1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2015 Google, Inc
4 *
5 * Based on code from the coreboot file of the same name
6 */
7
8#include <common.h>
9#include <cpu.h>
10#include <dm.h>
11#include <errno.h>
12#include <log.h>
13#include <malloc.h>
14#include <qfw.h>
15#include <asm/atomic.h>
16#include <asm/cpu.h>
17#include <asm/global_data.h>
18#include <asm/interrupt.h>
19#include <asm/io.h>
20#include <asm/lapic.h>
21#include <asm/microcode.h>
22#include <asm/mp.h>
23#include <asm/msr.h>
24#include <asm/mtrr.h>
25#include <asm/processor.h>
26#include <asm/sipi.h>
27#include <dm/device-internal.h>
28#include <dm/uclass-internal.h>
29#include <dm/lists.h>
30#include <dm/root.h>
31#include <linux/delay.h>
32#include <linux/linkage.h>
33
34DECLARE_GLOBAL_DATA_PTR;
35
36/*
37 * Setting up multiprocessing
38 *
39 * See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html
40 *
41 * Note that this file refers to the boot CPU (the one U-Boot is running on) as
42 * the BSP (BootStrap Processor) and the others as APs (Application Processors).
43 *
44 * This module works by loading some setup code into RAM at AP_DEFAULT_BASE and
45 * telling each AP to execute it. The code that each AP runs is in
46 * sipi_vector.S (see ap_start16) which includes a struct sipi_params at the
47 * end of it. Those parameters are set up by the C code.
48
49 * Setting up is handled by load_sipi_vector(). It inits the common block of
50 * parameters (sipi_params) which tell the APs what to do. This block includes
51 * microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU.
52 * There is also an ap_count which each AP increments as it starts up, so the
53 * BSP can tell how many checked in.
54 *
55 * The APs are started with a SIPI (Startup Inter-Processor Interrupt) which
56 * tells an AP to start executing at a particular address, in this case
57 * AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol
58 * is handled by start_aps().
59 *
60 * After being started, each AP runs the code in ap_start16, switches to 32-bit
61 * mode, runs the code at ap_start, then jumps to c_handler which is ap_init().
62 * This runs a very simple 'flight plan' described in mp_steps(). This sets up
63 * the CPU and waits for further instructions by looking at its entry in
64 * ap_callbacks[]. Note that the flight plan is only actually run for each CPU
65 * in bsp_do_flight_plan(): once the BSP completes each flight record, it sets
66 * mp_flight_record->barrier to 1 to allow the APs to executed the record one
67 * by one.
68 *
69 * CPUS are numbered sequentially from 0 using the device tree:
70 *
71 *	cpus {
72 *		bootph-all;
73 *		#address-cells = <1>;
74 *		#size-cells = <0>;
75 *
76 *		cpu@0 {
77 *			bootph-all;
78 *			device_type = "cpu";
79 *			compatible = "intel,apl-cpu";
80 *			reg = <0>;
81 *			intel,apic-id = <0>;
82 *		};
83 *
84 *		cpu@1 {
85 *			device_type = "cpu";
86 *			compatible = "intel,apl-cpu";
87 *			reg = <1>;
88 *			intel,apic-id = <2>;
89 *		};
90 *
91 * Here the 'reg' property is the CPU number and then is placed in dev_seq(cpu)
92 * so that we can index into ap_callbacks[] using that. The APIC ID is different
93 * and may not be sequential (it typically is if hyperthreading is supported).
94 *
95 * Once APs are inited they wait in ap_wait_for_instruction() for instructions.
96 * Instructions come in the form of a function to run. This logic is in
97 * mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP
98 * or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by
99 * calling the function. For the APs, callback information is stored in a
100 * single, common struct mp_callback and a pointer to this is written to each
101 * AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even
102 * if it is only for one of them. When an AP notices a message it checks whether
103 * it should call the function (see check in ap_wait_for_instruction()) and then
104 * does so if needed. After that it sets its slot to NULL to indicate it is
105 * done.
