1/*
2 * PowerPC memory management structures
3 */
4
5#ifndef _PPC_MMU_H_
6#define _PPC_MMU_H_
7
8#ifndef __ASSEMBLY__
9/* Hardware Page Table Entry */
10#include <linux/bitops.h>
11typedef struct _PTE {
12#ifdef CONFIG_PPC64BRIDGE
13	unsigned long long vsid:52;
14	unsigned long api:5;
15	unsigned long :5;
16	unsigned long h:1;
17	unsigned long v:1;
18	unsigned long long rpn:52;
19#else /* CONFIG_PPC64BRIDGE */
20	unsigned long v:1;	/* Entry is valid */
21	unsigned long vsid:24;	/* Virtual segment identifier */
22	unsigned long h:1;	/* Hash algorithm indicator */
23	unsigned long api:6;	/* Abbreviated page index */
24	unsigned long rpn:20;	/* Real (physical) page number */
25#endif /* CONFIG_PPC64BRIDGE */
26	unsigned long    :3;	/* Unused */
27	unsigned long r:1;	/* Referenced */
28	unsigned long c:1;	/* Changed */
29	unsigned long w:1;	/* Write-thru cache mode */
30	unsigned long i:1;	/* Cache inhibited */
31	unsigned long m:1;	/* Memory coherence */
32	unsigned long g:1;	/* Guarded */
33	unsigned long  :1;	/* Unused */
34	unsigned long pp:2;	/* Page protection */
35} PTE;
36
37/* Values for PP (assumes Ks=0, Kp=1) */
38#define PP_RWXX	0	/* Supervisor read/write, User none */
39#define PP_RWRX 1	/* Supervisor read/write, User read */
40#define PP_RWRW 2	/* Supervisor read/write, User read/write */
41#define PP_RXRX 3	/* Supervisor read,       User read */
42
43/* Segment Register */
44typedef struct _SEGREG {
45	unsigned long t:1;	/* Normal or I/O  type */
46	unsigned long ks:1;	/* Supervisor 'key' (normally 0) */
47	unsigned long kp:1;	/* User 'key' (normally 1) */
48	unsigned long n:1;	/* No-execute */
49	unsigned long :4;	/* Unused */
50	unsigned long vsid:24;	/* Virtual Segment Identifier */
51} SEGREG;
52
53/* Block Address Translation (BAT) Registers */
54typedef struct _P601_BATU {	/* Upper part of BAT for 601 processor */
55	unsigned long bepi:15;	/* Effective page index (virtual address) */
56	unsigned long :8;	/* unused */
57	unsigned long w:1;
58	unsigned long i:1;	/* Cache inhibit */
59	unsigned long m:1;	/* Memory coherence */
60	unsigned long ks:1;	/* Supervisor key (normally 0) */
61	unsigned long kp:1;	/* User key (normally 1) */
62	unsigned long pp:2;	/* Page access protections */
63} P601_BATU;
64
65typedef struct _BATU {		/* Upper part of BAT (all except 601) */
66#ifdef CONFIG_PPC64BRIDGE
67	unsigned long long bepi:47;
68#else /* CONFIG_PPC64BRIDGE */
69	unsigned long bepi:15;	/* Effective page index (virtual address) */
70#endif /* CONFIG_PPC64BRIDGE */
71	unsigned long :4;	/* Unused */
72	unsigned long bl:11;	/* Block size mask */
73	unsigned long vs:1;	/* Supervisor valid */
74	unsigned long vp:1;	/* User valid */
75} BATU;
76
77typedef struct _P601_BATL {	/* Lower part of BAT for 601 processor */
78	unsigned long brpn:15;	/* Real page index (physical address) */
79	unsigned long :10;	/* Unused */
80	unsigned long v:1;	/* Valid bit */
81	unsigned long bl:6;	/* Block size mask */
82} P601_BATL;
83
84typedef struct _BATL {		/* Lower part of BAT (all except 601) */
85#ifdef CONFIG_PPC64BRIDGE
86	unsigned long long brpn:47;
87#else /* CONFIG_PPC64BRIDGE */
88	unsigned long brpn:15;	/* Real page index (physical address) */
89#endif /* CONFIG_PPC64BRIDGE */
90	unsigned long :10;	/* Unused */
91	unsigned long w:1;	/* Write-thru cache */
92	unsigned long i:1;	/* Cache inhibit */
93	unsigned long m:1;	/* Memory coherence */
94	unsigned long g:1;	/* Guarded (MBZ in IBAT) */
95	unsigned long :1;	/* Unused */
96	unsigned long pp:2;	/* Page access protections */
97} BATL;
98
99typedef struct _BAT {
100	BATU batu;		/* Upper register */
101	BATL batl;		/* Lower register */
102} BAT;
103
104typedef struct _P601_BAT {
105	P601_BATU batu;		/* Upper register */
106	P601_BATL batl;		/* Lower register */
107} P601_BAT;
108
109/*
110 * Simulated two-level MMU.  This structure is used by the kernel
111 * to keep track of MMU mappings and is used to update/maintain
112 * the hardware HASH table which is really a cache of mappings.
