}
1053
1054/*
1055 * The SDRAM command is separately configured because many
1056 * (most?) embedded boards don't use SDRAM DIMMs.
1057 *
1058 * FIXME: Document and probably move elsewhere!
1059 */
1060#if defined(CONFIG_CMD_SDRAM)
1061static void print_ddr2_tcyc (u_char const b)
1062{
1063	printf ("%d.", (b >> 4) & 0x0F);
1064	switch (b & 0x0F) {
1065	case 0x0:
1066	case 0x1:
1067	case 0x2:
1068	case 0x3:
1069	case 0x4:
1070	case 0x5:
1071	case 0x6:
1072	case 0x7:
1073	case 0x8:
1074	case 0x9:
1075		printf ("%d ns\n", b & 0x0F);
1076		break;
1077	case 0xA:
1078		puts ("25 ns\n");
1079		break;
1080	case 0xB:
1081		puts ("33 ns\n");
1082		break;
1083	case 0xC:
1084		puts ("66 ns\n");
1085		break;
1086	case 0xD:
1087		puts ("75 ns\n");
1088		break;
1089	default:
1090		puts ("?? ns\n");
1091		break;
1092	}
1093}
1094
1095static void decode_bits (u_char const b, char const *str[], int const do_once)
1096{
1097	u_char mask;
1098
1099	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1100		if (b & mask) {
1101			puts (*str);
1102			if (do_once)
1103				return;
1104		}
1105	}
1106}
1107
1108/*
1109 * Syntax:
1110 *	i2c sdram {i2c_chip}
1111 */
1112static int do_sdram(struct cmd_tbl *cmdtp, int flag, int argc,
1113		    char *const argv[])
1114{
1115	enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1116
1117	uint	chip;
1118	u_char	data[128];
1119	u_char	cksum;
1120	int	j, ret;
1121#if CONFIG_IS_ENABLED(DM_I2C)
1122	struct udevice *dev;
1123#endif
1124
1125	static const char *decode_CAS_DDR2[] = {
1126		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1127	};
1128
1129	static const char *decode_CAS_default[] = {
1130		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1131	};
1132
1133	static const char *decode_CS_WE_default[] = {
1134		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1135	};
1136
1137	static const char *decode_byte21_default[] = {
1138		"  TBD (bit 7)\n",
1139		"  Redundant row address\n",
1140		"  Differential clock input\n",
1141		"  Registerd DQMB inputs\n",
1142		"  Buffered DQMB inputs\n",
1143		"  On-card PLL\n",
1144		"  Registered address/control lines\n",
1145		"  Buffered address/control lines\n"
1146	};
1147
1148	static const char *decode_byte22_DDR2[] = {
1149		"  TBD (bit 7)\n",
1150		"  TBD (bit 6)\n",
1151		"  TBD (bit 5)\n",
1152		"  TBD (bit 4)\n",
1153		"  TBD (bit 3)\n",
1154		"  Supports partial array self refresh\n",
1155		"  Supports 50 ohm ODT\n",
1156		"  Supports weak driver\n"
1157	};
1158
1159	static const char *decode_row_density_DDR2[] = {
1160		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1161		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1162	};
1163
1164	static const char *decode_row_density_default[] = {
1165		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1166		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1167	};
1168
1169	if (argc < 2)
1170		return CMD_RET_USAGE;
1171
1172	/*
1173	 * Chip is always specified.