106 *
107 * While U-Boot is running it can use mp_run_on_cpus() to run code on the APs.
108 * An example of this is the 'mtrr' command which allows reading and changing
109 * the MTRRs on all CPUs.
110 *
111 * Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by
112 * executing a 'hlt' instruction. That allows them to be used by Linux when it
113 * starts up.
114 */
115
116/* This also needs to match the sipi.S assembly code for saved MSR encoding */
117struct __packed saved_msr {
118	uint32_t index;
119	uint32_t lo;
120	uint32_t hi;
121};
122
123/**
124 * struct mp_flight_plan - Holds the flight plan
125 *
126 * @num_records: Number of flight records
127 * @records: Pointer to each record
128 */
129struct mp_flight_plan {
130	int num_records;
131	struct mp_flight_record *records;
132};
133
134/**
135 * struct mp_callback - Callback information for APs
136 *
137 * @func: Function to run
138 * @arg: Argument to pass to the function
139 * @logical_cpu_number: Either a CPU number (i.e. dev_seq(cpu) or a special
140 *	value like MP_SELECT_BSP. It tells the AP whether it should process this
141 *	callback
142 */
143struct mp_callback {
144	mp_run_func func;
145	void *arg;
146	int logical_cpu_number;
147};
148
149/* Stores the flight plan so that APs can find it */
150static struct mp_flight_plan mp_info;
151
152/*
153 * ap_callbacks - Callback mailbox array
154 *
155 * Array of callback, one entry for each available CPU, indexed by the CPU
156 * number, which is dev_seq(cpu). The entry for the main CPU is never used.
157 * When this is NULL, there is no pending work for the CPU to run. When
158 * non-NULL it points to the mp_callback structure. This is shared between all
159 * CPUs, so should only be written by the main CPU.
160 */
161static struct mp_callback **ap_callbacks;
162
163static inline void barrier_wait(atomic_t *b)
164{
165	while (atomic_read(b) == 0)
166		asm("pause");
167	mfence();
168}
169
170static inline void release_barrier(atomic_t *b)
171{
172	mfence();
173	atomic_set(b, 1);
174}
175
176static inline void stop_this_cpu(void)
177{
178	/* Called by an AP when it is ready to halt and wait for a new task */
179	for (;;)
180		cpu_hlt();
181}
182
183/* Returns 1 if timeout waiting for APs. 0 if target APs found */
184static int wait_for_aps(atomic_t *val, int target, int total_delay,
185			int delay_step)
186{
187	int timeout = 0;
188	int delayed = 0;
189
190	while (atomic_read(val) != target) {
191		udelay(delay_step);
192		delayed += delay_step;
193		if (delayed >= total_delay) {
194			timeout = 1;
195			break;
196		}
197	}
198
199	return timeout;
200}
201
202static void ap_do_flight_plan(struct udevice *cpu)
203{
204	int i;
205
206	for (i = 0; i < mp_info.num_records; i++) {
207		struct mp_flight_record *rec = &mp_info.records[i];
208
209		atomic_inc(&rec->cpus_entered);
210		barrier_wait(&rec->barrier);
211
212		if (rec->ap_call != NULL)
213			rec->ap_call(cpu, rec->ap_arg);
214	}
215}
216
217static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
218{
219	struct udevice *dev;
220
221	*devp = NULL;
222	for (uclass_find_first_device(UCLASS_CPU, &dev);
223	     dev;
224	     uclass_find_next_device(&dev)) {
225		struct cpu_plat *plat = dev_get_parent_plat(dev);
226
227		if (plat->cpu_id == apic_id) {
228			*devp = dev;
229			return 0;
230		}
231	}
232
233	return -ENOENT;
234}
235
236/*
237 * By the time APs call ap_init() caching has been setup, and microcode has
238 * been loaded
239 */
240static void ap_init(unsigned int cpu_index)
241{
242	struct udevice *dev;
243	int apic_id;
244	int ret;
245
246	/* Ensure the local apic is enabled */
247	enable_lapic();
248
249	apic_id = lapicid();
250	ret = find_cpu_by_apic_id(apic_id, &dev);
251	if (ret) {
252		debug("Unknown CPU apic_id %x\n", apic_id);
253		goto done;
254	}
255
256	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
257	      dev ? dev->name : "(apic_id not found)");
258
259	/*
260	 * Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not
261	 * enabled
262	 */
263	ap_do_flight_plan(dev);
264
265done:
266	stop_this_cpu();
267}
268
269static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