113 *
114 * The simulated structures mimic the hardware available on other
115 * platforms, notably the 80x86 and 680x0.
116 */
117
118typedef struct _pte {
119	unsigned long page_num:20;
120	unsigned long flags:12;		/* Page flags (some unused bits) */
121} pte;
122
123#define PD_SHIFT (10+12)		/* Page directory */
124#define PD_MASK  0x02FF
125#define PT_SHIFT (12)			/* Page Table */
126#define PT_MASK  0x02FF
127#define PG_SHIFT (12)			/* Page Entry */
128
129
130/* MMU context */
131
132typedef struct _MMU_context {
133	SEGREG	segs[16];	/* Segment registers */
134	pte	**pmap;		/* Two-level page-map structure */
135} MMU_context;
136
137extern void _tlbie(unsigned long va);	/* invalidate a TLB entry */
138extern void _tlbia(void);		/* invalidate all TLB entries */
139
140typedef enum {
141	IBAT0 = 0, IBAT1, IBAT2, IBAT3,
142	DBAT0, DBAT1, DBAT2, DBAT3,
143#ifdef CONFIG_HIGH_BATS
144	IBAT4, IBAT5, IBAT6, IBAT7,
145	DBAT4, DBAT5, DBAT6, DBAT7
146#endif
147} ppc_bat_t;
148
149extern int read_bat(ppc_bat_t bat, unsigned long *upper, unsigned long *lower);
150extern int write_bat(ppc_bat_t bat, unsigned long upper, unsigned long lower);
151extern void print_bats(void);
152
153#endif /* __ASSEMBLY__ */
154
155#define BATU_VS                 0x00000002
156#define BATU_VP                 0x00000001
157#define BATU_INVALID            0x00000000
158
159#define BATL_WRITETHROUGH       0x00000040
160#define BATL_CACHEINHIBIT       0x00000020
161#define BATL_MEMCOHERENCE	0x00000010
162#define BATL_GUARDEDSTORAGE     0x00000008
163#define BATL_NO_ACCESS		0x00000000
164
165#define BATL_PP_MSK		0x00000003
166#define BATL_PP_00		0x00000000 /* No access */
167#define BATL_PP_01		0x00000001 /* Read-only */
168#define BATL_PP_10		0x00000002 /* Read-write */
169#define BATL_PP_11		0x00000003
170
171#define BATL_PP_NO_ACCESS	BATL_PP_00
172#define BATL_PP_RO		BATL_PP_01
173#define BATL_PP_RW		BATL_PP_10
174
175/* BAT Block size values */
176#define BATU_BL_128K            0x00000000
177#define BATU_BL_256K            0x00000004
178#define BATU_BL_512K            0x0000000c
179#define BATU_BL_1M              0x0000001c
180#define BATU_BL_2M              0x0000003c
181#define BATU_BL_4M              0x0000007c
182#define BATU_BL_8M              0x000000fc
183#define BATU_BL_16M             0x000001fc
184#define BATU_BL_32M             0x000003fc
185#define BATU_BL_64M             0x000007fc
186#define BATU_BL_128M            0x00000ffc
187#define BATU_BL_256M            0x00001ffc
188
189/* Block lengths for processors that support extended block length */
190#ifdef HID0_XBSEN
191#define BATU_BL_512M            0x00003ffc
192#define BATU_BL_1G              0x00007ffc
193#define BATU_BL_2G              0x0000fffc
194#define BATU_BL_4G              0x0001fffc
195#define BATU_BL_MAX		BATU_BL_4G
196#else
197#define BATU_BL_MAX		BATU_BL_256M
198#endif
199