1174	 */
1175	chip = hextoul(argv[1], NULL);
1176
1177#if CONFIG_IS_ENABLED(DM_I2C)
1178	ret = i2c_get_cur_bus_chip(chip, &dev);
1179	if (!ret)
1180		ret = dm_i2c_read(dev, 0, data, sizeof(data));
1181#else
1182	ret = i2c_read(chip, 0, 1, data, sizeof(data));
1183#endif
1184	if (ret) {
1185		puts ("No SDRAM Serial Presence Detect found.\n");
1186		return 1;
1187	}
1188
1189	cksum = 0;
1190	for (j = 0; j < 63; j++) {
1191		cksum += data[j];
1192	}
1193	if (cksum != data[63]) {
1194		printf ("WARNING: Configuration data checksum failure:\n"
1195			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1196	}
1197	printf ("SPD data revision            %d.%d\n",
1198		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1199	printf ("Bytes used                   0x%02X\n", data[0]);
1200	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1201
1202	puts ("Memory type                  ");
1203	switch (data[2]) {
1204	case 2:
1205		type = EDO;
1206		puts ("EDO\n");
1207		break;
1208	case 4:
1209		type = SDRAM;
1210		puts ("SDRAM\n");
1211		break;
1212	case 7:
1213		type = DDR;
1214		puts("DDR\n");
1215		break;
1216	case 8:
1217		type = DDR2;
1218		puts ("DDR2\n");
1219		break;
1220	case 11:
1221		type = DDR3;
1222		puts("DDR3\n");
1223		break;
1224	case 12:
1225		type = DDR4;
1226		puts("DDR4\n");
1227		break;
1228	default:
1229		type = unknown;
1230		puts ("unknown\n");
1231		break;
1232	}
1233
1234	puts ("Row address bits             ");
1235	if ((data[3] & 0x00F0) == 0)
1236		printf ("%d\n", data[3] & 0x0F);
1237	else
1238		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1239
1240	puts ("Column address bits          ");
1241	if ((data[4] & 0x00F0) == 0)
1242		printf ("%d\n", data[4] & 0x0F);
1243	else
1244		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1245
1246	switch (type) {
1247	case DDR2:
1248		printf ("Number of ranks              %d\n",
1249			(data[5] & 0x07) + 1);
1250		break;
1251	default:
1252		printf ("Module rows                  %d\n", data[5]);
1253		break;
1254	}
1255
1256	switch (type) {
1257	case DDR2:
1258		printf ("Module data width            %d bits\n", data[6]);
1259		break;
1260	default:
1261		printf ("Module data width            %d bits\n",
1262			(data[7] << 8) | data[6]);
1263		break;
1264	}
1265
1266	puts ("Interface signal levels      ");
1267	switch(data[8]) {
1268		case 0:  puts ("TTL 5.0 V\n");	break;
1269		case 1:  puts ("LVTTL\n");	break;
1270		case 2:  puts ("HSTL 1.5 V\n");	break;
1271		case 3:  puts ("SSTL 3.3 V\n");	break;
1272		case 4:  puts ("SSTL 2.5 V\n");	break;
1273		case 5:  puts ("SSTL 1.8 V\n");	break;
1274		default: puts ("unknown\n");	break;
1275	}
1276
1277	switch (type) {
1278	case DDR2:
1279		printf ("SDRAM cycle time             ");
1280		print_ddr2_tcyc (data[9]);
1281		break;
1282	default:
1283		printf ("SDRAM cycle time             %d.%d ns\n",
1284			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1285		break;
1286	}
1287
1288	switch (type) {
1289	case DDR2:
1290		printf ("SDRAM access time            0.%d%d ns\n",
1291			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1292		break;
1293	default:
1294		printf ("SDRAM access time            %d.%d ns\n",
1295			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1296		break;
1297	}
1298
1299	puts ("EDC configuration            ");
1300	switch (data[11]) {
1301		case 0:  puts ("None\n");	break;
1302		case 1:  puts ("Parity\n");	break;
1303		case 2:  puts ("ECC\n");	break;
1304		default: puts ("unknown\n");	break;
1305	}
1306
1307	if ((data[12] & 0x80) == 0)
1308		puts ("No self refresh, rate        ");
1309	else
1310		puts ("Self refresh, rate           ");
1311
1312	switch(data[12] & 0x7F) {
1313		case 0:  puts ("15.625 us\n");	break;
1314		case 1:  puts ("3.9 us\n");	break;
1315		case 2:  puts ("7.8 us\n");	break;
1316		case 3:  puts ("31.3 us\n");	break;
1317		case 4:  puts ("62.5 us\n");	break;
1318		case 5:  puts ("125 us\n");	break;
1319		default: puts ("unknown\n");	break;
1320	}
1321
1322	switch (type) {
1323	case DDR2:
1324		printf ("SDRAM width (primary)        %d\n", data[13]);
1325		break;