270	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
271	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
272	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
273	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
274};
275
276static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
277{
278	msr_t msr;
279
280	msr = msr_read(index);
281	entry->index = index;
282	entry->lo = msr.lo;
283	entry->hi = msr.hi;
284
285	/* Return the next entry */
286	entry++;
287	return entry;
288}
289
290static int save_bsp_msrs(char *start, int size)
291{
292	int msr_count;
293	int num_var_mtrrs;
294	struct saved_msr *msr_entry;
295	int i;
296	msr_t msr;
297
298	/* Determine number of MTRRs need to be saved */
299	msr = msr_read(MTRR_CAP_MSR);
300	num_var_mtrrs = msr.lo & 0xff;
301
302	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
303	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
304
305	if ((msr_count * sizeof(struct saved_msr)) > size) {
306		printf("Cannot mirror all %d msrs\n", msr_count);
307		return -ENOSPC;
308	}
309
310	msr_entry = (void *)start;
311	for (i = 0; i < NUM_FIXED_MTRRS; i++)
312		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
313
314	for (i = 0; i < num_var_mtrrs; i++) {
315		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
316		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
317	}
318
319	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
320
321	return msr_count;
322}
323
324static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
325{
326	struct sipi_params_16bit *params16;
327	struct sipi_params *params;
328	static char msr_save[512];
329	char *stack;
330	ulong addr;
331	int code_len;
332	int size;
333	int ret;
334
335	/* Copy in the code */
336	code_len = ap_start16_code_end - ap_start16;
337	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
338	      code_len);
339	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
340
341	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
342	params16 = (struct sipi_params_16bit *)addr;
343	params16->ap_start = (uint32_t)ap_start;
344	params16->gdt = (uint32_t)gd->arch.gdt;
345	params16->gdt_limit = X86_GDT_SIZE - 1;
346	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
347
348	params = (struct sipi_params *)sipi_params;
349	debug("SIPI 32-bit params at %p\n", params);
350	params->idt_ptr = (uint32_t)x86_get_idt();
351
352	params->stack_size = CONFIG_AP_STACK_SIZE;
353	size = params->stack_size * num_cpus;
354	stack = memalign(4096, size);
355	if (!stack)
356		return -ENOMEM;
357	params->stack_top = (u32)(stack + size);
358#if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
359	!defined(CONFIG_INTEL_MID)
360	params->microcode_ptr = ucode_base;
361	debug("Microcode at %x\n", params->microcode_ptr);
362#endif
363	params->msr_table_ptr = (u32)msr_save;
364	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
365	if (ret < 0)
366		return ret;
367	params->msr_count = ret;
368
369	params->c_handler = (uint32_t)&ap_init;
370
371	*ap_countp = &params->ap_count;
372	atomic_set(*ap_countp, 0);
373	debug("SIPI vector is ready\n");
374
375	return 0;
376}
377
378static int check_cpu_devices(int expected_cpus)
379{
380	int i;
381
382	for (i = 0; i < expected_cpus; i++) {
383		struct udevice *dev;
384		int ret;
385
386		ret = uclass_find_device(UCLASS_CPU, i, &dev);
387		if (ret) {
388			debug("Cannot find CPU %d in device tree\n", i);
389			return ret;
390		}
391	}
392
393	return 0;
394}
395
396/* Returns 1 for timeout. 0 on success */
397static int apic_wait_timeout(int total_delay, const char *msg)
398{
399	int total = 0;
400
401	if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
402		return 0;
403
404	debug("Waiting for %s...", msg);
405	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
406		udelay(50);
407		total += 50;
408		if (total >= total_delay) {
409			debug("timed out: aborting\n");
410			return -ETIMEDOUT;
411		}
412	}
413	debug("done\n");
414
415	return 0;
416}
417
418/**
419 * start_aps() - Start up the APs and count how many we find
420 *
421 * This is called on the boot processor to start up all the other processors
422 * (here called APs).