200/* BAT Access Protection */
201#define BPP_XX	0x00		/* No access */
202#define BPP_RX	0x01		/* Read only */
203#define BPP_RW	0x02		/* Read/write */
204
205/* Macros to get values from BATs, once data is in the BAT register format */
206#define BATU_VALID(x) (x & 0x3)
207#define BATU_VADDR(x) (x & 0xfffe0000)
208#define BATL_PADDR(x) ((phys_addr_t)((x & 0xfffe0000)		\
209				     | ((x & 0x0e00ULL) << 24)	\
210				     | ((x & 0x04ULL) << 30)))
211#define BATU_SIZE(x) (1ULL << (fls((x & BATU_BL_MAX) >> 2) + 17))
212
213/* bytes into BATU_BL */
214#define TO_BATU_BL(x) \
215	(u32)((((1ull << __ilog2_u64((u64)x)) / (128 * 1024)) - 1) * 4)
216
217/* Used to set up SDR1 register */
218#define HASH_TABLE_SIZE_64K	0x00010000
219#define HASH_TABLE_SIZE_128K	0x00020000
220#define HASH_TABLE_SIZE_256K	0x00040000
221#define HASH_TABLE_SIZE_512K	0x00080000
222#define HASH_TABLE_SIZE_1M	0x00100000
223#define HASH_TABLE_SIZE_2M	0x00200000
224#define HASH_TABLE_SIZE_4M	0x00400000
225#define HASH_TABLE_MASK_64K	0x000
226#define HASH_TABLE_MASK_128K	0x001
227#define HASH_TABLE_MASK_256K	0x003
228#define HASH_TABLE_MASK_512K	0x007
229#define HASH_TABLE_MASK_1M	0x00F
230#define HASH_TABLE_MASK_2M	0x01F
231#define HASH_TABLE_MASK_4M	0x03F
232
233/* Control/status registers for the MPC8xx.
234 * A write operation to these registers causes serialized access.
235 * During software tablewalk, the registers used perform mask/shift-add
236 * operations when written/read.  A TLB entry is created when the Mx_RPN
237 * is written, and the contents of several registers are used to
238 * create the entry.
239 */
240#define MI_CTR		784	/* Instruction TLB control register */
241#define MI_GPM		0x80000000	/* Set domain manager mode */
242#define MI_PPM		0x40000000	/* Set subpage protection */
243#define MI_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
244#define MI_RSV4I	0x08000000	/* Reserve 4 TLB entries */
245#define MI_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
246#define MI_IDXMASK	0x00001f00	/* TLB index to be loaded */
247#define MI_RESETVAL	0x00000000	/* Value of register at reset */
248
249/* These are the Ks and Kp from the PowerPC books.  For proper operation,
250 * Ks = 0, Kp = 1.
251 */
252#define MI_AP		786
253#define MI_Ks		0x80000000	/* Should not be set */
254#define MI_Kp		0x40000000	/* Should always be set */
255
256/* The effective page number register.  When read, contains the information
257 * about the last instruction TLB miss.  When MI_RPN is written, bits in
258 * this register are used to create the TLB entry.
259 */
260#define MI_EPN		787
261#define MI_EPNMASK	0xfffff000	/* Effective page number for entry */
262#define MI_EVALID	0x00000200	/* Entry is valid */
263#define MI_ASIDMASK	0x0000000f	/* ASID match value */
264					/* Reset value is undefined */
265
266/* A "level 1" or "segment" or whatever you want to call it register.
