1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2014 Samsung Electronics
4 * Przemyslaw Marczak <p.marczak@samsung.com>
5 */
6
7#include <common.h>
8#include <log.h>
9#include <asm/arch/pinmux.h>
10#include <asm/arch/power.h>
11#include <asm/arch/clock.h>
12#include <asm/arch/gpio.h>
13#include <asm/global_data.h>
14#include <asm/gpio.h>
15#include <asm/arch/cpu.h>
16#include <dm.h>
17#include <env.h>
18#include <linux/printk.h>
19#include <power/pmic.h>
20#include <power/regulator.h>
21#include <power/max77686_pmic.h>
22#include <errno.h>
23#include <mmc.h>
24#include <usb.h>
25#include <usb/dwc2_udc.h>
26#include <samsung/misc.h>
27#include "setup.h"
28
29DECLARE_GLOBAL_DATA_PTR;
30
31#ifdef CONFIG_BOARD_TYPES
32/* Odroid board types */
33enum {
34	ODROID_TYPE_U3,
35	ODROID_TYPE_X2,
36	ODROID_TYPES,
37};
38
39void set_board_type(void)
40{
41	/* Set GPA1 pin 1 to HI - enable XCL205 output */
42	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
43	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
44	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
45	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
46
47	/* Set GPC1 pin 2 to IN - check XCL205 output state */
48	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
49	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
50
51	/* XCL205 - needs some latch time */
52	sdelay(200000);
53
54	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
55	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
56		gd->board_type = ODROID_TYPE_X2;
57	else
58		gd->board_type = ODROID_TYPE_U3;
59}
60
61void set_board_revision(void)
62{
63	/*
64	 * Revision already set by set_board_type() because it can be
65	 * executed early.
66	 */
67}
68
69const char *get_board_type(void)
70{
71	const char *board_type[] = {"u3", "x2"};
72
73	return board_type[gd->board_type];
74}
75#endif
76
77#ifdef CONFIG_SET_DFU_ALT_INFO
78char *get_dfu_alt_system(char *interface, char *devstr)
79{
80	return env_get("dfu_alt_system");
81}
82
83char *get_dfu_alt_boot(char *interface, char *devstr)
84{
85	struct mmc *mmc;
86	char *alt_boot;
87	int dev_num;
88
89	dev_num = dectoul(devstr, NULL);
90
91	mmc = find_mmc_device(dev_num);
92	if (!mmc)
93		return NULL;
94
95	if (mmc_init(mmc))
96		return NULL;
97
98	alt_boot = IS_SD(mmc) ? CFG_DFU_ALT_BOOT_SD :
99				CFG_DFU_ALT_BOOT_EMMC;
100
101	return alt_boot;
102}
103#endif
104
105static void board_clock_init(void)
106{
107	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
108	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
109						samsung_get_base_clock();
110
111	/*
112	 * CMU_CPU clocks src to MPLL
113	 * Bit values:                 0  ; 1
114	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
115	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
116	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
117	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
118	*/
119	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
120		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
121	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
122	      MUX_MPLL_USER_SEL_C(1);
123
124	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
125
126	/* Wait for mux change */
127	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
128		continue;
129
130	/* Set APLL to 1000MHz */
131	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
132	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
133
134	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
135
136	/* Wait for PLL to be locked */
137	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
138		continue;
139
140	/* Set CMU_CPU clocks src to APLL */
141	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
142	      MUX_MPLL_USER_SEL_C(1);
143	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
144
145	/* Wait for mux change */
146	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
147		continue;
148
149	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
150	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
151	      APLL_RATIO(0) | CORE2_RATIO(0);
152	/*
153	 * Set dividers for MOUTcore = 1000 MHz
154	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
155	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
156	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
157	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
158	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
159	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
160	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
161	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
162	*/
163	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
164	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
165	      APLL_RATIO(7) | CORE2_RATIO(7);
166
167	clrsetbits_le32(&clk->div_cpu0, clr, set);
168
169	/* Wait for divider ready status */
170	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
171		continue;
172
173	/*
174	 * For MOUThpm = 1000 MHz (MOUTapll)
175	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
176	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
177	 * cores_out = armclk / (ratio + 1) = 200 (4)
178	 */
179	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
180	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
181
182	clrsetbits_le32(&clk->div_cpu1, clr, set);
183
184	/* Wait for divider ready status */
185	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
186		continue;
187
188	/*
189	 * Set CMU_DMC clocks src to APLL