423 *
424 * @num_aps: Number of APs we expect to find
425 * @ap_count: Initially zero. Incremented by this function for each AP found
426 * Return: 0 if all APs were set up correctly or there are none to set up,
427 *	-ENOSPC if the SIPI vector is too high in memory,
428 *	-ETIMEDOUT if the ICR is busy or the second SIPI fails to complete
429 *	-EIO if not all APs check in correctly
430 */
431static int start_aps(int num_aps, atomic_t *ap_count)
432{
433	int sipi_vector;
434	/* Max location is 4KiB below 1MiB */
435	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
436
437	if (num_aps == 0)
438		return 0;
439
440	/* The vector is sent as a 4k aligned address in one byte */
441	sipi_vector = AP_DEFAULT_BASE >> 12;
442
443	if (sipi_vector > max_vector_loc) {
444		printf("SIPI vector too large! 0x%08x\n",
445		       sipi_vector);
446		return -ENOSPC;
447	}
448
449	debug("Attempting to start %d APs\n", num_aps);
450
451	if (apic_wait_timeout(1000, "ICR not to be busy"))
452		return -ETIMEDOUT;
453
454	/* Send INIT IPI to all but self */
455	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
456	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
457		    LAPIC_DM_INIT);
458	debug("Waiting for 10ms after sending INIT\n");
459	mdelay(10);
460
461	/* Send 1st SIPI */
462	if (apic_wait_timeout(1000, "ICR not to be busy"))
463		return -ETIMEDOUT;
464
465	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
466	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
467		    LAPIC_DM_STARTUP | sipi_vector);
468	if (apic_wait_timeout(10000, "first SIPI to complete"))
469		return -ETIMEDOUT;
470
471	/* Wait for CPUs to check in up to 200 us */
472	wait_for_aps(ap_count, num_aps, 200, 15);
473
474	/* Send 2nd SIPI */
475	if (apic_wait_timeout(1000, "ICR not to be busy"))
476		return -ETIMEDOUT;
477
478	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
479	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
480		    LAPIC_DM_STARTUP | sipi_vector);
481	if (apic_wait_timeout(10000, "second SIPI to complete"))
482		return -ETIMEDOUT;
483
484	/* Wait for CPUs to check in */
485	if (wait_for_aps(ap_count, num_aps, 10000, 50)) {
486		debug("Not all APs checked in: %d/%d\n",
487		      atomic_read(ap_count), num_aps);
488		return -EIO;
489	}
490
491	return 0;
492}
493
494/**
495 * bsp_do_flight_plan() - Do the flight plan on the BSP
496 *
497 * This runs the flight plan on the main CPU used to boot U-Boot
498 *
499 * @cpu: Device for the main CPU
500 * @plan: Flight plan to run
501 * @num_aps: Number of APs (CPUs other than the BSP)
502 * @returns 0 on success, -ETIMEDOUT if an AP failed to come up
503 */
504static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan,
505			      int num_aps)
506{
507	int i;
508	int ret = 0;