267 * For the instruction TLB, it contains bits that get loaded into the
268 * TLB entry when the MI_RPN is written.
269 */
270#define MI_TWC		789
271#define MI_APG		0x000001e0	/* Access protection group (0) */
272#define MI_GUARDED	0x00000010	/* Guarded storage */
273#define MI_PSMASK	0x0000000c	/* Mask of page size bits */
274#define MI_PS8MEG	0x0000000c	/* 8M page size */
275#define MI_PS512K	0x00000004	/* 512K page size */
276#define MI_PS4K_16K	0x00000000	/* 4K or 16K page size */
277#define MI_SVALID	0x00000001	/* Segment entry is valid */
278					/* Reset value is undefined */
279
280/* Real page number.  Defined by the pte.  Writing this register
281 * causes a TLB entry to be created for the instruction TLB, using
282 * additional information from the MI_EPN, and MI_TWC registers.
283 */
284#define MI_RPN		790
285
286/* Define an RPN value for mapping kernel memory to large virtual
287 * pages for boot initialization.  This has real page number of 0,
288 * large page size, shared page, cache enabled, and valid.
289 * Also mark all subpages valid and write access.
290 */
291#define MI_BOOTINIT	0x000001fd
292
293#define MD_CTR		792	/* Data TLB control register */
294#define MD_GPM		0x80000000	/* Set domain manager mode */
295#define MD_PPM		0x40000000	/* Set subpage protection */
296#define MD_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
297#define MD_WTDEF	0x10000000	/* Set writethrough when MMU dis */
298#define MD_RSV4I	0x08000000	/* Reserve 4 TLB entries */
299#define MD_TWAM		0x04000000	/* Use 4K page hardware assist */
300#define MD_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
301#define MD_IDXMASK	0x00001f00	/* TLB index to be loaded */
302#define MD_RESETVAL	0x04000000	/* Value of register at reset */
303
304#define M_CASID		793	/* Address space ID (context) to match */
305#define MC_ASIDMASK	0x0000000f	/* Bits used for ASID value */
306
307
308/* These are the Ks and Kp from the PowerPC books.  For proper operation,
309 * Ks = 0, Kp = 1.
310 */
311#define MD_AP		794
312#define MD_Ks		0x80000000	/* Should not be set */
313#define MD_Kp		0x40000000	/* Should always be set */
314
315/* The effective page number register.  When read, contains the information
316 * about the last instruction TLB miss.  When MD_RPN is written, bits in
317 * this register are used to create the TLB entry.
318 */
319#define MD_EPN		795
320#define MD_EPNMASK	0xfffff000	/* Effective page number for entry */
321#define MD_EVALID	0x00000200	/* Entry is valid */
322#define MD_ASIDMASK	0x0000000f	/* ASID match value */
323					/* Reset value is undefined */
324
325/* The pointer to the base address of the first level page table.
326 * During a software tablewalk, reading this register provides the address
327 * of the entry associated with MD_EPN.
328 */
329#define M_TWB		796
330#define	M_L1TB		0xfffff000	/* Level 1 table base address */
331#define M_L1INDX	0x00000ffc	/* Level 1 index, when read */
332					/* Reset value is undefined */
333
334/* A "level 1" or "segment" or whatever you want to call it register.
335 * For the data TLB, it contains bits that get loaded into the TLB entry
336 * when the MD_RPN is written.  It is also provides the hardware assist
337 * for finding the PTE address during software tablewalk.
338 */
339#define MD_TWC		797
340#define MD_L2TB		0xfffff000	/* Level 2 table base address */
341#define MD_L2INDX	0xfffffe00	/* Level 2 index (*pte), when read */
342#define MD_APG		0x000001e0	/* Access protection group (0) */
343#define MD_GUARDED	0x00000010	/* Guarded storage */
344#define MD_PSMASK	0x0000000c	/* Mask of page size bits */
345#define MD_PS8MEG	0x0000000c	/* 8M page size */
346#define MD_PS512K	0x00000004	/* 512K page size */
347#define MD_PS4K_16K	0x00000000	/* 4K or 16K page size */
348#define MD_WT		0x00000002	/* Use writethrough page attribute */
349#define MD_SVALID	0x00000001	/* Segment entry is valid */
350					/* Reset value is undefined */
351
352
353/* Real page number.  Defined by the pte.  Writing this register
354 * causes a TLB entry to be created for the data TLB, using
355 * additional information from the MD_EPN, and MD_TWC registers.