190	 * Bit values:             0  ; 1
191	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
192	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
193	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
194	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
195	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
196	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
197	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
198	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
199	*/
200	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
201		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
202		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
203		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
204	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
205	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
206	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
207
208	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
209
210	/* Wait for mux change */
211	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
212		continue;
213
214	/* Set MPLL to 800MHz */
215	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
216
217	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
218
219	/* Wait for PLL to be locked */
220	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
221		continue;
222
223	/* Switch back CMU_DMC mux */
224	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
225	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
226	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
227
228	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
229
230	/* Wait for mux change */
231	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
232		continue;
233
234	/* CLK_DIV_DMC0 */
235	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
236	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
237	/*
238	 * For:
239	 * MOUTdmc = 800 MHz
240	 * MOUTdphy = 800 MHz
241	 *
242	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
243	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
244	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
245	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
246	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
247	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
248	 */
249	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
250	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
251
252	clrsetbits_le32(&clk->div_dmc0, clr, set);
253
254	/* Wait for divider ready status */
255	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
256		continue;
257
258	/* CLK_DIV_DMC1 */
259	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
260	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
261	/*
262	 * For:
263	 * MOUTg2d = 800 MHz
264	 * MOUTc2c = 800 Mhz
265	 * MOUTpwi = 108 MHz
266	 *
267	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
268	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
269	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
270	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
271	 */
272	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
273	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
274
275	clrsetbits_le32(&clk->div_dmc1, clr, set);
276
277	/* Wait for divider ready status */
278	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
279		continue;
280
281	/* CLK_SRC_PERIL0 */
282	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
283	      UART3_SEL(15) | UART4_SEL(15);
284	/*
285	 * Set CLK_SRC_PERIL0 clocks src to MPLL
286	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
287	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
288	 *             8(SCLK_VPLL)
289	 *
290	 * Set all to SCLK_MPLL_USER_T
291	 */
292	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
293	      UART4_SEL(6);
294
295	clrsetbits_le32(&clk->src_peril0, clr, set);
296
297	/* CLK_DIV_PERIL0 */
298	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
299	      UART3_RATIO(15) | UART4_RATIO(15);
300	/*
301	 * For MOUTuart0-4: 800MHz
302	 *
303	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
304	*/
305	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
306	      UART3_RATIO(7) | UART4_RATIO(7);
307
308	clrsetbits_le32(&clk->div_peril0, clr, set);
309
310	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
311		continue;
312
313	/* CLK_DIV_FSYS1 */
314	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
315	      MMC1_PRE_RATIO(255);
316	/*
317	 * For MOUTmmc0-3 = 800 MHz (MPLL)
318	 *
319	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
320	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
321	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
322	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
323	*/
324	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
325	      MMC1_PRE_RATIO(1);
326
327	clrsetbits_le32(&clk->div_fsys1, clr, set);
328
329	/* Wait for divider ready status */
330	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
331		continue;
332
333	/* CLK_DIV_FSYS2 */
334	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
335	      MMC3_PRE_RATIO(255);
336	/*
337	 * For MOUTmmc0-3 = 800 MHz (MPLL)
338	 *
339	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
340	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
341	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
342	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
343	*/
344	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