509	const int timeout_us = 100000;
510	const int step_us = 100;
511
512	for (i = 0; i < plan->num_records; i++) {
513		struct mp_flight_record *rec = &plan->records[i];
514
515		/* Wait for APs if the record is not released */
516		if (atomic_read(&rec->barrier) == 0) {
517			/* Wait for the APs to check in */
518			if (wait_for_aps(&rec->cpus_entered, num_aps,
519					 timeout_us, step_us)) {
520				debug("MP record %d timeout\n", i);
521				ret = -ETIMEDOUT;
522			}
523		}
524
525		if (rec->bsp_call != NULL)
526			rec->bsp_call(cpu, rec->bsp_arg);
527
528		release_barrier(&rec->barrier);
529	}
530
531	return ret;
532}
533
534/**
535 * get_bsp() - Get information about the bootstrap processor
536 *
537 * @devp: If non-NULL, returns CPU device corresponding to the BSP
538 * @cpu_countp: If non-NULL, returns the total number of CPUs
539 * Return: CPU number of the BSP, or -ve on error. If multiprocessing is not
540 *	enabled, returns 0
541 */
542static int get_bsp(struct udevice **devp, int *cpu_countp)
543{
544	char processor_name[CPU_MAX_NAME_LEN];
545	struct udevice *dev;
546	int apic_id;
547	int ret;
548
549	cpu_get_name(processor_name);
550	debug("CPU: %s\n", processor_name);
551
552	apic_id = lapicid();
553	ret = find_cpu_by_apic_id(apic_id, &dev);
554	if (ret < 0) {
555		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
556		return ret;
557	}
558	ret = cpu_get_count(dev);
559	if (ret < 0)
560		return log_msg_ret("count", ret);
561	if (devp)
562		*devp = dev;
563	if (cpu_countp)
564		*cpu_countp = ret;
565
566	return dev_seq(dev) >= 0 ? dev_seq(dev) : 0;
567}
568
569/**
570 * read_callback() - Read the pointer in a callback slot
571 *
572 * This is called by APs to read their callback slot to see if there is a
573 * pointer to new instructions
574 *
575 * @slot: Pointer to the AP's callback slot
576 * Return: value of that pointer
577 */
578static struct mp_callback *read_callback(struct mp_callback **slot)
579{
580	dmb();
581
582	return *slot;
583}
584
585/**
586 * store_callback() - Store a pointer to the callback slot
587 *
588 * This is called by APs to write NULL into the callback slot when they have
589 * finished the work requested by the BSP.
590 *
591 * @slot: Pointer to the AP's callback slot
592 * @val: Value to write (e.g. NULL)
593 */
594static void store_callback(struct mp_callback **slot, struct mp_callback *val)
595{
596	*slot = val;
597	dmb();
598}
599
600/**
601 * run_ap_work() - Run a callback on selected APs
602 *
603 * This writes @callback to all APs and waits for them all to acknowledge it,
604 * Note that whether each AP actually calls the callback depends on the value
605 * of logical_cpu_number (see struct mp_callback). The logical CPU number is
606 * the CPU device's req->seq value.