356 */
357#define MD_RPN		798
358
359/* This is a temporary storage register that could be used to save
360 * a processor working register during a tablewalk.
361 */
362#define M_TW		799
363
364/*
365 * At present, all PowerPC 400-class processors share a similar TLB
366 * architecture. The instruction and data sides share a unified,
367 * 64-entry, fully-associative TLB which is maintained totally under
368 * software control. In addition, the instruction side has a
369 * hardware-managed, 4-entry, fully- associative TLB which serves as a
370 * first level to the shared TLB. These two TLBs are known as the UTLB
371 * and ITLB, respectively.
372 */
373
374#define        PPC4XX_TLB_SIZE 64
375
376/*
377 * TLB entries are defined by a "high" tag portion and a "low" data
378 * portion.  On all architectures, the data portion is 32-bits.
379 *
380 * TLB entries are managed entirely under software control by reading,
381 * writing, and searchoing using the 4xx-specific tlbre, tlbwr, and tlbsx
382 * instructions.
383 */
384
385/*
386 * FSL Book-E support
387 */
388
389#define MAS0_TLBSEL_MSK	0x30000000
390#define MAS0_TLBSEL(x)	(((x) << 28) & MAS0_TLBSEL_MSK)
391#define MAS0_ESEL_MSK	0x0FFF0000
392#define MAS0_ESEL(x)	(((x) << 16) & MAS0_ESEL_MSK)
393#define MAS0_NV(x)	((x) & 0x00000FFF)
394
395#define MAS1_VALID	0x80000000
396#define MAS1_IPROT	0x40000000
397#define MAS1_TID(x)	(((x) << 16) & 0x3FFF0000)
398#define MAS1_TS		0x00001000
399#define MAS1_TSIZE(x)	(((x) << 7) & 0x00000F80)
400#define TSIZE_TO_BYTES(x) (1ULL << ((x) + 10))
401
402#define MAS2_EPN	0xFFFFF000
403#define MAS2_X0		0x00000040
404#define MAS2_X1		0x00000020
405#define MAS2_W		0x00000010
406#define MAS2_I		0x00000008
407#define MAS2_M		0x00000004
408#define MAS2_G		0x00000002
409#define MAS2_E		0x00000001
410
411#define MAS3_RPN	0xFFFFF000
412#define MAS3_U0		0x00000200
413#define MAS3_U1		0x00000100
414#define MAS3_U2		0x00000080
415#define MAS3_U3		0x00000040
416#define MAS3_UX		0x00000020
417#define MAS3_SX		0x00000010
418#define MAS3_UW		0x00000008
419#define MAS3_SW		0x00000004
420#define MAS3_UR		0x00000002
421#define MAS3_SR		0x00000001
422
423#define MAS4_TLBSELD(x) MAS0_TLBSEL(x)
424#define MAS4_TIDDSEL	0x000F0000
425#define MAS4_TSIZED(x)	MAS1_TSIZE(x)
426#define MAS4_X0D	0x00000040
427#define MAS4_X1D	0x00000020
428#define MAS4_WD		0x00000010
429#define MAS4_ID		0x00000008
430#define MAS4_MD		0x00000004
431#define MAS4_GD		0x00000002
432#define MAS4_ED		0x00000001
433
434#define MAS6_SPID0	0x3FFF0000
435#define MAS6_SPID1	0x00007FFE