1326	default:
1327		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1328		if ((data[13] & 0x80) != 0) {
1329			printf ("  (second bank)              %d\n",
1330				2 * (data[13] & 0x7F));
1331		}
1332		break;
1333	}
1334
1335	switch (type) {
1336	case DDR2:
1337		if (data[14] != 0)
1338			printf ("EDC width                    %d\n", data[14]);
1339		break;
1340	default:
1341		if (data[14] != 0) {
1342			printf ("EDC width                    %d\n",
1343				data[14] & 0x7F);
1344
1345			if ((data[14] & 0x80) != 0) {
1346				printf ("  (second bank)              %d\n",
1347					2 * (data[14] & 0x7F));
1348			}
1349		}
1350		break;
1351	}
1352
1353	if (DDR2 != type) {
1354		printf ("Min clock delay, back-to-back random column addresses "
1355			"%d\n", data[15]);
1356	}
1357
1358	puts ("Burst length(s)             ");
1359	if (data[16] & 0x80) puts (" Page");
1360	if (data[16] & 0x08) puts (" 8");
1361	if (data[16] & 0x04) puts (" 4");
1362	if (data[16] & 0x02) puts (" 2");
1363	if (data[16] & 0x01) puts (" 1");
1364	putc ('\n');
1365	printf ("Number of banks              %d\n", data[17]);
1366
1367	switch (type) {
1368	case DDR2:
1369		puts ("CAS latency(s)              ");
1370		decode_bits (data[18], decode_CAS_DDR2, 0);
1371		putc ('\n');
1372		break;
1373	default:
1374		puts ("CAS latency(s)              ");
1375		decode_bits (data[18], decode_CAS_default, 0);
1376		putc ('\n');
1377		break;
1378	}
1379
1380	if (DDR2 != type) {
1381		puts ("CS latency(s)               ");
1382		decode_bits (data[19], decode_CS_WE_default, 0);
1383		putc ('\n');
1384	}
1385
1386	if (DDR2 != type) {
1387		puts ("WE latency(s)               ");
1388		decode_bits (data[20], decode_CS_WE_default, 0);
1389		putc ('\n');
1390	}
1391
1392	switch (type) {
1393	case DDR2:
1394		puts ("Module attributes:\n");
1395		if (data[21] & 0x80)
1396			puts ("  TBD (bit 7)\n");
1397		if (data[21] & 0x40)
1398			puts ("  Analysis probe installed\n");
1399		if (data[21] & 0x20)
1400			puts ("  TBD (bit 5)\n");
1401		if (data[21] & 0x10)
1402			puts ("  FET switch external enable\n");
1403		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1404		if (data[20] & 0x11) {
1405			printf ("  %d active registers on DIMM\n",
1406				(data[21] & 0x03) + 1);
1407		}
1408		break;
1409	default:
1410		puts ("Module attributes:\n");
1411		if (!data[21])
1412			puts ("  (none)\n");
1413		else
1414			decode_bits (data[21], decode_byte21_default, 0);
1415		break;
1416	}
1417
1418	switch (type) {
1419	case DDR2:
1420		decode_bits (data[22], decode_byte22_DDR2, 0);
1421		break;
1422	default:
1423		puts ("Device attributes:\n");
1424		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1425		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1426		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1427		else                 puts ("  Upper Vcc tolerance 10%\n");
1428		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1429		else                 puts ("  Lower Vcc tolerance 10%\n");
1430		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1431		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1432		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1433		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1434		break;
1435	}
1436
1437	switch (type) {
1438	case DDR2:
1439		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1440		print_ddr2_tcyc (data[23]);
1441		break;
1442	default:
1443		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1444			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1445		break;
1446	}
1447
1448	switch (type) {
1449	case DDR2:
1450		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1451			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1452		break;
1453	default:
1454		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1455			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1456		break;
1457	}
1458
1459	switch (type) {
1460	case DDR2:
1461		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1462		print_ddr2_tcyc (data[25]);
1463		break;
1464	default:
1465		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1466			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1467		break;
1468	}
1469
1470	switch (type) {
1471	case DDR2:
1472		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1473			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1474		break;
1475	default:
1476		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1477			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1478		break;
1479	}
1480
1481	switch (type) {
1482	case DDR2:
1483		printf ("Minimum row precharge        %d.%02d ns\n",
1484			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1485		break;
1486	default:
1487		printf ("Minimum row precharge        %d ns\n", data[27]);
1488		break;
1489	}
1490
1491	switch (type) {
1492	case DDR2:
1493		printf ("Row active to row active min %d.%02d ns\n",
1494			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1495		break;
1496	default:
1497		printf ("Row active to row active min %d ns\n", data[28]);
1498		break;
1499	}
1500
1501	switch (type) {
1502	case DDR2:
1503		printf ("RAS to CAS delay min         %d.%02d ns\n",
1504			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1505		break;
1506	default:
1507		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1508		break;
1509	}
1510
1511	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1512
1513	switch (type) {
1514	case DDR2:
1515		puts ("Density of each row          ");
1516		decode_bits (data[31], decode_row_density_DDR2, 1);
1517		putc ('\n');
1518		break;
1519	default:
1520		puts ("Density of each row          ");
1521		decode_bits (data[31], decode_row_density_default, 1);
1522		putc ('\n');
1523		break;
1524	}
1525
1526	switch (type) {
1527	case DDR2:
1528		puts ("Command and Address setup    ");
1529		if (data[32] >= 0xA0) {
1530			printf ("1.%d%d ns\n",
1531				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1532		} else {
1533			printf ("0.%d%d ns\n",
1534				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1535		}
1536		break;
1537	default:
1538		printf ("Command and Address setup    %c%d.%d ns\n",
1539			(data[32] & 0x80) ? '-' : '+',
1540			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1541		break;
1542	}
1543
1544	switch (type) {
1545	case DDR2:
1546		puts ("Command and Address hold     ");
1547		if (data[33] >= 0xA0) {
1548			printf ("1.%d%d ns\n",
1549				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1550		} else {
1551			printf ("0.%d%d ns\n",
1552				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1553		}
1554		break;
1555	default:
1556		printf ("Command and Address hold     %c%d.%d ns\n",
1557			(data[33] & 0x80) ? '-' : '+',
1558			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1559		break;
1560	}
1561
1562	switch (type) {
1563	case DDR2:
1564		printf ("Data signal input setup      0.%d%d ns\n",
1565			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1566		break;
1567	default:
1568		printf ("Data signal input setup      %c%d.%d ns\n",
1569			(data[34] & 0x80) ? '-' : '+',
1570			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1571		break;
1572	}
1573
1574	switch (type) {
1575	case DDR2:
1576		printf ("Data signal input hold       0.%d%d ns\n",
1577			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1578		break;
1579	default:
1580		printf ("Data signal input hold       %c%d.%d ns\n",
1581			(data[35] & 0x80) ? '-' : '+',
1582			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1583		break;
1584	}
1585
1586	puts ("Manufacturer's JEDEC ID      ");
1587	for (j = 64; j <= 71; j++)
1588		printf ("%02X ", data[j]);
1589	putc ('\n');
1590	printf ("Manufacturing Location       %02X\n", data[72]);
1591	puts ("Manufacturer's Part Number   ");
1592	for (j = 73; j <= 90; j++)
1593		printf ("%02X ", data[j]);
1594	putc ('\n');
1595	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1596	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1597	puts ("Assembly Serial Number       ");
1598	for (j = 95; j <= 98; j++)
1599		printf ("%02X ", data[j]);
1600	putc ('\n');
1601
1602	if (DDR2 != type) {
1603		printf ("Speed rating                 PC%d\n",
1604			data[126] == 0x66 ? 66 : data[126]);
1605	}