607 *
608 * @callback: Callback information to pass to all APs
609 * @bsp: CPU device for the BSP
610 * @num_cpus: The number of CPUs in the system (= number of APs + 1)
611 * @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for
612 *	no timeout
613 * Return: 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time
614 */
615static int run_ap_work(struct mp_callback *callback, struct udevice *bsp,
616		       int num_cpus, uint expire_ms)
617{
618	int cur_cpu = dev_seq(bsp);
619	int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */
620	int cpus_accepted;
621	ulong start;
622	int i;
623
624	if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) {
625		printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n");
626		return -ENOTSUPP;
627	}
628
629	/* Signal to all the APs to run the func. */
630	for (i = 0; i < num_cpus; i++) {
631		if (cur_cpu != i)
632			store_callback(&ap_callbacks[i], callback);
633	}
634	mfence();
635
636	/* Wait for all the APs to signal back that call has been accepted. */
637	start = get_timer(0);
638
639	do {
640		mdelay(1);
641		cpus_accepted = 0;
642
643		for (i = 0; i < num_cpus; i++) {
644			if (cur_cpu == i)
645				continue;
646			if (!read_callback(&ap_callbacks[i]))
647				cpus_accepted++;
648		}
649
650		if (expire_ms && get_timer(start) >= expire_ms) {
651			log(UCLASS_CPU, LOGL_CRIT,
652			    "AP call expired; %d/%d CPUs accepted\n",
653			    cpus_accepted, num_aps);
654			return -ETIMEDOUT;
655		}
656	} while (cpus_accepted != num_aps);
657
658	/* Make sure we can see any data written by the APs */
659	mfence();
660
661	return 0;
662}
663
664/**
665 * ap_wait_for_instruction() - Wait for and process requests from the main CPU
666 *
667 * This is called by APs (here, everything other than the main boot CPU) to
668 * await instructions. They arrive in the form of a function call and argument,
669 * which is then called. This uses a simple mailbox with atomic read/set
670 *
671 * @cpu: CPU that is waiting
672 * @unused: Optional argument provided by struct mp_flight_record, not used here
673 * Return: Does not return
674 */
675static int ap_wait_for_instruction(struct udevice *cpu, void *unused)
676{
677	struct mp_callback lcb;
678	struct mp_callback **per_cpu_slot;
679
680	if (!IS_ENABLED(CONFIG_SMP_AP_WORK))
681		return 0;
682
683	per_cpu_slot = &ap_callbacks[dev_seq(cpu)];
684
685	while (1) {
686		struct mp_callback *cb = read_callback(per_cpu_slot);
687
688		if (!cb) {
689			asm ("pause");
690			continue;
691		}
692
693		/* Copy to local variable before using the value */
694		memcpy(&lcb, cb, sizeof(lcb));
695		mfence();
696		if (lcb.logical_cpu_number == MP_SELECT_ALL ||
697		    lcb.logical_cpu_number == MP_SELECT_APS ||
698		    dev_seq(cpu) == lcb.logical_cpu_number)
699			lcb.func(lcb.arg);
700
701		/* Indicate we are finished */
702		store_callback(per_cpu_slot, NULL);
703	}
704
705	return 0;
706}
707
708static int mp_init_cpu(struct udevice *cpu, void *unused)
709{
710	struct cpu_plat *plat = dev_get_parent_plat(cpu);
711
712	plat->ucode_version = microcode_read_rev();
713	plat->device_id = gd->arch.x86_device;
714
715	return device_probe(cpu);
716}
717
718static struct mp_flight_record mp_steps[] = {
719	MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
720	MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL),
721};
722
723int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg)
724{
725	struct mp_callback lcb = {
726		.func = func,
727		.arg = arg,
728		.logical_cpu_number = cpu_select,
729	};
730	struct udevice *dev;
731	int num_cpus;
732	int ret;
733
734	ret = get_bsp(&dev, &num_cpus);
735	if (ret < 0)
736		return log_msg_ret("bsp", ret);
737	if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP ||
738	    cpu_select == ret) {
739		/* Run on BSP first */
740		func(arg);
741	}
742
743	if (!IS_ENABLED(CONFIG_SMP_AP_WORK) ||