436#define MAS6_SAS	0x00000001
437#define MAS6_SPID	MAS6_SPID0
438
439#define MAS7_RPN	0xFFFFFFFF
440
441#define FSL_BOOKE_MAS0(tlbsel,esel,nv) \
442		(MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) | MAS0_NV(nv))
443#define FSL_BOOKE_MAS1(v,iprot,tid,ts,tsize) \
444		((((v) << 31) & MAS1_VALID)             |\
445		(((iprot) << 30) & MAS1_IPROT)          |\
446		(MAS1_TID(tid))				|\
447		(((ts) << 12) & MAS1_TS)                |\
448		(MAS1_TSIZE(tsize)))
449#define FSL_BOOKE_MAS2(epn, wimge) \
450		(((epn) & MAS2_EPN) | (wimge))
451#define FSL_BOOKE_MAS3(rpn, user, perms) \
452		(((rpn) & MAS3_RPN) | (user) | (perms))
453#define FSL_BOOKE_MAS7(rpn) \
454		(((u64)(rpn)) >> 32)
455
456#define BOOKE_PAGESZ_1K		0
457#define BOOKE_PAGESZ_2K		1
458#define BOOKE_PAGESZ_4K		2
459#define BOOKE_PAGESZ_8K		3
460#define BOOKE_PAGESZ_16K	4
461#define BOOKE_PAGESZ_32K	5
462#define BOOKE_PAGESZ_64K	6
463#define BOOKE_PAGESZ_128K	7
464#define BOOKE_PAGESZ_256K	8
465#define BOOKE_PAGESZ_512K	9
466#define BOOKE_PAGESZ_1M		10
467#define BOOKE_PAGESZ_2M		11
468#define BOOKE_PAGESZ_4M		12
469#define BOOKE_PAGESZ_8M		13
470#define BOOKE_PAGESZ_16M	14
471#define BOOKE_PAGESZ_32M	15
472#define BOOKE_PAGESZ_64M	16
473#define BOOKE_PAGESZ_128M	17
474#define BOOKE_PAGESZ_256M	18
475#define BOOKE_PAGESZ_512M	19
476#define BOOKE_PAGESZ_1G		20
477#define BOOKE_PAGESZ_2G		21
478#define BOOKE_PAGESZ_4G		22
479#define BOOKE_PAGESZ_8G		23
480#define BOOKE_PAGESZ_16GB	24
481#define BOOKE_PAGESZ_32GB	25
482#define BOOKE_PAGESZ_64GB	26
483#define BOOKE_PAGESZ_128GB	27
484#define BOOKE_PAGESZ_256GB	28
485#define BOOKE_PAGESZ_512GB	29
486#define BOOKE_PAGESZ_1TB	30
487#define BOOKE_PAGESZ_2TB	31
488
489#define TLBIVAX_ALL		4
490#define TLBIVAX_TLB0		0
491#define TLBIVAX_TLB1		8
492
493#ifdef CONFIG_E500
494#ifndef __ASSEMBLY__
495extern void set_tlb(u8 tlb, u32 epn, u64 rpn,
496		    u8 perms, u8 wimge,
497		    u8 ts, u8 esel, u8 tsize, u8 iprot);
498extern void disable_tlb(u8 esel);
499extern void invalidate_tlb(u8 tlb);
500extern void init_tlbs(void);
501extern int find_tlb_idx(void *addr, u8 tlbsel);
502extern void init_used_tlb_cams(void);
503extern int find_free_tlbcam(void);
504extern void print_tlbcam(void);
505
506extern unsigned int setup_ddr_tlbs(unsigned int memsize_in_meg);
507extern void clear_ddr_tlbs(unsigned int memsize_in_meg);
508
509enum tlb_map_type {
510	TLB_MAP_RAM,
511	TLB_MAP_IO,
512};
513
514extern uint64_t tlb_map_range(ulong v_addr, phys_addr_t p_addr, uint64_t size,