1606	return 0;
1607}
1608#endif
1609
1610/*
1611 * Syntax:
1612 *	i2c edid {i2c_chip}
1613 */
1614#if defined(CONFIG_I2C_EDID)
1615int do_edid(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
1616{
1617	uint chip;
1618	struct edid1_info edid;
1619	int ret;
1620#if CONFIG_IS_ENABLED(DM_I2C)
1621	struct udevice *dev;
1622#endif
1623
1624	if (argc < 2) {
1625		cmd_usage(cmdtp);
1626		return 1;
1627	}
1628
1629	chip = hextoul(argv[1], NULL);
1630#if CONFIG_IS_ENABLED(DM_I2C)
1631	ret = i2c_get_cur_bus_chip(chip, &dev);
1632	if (!ret)
1633		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1634#else
1635	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1636#endif
1637	if (ret)
1638		return i2c_report_err(ret, I2C_ERR_READ);
1639
1640	if (edid_check_info(&edid)) {
1641		puts("Content isn't valid EDID.\n");
1642		return 1;
1643	}
1644
1645	edid_print_info(&edid);
1646	return 0;
1647
1648}
1649#endif /* CONFIG_I2C_EDID */
1650
1651#if CONFIG_IS_ENABLED(DM_I2C)
1652static void show_bus(struct udevice *bus)
1653{
1654	struct udevice *dev;
1655
1656	printf("Bus %d:\t%s", dev_seq(bus), bus->name);
1657	if (device_active(bus))
1658		printf("  (active %d)", dev_seq(bus));
1659	printf("\n");
1660	for (device_find_first_child(bus, &dev);
1661	     dev;
1662	     device_find_next_child(&dev)) {
1663		struct dm_i2c_chip *chip = dev_get_parent_plat(dev);
1664
1665		printf("   %02x: %s, offset len %x, flags %x\n",
1666		       chip->chip_addr, dev->name, chip->offset_len,
1667		       chip->flags);
1668	}
1669}
1670#endif
1671
1672/**
1673 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1674 * @cmdtp:	Command data struct pointer
1675 * @flag:	Command flag
1676 * @argc:	Command-line argument count
1677 * @argv:	Array of command-line arguments
1678 *
1679 * Returns zero always.
1680 */
1681#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1682static int do_i2c_show_bus(struct cmd_tbl *cmdtp, int flag, int argc,
1683			   char *const argv[])
1684{
1685	if (argc == 1) {
1686		/* show all busses */
1687#if CONFIG_IS_ENABLED(DM_I2C)
1688		struct udevice *bus;
1689		struct uclass *uc;
1690		int ret;
1691
1692		ret = uclass_get(UCLASS_I2C, &uc);
1693		if (ret)
1694			return CMD_RET_FAILURE;
1695		uclass_foreach_dev(bus, uc)
1696			show_bus(bus);
1697#else
1698		int i;
1699
1700		for (i = 0; i < CFG_SYS_NUM_I2C_BUSES; i++) {
1701			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1702#ifndef CFG_SYS_I2C_DIRECT_BUS
1703			int j;
1704
1705			for (j = 0; j < CFG_SYS_I2C_MAX_HOPS; j++) {
1706				if (i2c_bus[i].next_hop[j].chip == 0)
1707					break;
1708				printf("->%s@0x%2x:%d",
1709				       i2c_bus[i].next_hop[j].mux.name,
1710				       i2c_bus[i].next_hop[j].chip,
1711				       i2c_bus[i].next_hop[j].channel);
1712			}
1713#endif
1714			printf("\n");
1715		}
1716#endif
1717	} else {
1718		int i;
1719
1720		/* show specific bus */
1721		i = dectoul(argv[1], NULL);
1722#if CONFIG_IS_ENABLED(DM_I2C)
1723		struct udevice *bus;
1724		int ret;
1725
1726		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1727		if (ret) {
1728			printf("Invalid bus %d: err=%d\n", i, ret);
1729			return CMD_RET_FAILURE;
1730		}
1731		show_bus(bus);
1732#else
1733		if (i >= CFG_SYS_NUM_I2C_BUSES) {
1734			printf("Invalid bus %d\n", i);
1735			return -1;
1736		}
1737		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1738#ifndef CFG_SYS_I2C_DIRECT_BUS
1739			int j;
1740			for (j = 0; j < CFG_SYS_I2C_MAX_HOPS; j++) {
1741				if (i2c_bus[i].next_hop[j].chip == 0)
1742					break;
1743				printf("->%s@0x%2x:%d",
1744				       i2c_bus[i].next_hop[j].mux.name,
1745				       i2c_bus[i].next_hop[j].chip,
1746				       i2c_bus[i].next_hop[j].channel);
1747			}
1748#endif
1749		printf("\n");
1750#endif
1751	}
1752
1753	return 0;
1754}
1755#endif
1756
1757/**
1758 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1759 * @cmdtp:	Command data struct pointer
1760 * @flag:	Command flag
1761 * @argc:	Command-line argument count
1762 * @argv:	Array of command-line arguments
1763 *
1764 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1765 * on error.