744	    !(gd->flags & GD_FLG_SMP_READY)) {
745		/* Allow use of this function on the BSP only */
746		if (cpu_select == MP_SELECT_BSP || !cpu_select)
747			return 0;
748		return -ENOTSUPP;
749	}
750
751	/* Allow up to 1 second for all APs to finish */
752	ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */);
753	if (ret)
754		return log_msg_ret("aps", ret);
755
756	return 0;
757}
758
759static void park_this_cpu(void *unused)
760{
761	stop_this_cpu();
762}
763
764int mp_park_aps(void)
765{
766	int ret;
767
768	ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL);
769	if (ret)
770		return log_ret(ret);
771
772	return 0;
773}
774
775int mp_first_cpu(int cpu_select)
776{
777	struct udevice *dev;
778	int num_cpus;
779	int ret;
780
781	/*
782	 * This assumes that CPUs are numbered from 0. This function tries to
783	 * avoid assuming the CPU 0 is the boot CPU
784	 */
785	if (cpu_select == MP_SELECT_ALL)
786		return 0;   /* start with the first one */
787
788	ret = get_bsp(&dev, &num_cpus);
789	if (ret < 0)
790		return log_msg_ret("bsp", ret);
791
792	/* Return boot CPU if requested */
793	if (cpu_select == MP_SELECT_BSP)
794		return ret;
795
796	/* Return something other than the boot CPU, if APs requested */
797	if (cpu_select == MP_SELECT_APS && num_cpus > 1)
798		return ret == 0 ? 1 : 0;
799
800	/* Try to check for an invalid value */
801	if (cpu_select < 0 || cpu_select >= num_cpus)
802		return -EINVAL;
803
804	return cpu_select;  /* return the only selected one */
805}
806
807int mp_next_cpu(int cpu_select, int prev_cpu)
808{
809	struct udevice *dev;
810	int num_cpus;
811	int ret;
812	int bsp;
813
814	/* If we selected the BSP or a particular single CPU, we are done */
815	if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP ||
816	    cpu_select >= 0)
817		return -EFBIG;
818
819	/* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */
820	ret = get_bsp(&dev, &num_cpus);
821	if (ret < 0)
822		return log_msg_ret("bsp", ret);
823	bsp = ret;
824
825	/* Move to the next CPU */
826	assert(prev_cpu >= 0);
827	ret = prev_cpu + 1;
828
829	/* Skip the BSP if needed */
830	if (cpu_select == MP_SELECT_APS && ret == bsp)
831		ret++;
832	if (ret >= num_cpus)
833		return -EFBIG;
834
835	return ret;
836}
837
838int mp_init(void)
839{
840	int num_aps, num_cpus;
841	atomic_t *ap_count;
842	struct udevice *cpu;
843	int ret;
844
845	if (IS_ENABLED(CONFIG_QFW)) {
846		ret = qemu_cpu_fixup();
847		if (ret)
848			return ret;
849	}
850
851	ret = get_bsp(&cpu, &num_cpus);
852	if (ret < 0) {
853		debug("Cannot init boot CPU: err=%d\n", ret);
854		return ret;
855	}
856
857	if (num_cpus < 2)
858		debug("Warning: Only 1 CPU is detected\n");
859
860	ret = check_cpu_devices(num_cpus);
861	if (ret)
862		log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
863
864	ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *));
865	if (!ap_callbacks)
866		return -ENOMEM;
867
868	/* Copy needed parameters so that APs have a reference to the plan */
869	mp_info.num_records = ARRAY_SIZE(mp_steps);
870	mp_info.records = mp_steps;
871
872	/* Load the SIPI vector */
873	ret = load_sipi_vector(&ap_count, num_cpus);
874	if (ap_count == NULL)
875		return -ENOENT;
876
877	/*
878	 * Make sure SIPI data hits RAM so the APs that come up will see
879	 * the startup code even if the caches are disabled
880	 */
881	wbinvd();
882
883	/* Start the APs providing number of APs and the cpus_entered field */
884	num_aps = num_cpus - 1;
885	ret = start_aps(num_aps, ap_count);
886	if (ret) {
887		mdelay(1000);
888		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
889		      num_aps);
890		return ret;
891	}
892
893	/* Walk the flight plan for the BSP */
894	ret = bsp_do_flight_plan(cpu, &mp_info, num_aps);
895	if (ret) {
896		debug("CPU init failed: err=%d\n", ret);
897		return ret;
898	}
899	gd->flags |= GD_FLG_SMP_READY;
900
901	return 0;
902}
903