515			      enum tlb_map_type map_type);
516
517extern void write_tlb(u32 _mas0, u32 _mas1, u32 _mas2, u32 _mas3, u32 _mas7);
518
519#define SET_TLB_ENTRY(_tlb, _epn, _rpn, _perms, _wimge, _ts, _esel, _sz, _iprot) \
520	{ .mas0 = FSL_BOOKE_MAS0(_tlb, _esel, 0), \
521	  .mas1 = FSL_BOOKE_MAS1(1, _iprot, 0, _ts, _sz), \
522	  .mas2 = FSL_BOOKE_MAS2(_epn, _wimge), \
523	  .mas3 = FSL_BOOKE_MAS3(_rpn, 0, _perms), \
524	  .mas7 = FSL_BOOKE_MAS7(_rpn), }
525
526struct fsl_e_tlb_entry {
527	u32	mas0;
528	u32	mas1;
529	u32	mas2;
530	u32	mas3;
531	u32	mas7;
532};
533
534extern struct fsl_e_tlb_entry tlb_table[];
535extern int num_tlb_entries;
536#endif
537#endif
538
539#ifdef CONFIG_E300
540#define LAWAR_EN		0x80000000
541#define LAWAR_SIZE		0x0000003F
542
543#define LAWAR_TRGT_IF_PCI	0x00000000
544#define LAWAR_TRGT_IF_PCI1	0x00000000
545#define LAWAR_TRGT_IF_PCIX	0x00000000
546#define LAWAR_TRGT_IF_PCI2	0x00100000
547#define LAWAR_TRGT_IF_PCIE1	0x00200000
548#define LAWAR_TRGT_IF_PCIE2	0x00100000
549#define LAWAR_TRGT_IF_PCIE3	0x00300000
550#define LAWAR_TRGT_IF_LBC	0x00400000
551#define LAWAR_TRGT_IF_CCSR	0x00800000
552#define LAWAR_TRGT_IF_DDR_INTERLEAVED 0x00B00000
553#define LAWAR_TRGT_IF_RIO	0x00c00000
554#define LAWAR_TRGT_IF_DDR	0x00f00000
555#define LAWAR_TRGT_IF_DDR1	0x00f00000
556#define LAWAR_TRGT_IF_DDR2	0x01600000
557
558#define LAWAR_SIZE_BASE		0xa
559#define LAWAR_SIZE_4K		(LAWAR_SIZE_BASE+1)
560#define LAWAR_SIZE_8K		(LAWAR_SIZE_BASE+2)
561#define LAWAR_SIZE_16K		(LAWAR_SIZE_BASE+3)
562#define LAWAR_SIZE_32K		(LAWAR_SIZE_BASE+4)
563#define LAWAR_SIZE_64K		(LAWAR_SIZE_BASE+5)
564#define LAWAR_SIZE_128K		(LAWAR_SIZE_BASE+6)
565#define LAWAR_SIZE_256K		(LAWAR_SIZE_BASE+7)
566#define LAWAR_SIZE_512K		(LAWAR_SIZE_BASE+8)
567#define LAWAR_SIZE_1M		(LAWAR_SIZE_BASE+9)
568#define LAWAR_SIZE_2M		(LAWAR_SIZE_BASE+10)
569#define LAWAR_SIZE_4M		(LAWAR_SIZE_BASE+11)
570#define LAWAR_SIZE_8M		(LAWAR_SIZE_BASE+12)
571#define LAWAR_SIZE_16M		(LAWAR_SIZE_BASE+13)
572#define LAWAR_SIZE_32M		(LAWAR_SIZE_BASE+14)
573#define LAWAR_SIZE_64M		(LAWAR_SIZE_BASE+15)
574#define LAWAR_SIZE_128M		(LAWAR_SIZE_BASE+16)
575#define LAWAR_SIZE_256M		(LAWAR_SIZE_BASE+17)
576#define LAWAR_SIZE_512M		(LAWAR_SIZE_BASE+18)
577#define LAWAR_SIZE_1G		(LAWAR_SIZE_BASE+19)
578#define LAWAR_SIZE_2G		(LAWAR_SIZE_BASE+20)
579#define LAWAR_SIZE_4G		(LAWAR_SIZE_BASE+21)
580#define LAWAR_SIZE_8G		(LAWAR_SIZE_BASE+22)
581#define LAWAR_SIZE_16G		(LAWAR_SIZE_BASE+23)
582#define LAWAR_SIZE_32G		(LAWAR_SIZE_BASE+24)
583#endif
584
585#endif /* _PPC_MMU_H_ */
586