1766 */
1767#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1768static int do_i2c_bus_num(struct cmd_tbl *cmdtp, int flag, int argc,
1769			  char *const argv[])
1770{
1771	int		ret = 0;
1772	int	bus_no;
1773
1774	if (argc == 1) {
1775		/* querying current setting */
1776#if CONFIG_IS_ENABLED(DM_I2C)
1777		struct udevice *bus;
1778
1779		if (!i2c_get_cur_bus(&bus))
1780			bus_no = dev_seq(bus);
1781		else
1782			bus_no = -1;
1783#else
1784		bus_no = i2c_get_bus_num();
1785#endif
1786		printf("Current bus is %d\n", bus_no);
1787	} else {
1788		bus_no = dectoul(argv[1], NULL);
1789#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
1790		if (bus_no >= CFG_SYS_NUM_I2C_BUSES) {
1791			printf("Invalid bus %d\n", bus_no);
1792			return -1;
1793		}
1794#endif
1795		printf("Setting bus to %d\n", bus_no);
1796#if CONFIG_IS_ENABLED(DM_I2C)
1797		ret = cmd_i2c_set_bus_num(bus_no);
1798#else
1799		ret = i2c_set_bus_num(bus_no);
1800#endif
1801		if (ret)
1802			printf("Failure changing bus number (%d)\n", ret);
1803	}
1804
1805	return ret ? CMD_RET_FAILURE : 0;
1806}
1807#endif  /* CONFIG_IS_ENABLED(SYS_I2C_LEGACY) */
1808
1809/**
1810 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1811 * @cmdtp:	Command data struct pointer
1812 * @flag:	Command flag
1813 * @argc:	Command-line argument count
1814 * @argv:	Array of command-line arguments
1815 *
1816 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1817 * on error.
1818 */
1819static int do_i2c_bus_speed(struct cmd_tbl *cmdtp, int flag, int argc,
1820			    char *const argv[])
1821{
1822	int speed, ret=0;
1823
1824#if CONFIG_IS_ENABLED(DM_I2C)
1825	struct udevice *bus;
1826
1827	if (i2c_get_cur_bus(&bus))
1828		return 1;
1829#endif
1830	if (argc == 1) {
1831#if CONFIG_IS_ENABLED(DM_I2C)
1832		speed = dm_i2c_get_bus_speed(bus);
1833#else
1834		speed = i2c_get_bus_speed();
1835#endif
1836		/* querying current speed */
1837		printf("Current bus speed=%d\n", speed);
1838	} else {
1839		speed = dectoul(argv[1], NULL);
1840		printf("Setting bus speed to %d Hz\n", speed);
1841#if CONFIG_IS_ENABLED(DM_I2C)
1842		ret = dm_i2c_set_bus_speed(bus, speed);
1843#else
1844		ret = i2c_set_bus_speed(speed);
1845#endif
1846		if (ret)
1847			printf("Failure changing bus speed (%d)\n", ret);
1848	}
1849
1850	return ret ? CMD_RET_FAILURE : 0;
1851}
1852
1853/**
1854 * do_i2c_mm() - Handle the "i2c mm" command-line command
1855 * @cmdtp:	Command data struct pointer
1856 * @flag:	Command flag
1857 * @argc:	Command-line argument count
1858 * @argv:	Array of command-line arguments
1859 *
1860 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1861 * on error.
1862 */
1863static int do_i2c_mm(struct cmd_tbl *cmdtp, int flag, int argc,
1864		     char *const argv[])
1865{
1866	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1867}
1868
1869/**
1870 * do_i2c_nm() - Handle the "i2c nm" command-line command
1871 * @cmdtp:	Command data struct pointer
1872 * @flag:	Command flag
1873 * @argc:	Command-line argument count
1874 * @argv:	Array of command-line arguments
1875 *
1876 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1877 * on error.