345	      MMC3_PRE_RATIO(1);
346
347	clrsetbits_le32(&clk->div_fsys2, clr, set);
348
349	/* Wait for divider ready status */
350	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
351		continue;
352
353	/* CLK_DIV_FSYS3 */
354	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
355	/*
356	 * For MOUTmmc4 = 800 MHz (MPLL)
357	 *
358	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
359	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
360	*/
361	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
362
363	clrsetbits_le32(&clk->div_fsys3, clr, set);
364
365	/* Wait for divider ready status */
366	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
367		continue;
368
369	return;
370}
371
372static void board_gpio_init(void)
373{
374	/* eMMC Reset Pin */
375	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
376
377	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
378	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
379	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
380
381	/* Enable FAN (Odroid U3) */
382	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
383
384	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
385	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
386	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
387
388	/* OTG Vbus output (Odroid U3+) */
389	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
390
391	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
392	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
393	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
394
395	/* OTG INT (Odroid U3+) */
396	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
397
398	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
399	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
400	gpio_direction_input(EXYNOS4X12_GPIO_X31);
401
402	/* Blue LED (Odroid X2/U2/U3) */
403	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
404
405	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
406
407#ifdef CONFIG_CMD_USB
408	/* USB3503A Reference frequency */
409	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
410
411	/* USB3503A Connect */
412	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
413
414	/* USB3503A Reset */
415	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
416#endif
417}
418
419int exynos_early_init_f(void)
420{
421	board_clock_init();
422
423	return 0;
424}
425
426void exynos_init(void)
427{
428	board_gpio_init();
429}
430
431int exynos_power_init(void)
432{
433	const char *mmc_regulators[] = {
434		"VDDQ_EMMC_1.8V",
435		"VDDQ_EMMC_2.8V",
436		"TFLASH_2.8V",
437		NULL,
438	};
439
440	if (regulator_list_autoset(mmc_regulators, NULL, true))
441		pr_err("Unable to init all mmc regulators\n");
442
443	return 0;
444}
445
446#ifdef CONFIG_USB_GADGET
447static int s5pc210_phy_control(int on)
448{
449	struct udevice *dev;
450	int ret;
451
452	ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
453	if (ret) {
454		pr_err("Regulator get error: %d\n", ret);
455		return ret;
456	}
457
458	if (on)
459		return regulator_set_mode(dev, OPMODE_ON);
460	else
461		return regulator_set_mode(dev, OPMODE_LPM);
462}
463
464struct dwc2_plat_otg_data s5pc210_otg_data = {
465	.phy_control	= s5pc210_phy_control,
466	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
467	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
468	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
469	.usb_flags	= PHY0_SLEEP,
470};
471#endif
472
473#if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
474
475static void set_usb3503_ref_clk(void)
476{
477#ifdef CONFIG_BOARD_TYPES
478	/*
479	 * gpx3-0 chooses primary (low) or secondary (high) reference clock
480	 * frequencies table.  The choice of clock is done through hard-wired
481	 * REF_SEL pins.
482	 * The Odroid Us have reference clock at 24 MHz (00 entry from secondary
483	 * table) and Odroid Xs have it at 26 MHz (01 entry from primary table).
484	 */
485	if (gd->board_type == ODROID_TYPE_U3)
486		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
487	else
488		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
489#else
490	/* Choose Odroid Xs frequency without board types */
491	gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
492#endif /* CONFIG_BOARD_TYPES */
493}
494
495int board_usb_init(int index, enum usb_init_type init)
496{
497#ifdef CONFIG_CMD_USB
498	struct udevice *dev;
499	int ret;
500
501	set_usb3503_ref_clk();
502
503	/* Disconnect, Reset, Connect */
504	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
505	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
506	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
507	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
508
509	/* Power off and on BUCK8 for LAN9730 */
510	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
511
512	ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
513	if (ret) {
514		pr_err("Regulator get error: %d\n", ret);
515		return ret;
516	}
517
518	ret = regulator_set_enable(dev, true);
519	if (ret) {
520		pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
521		return ret;
522	}
523
524	ret = regulator_set_value(dev, 750000);
525	if (ret) {
526		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
527		return ret;
528	}
529
530	ret = regulator_set_value(dev, 3300000);
531	if (ret) {
532		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
533		return ret;
534	}
535#endif
536	debug("USB_udc_probe\n");
537	return dwc2_udc_probe(&s5pc210_otg_data);
538}
539#endif
540