1878 */
1879static int do_i2c_nm(struct cmd_tbl *cmdtp, int flag, int argc,
1880		     char *const argv[])
1881{
1882	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1883}
1884
1885/**
1886 * do_i2c_reset() - Handle the "i2c reset" command-line command
1887 * @cmdtp:	Command data struct pointer
1888 * @flag:	Command flag
1889 * @argc:	Command-line argument count
1890 * @argv:	Array of command-line arguments
1891 *
1892 * Returns zero always.
1893 */
1894static int do_i2c_reset(struct cmd_tbl *cmdtp, int flag, int argc,
1895			char *const argv[])
1896{
1897#if CONFIG_IS_ENABLED(DM_I2C)
1898	struct udevice *bus;
1899
1900	if (i2c_get_cur_bus(&bus))
1901		return CMD_RET_FAILURE;
1902	if (i2c_deblock(bus)) {
1903		printf("Error: Not supported by the driver\n");
1904		return CMD_RET_FAILURE;
1905	}
1906#elif CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
1907	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1908#endif
1909	return 0;
1910}
1911
1912static struct cmd_tbl cmd_i2c_sub[] = {
1913#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1914	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1915#endif
1916	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1917#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1918	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1919#endif
1920#if defined(CONFIG_I2C_EDID)
1921	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1922#endif  /* CONFIG_I2C_EDID */
1923	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1924	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1925	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1926	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1927	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1928	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1929	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1930	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1931#if CONFIG_IS_ENABLED(DM_I2C)
1932	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1933	U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1934#endif
1935	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1936#if defined(CONFIG_CMD_SDRAM)
1937	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1938#endif
1939	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1940};
1941
1942/**
1943 * do_i2c() - Handle the "i2c" command-line command
1944 * @cmdtp:	Command data struct pointer
1945 * @flag:	Command flag
1946 * @argc:	Command-line argument count
1947 * @argv:	Array of command-line arguments
1948 *
1949 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1950 * on error.
1951 */
1952static int do_i2c(struct cmd_tbl *cmdtp, int flag, int argc, char *const argv[])
1953{
1954	struct cmd_tbl *c;
1955
1956	if (argc < 2)
1957		return CMD_RET_USAGE;
1958
1959	/* Strip off leading 'i2c' command argument */
1960	argc--;
1961	argv++;
1962
1963	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1964
1965	if (c)
1966		return c->cmd(cmdtp, flag, argc, argv);
1967	else
1968		return CMD_RET_USAGE;
1969}
1970
1971/***************************************************/
1972U_BOOT_LONGHELP(i2c,
1973#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1974	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1975	"i2c " /* That's the prefix for the crc32 command below. */
1976#endif
1977	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1978#if CONFIG_IS_ENABLED(SYS_I2C_LEGACY) || CONFIG_IS_ENABLED(DM_I2C)
1979	"i2c dev [dev] - show or set current I2C bus\n"
1980#endif
1981#if defined(CONFIG_I2C_EDID)
1982	"i2c edid chip - print EDID configuration information\n"
1983#endif  /* CONFIG_I2C_EDID */
1984	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1985	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1986	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1987	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1988	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1989	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
1990	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
1991	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
1992	"          to I2C; the -s option selects bulk write in a single transaction\n"
1993#if CONFIG_IS_ENABLED(DM_I2C)
1994	"i2c flags chip [flags] - set or get chip flags\n"
1995	"i2c olen chip [offset_length] - set or get chip offset length\n"
1996#endif
1997	"i2c reset - re-init the I2C Controller\n"
1998#if defined(CONFIG_CMD_SDRAM)
1999	"i2c sdram chip - print SDRAM configuration information\n"
2000#endif
2001	"i2c speed [speed] - show or set I2C bus speed");
2002
2003U_BOOT_CMD(
2004	i2c, 7, 1, do_i2c,
2005	"I2C sub-system",
2006	i2c_help_text
2007);
2008