1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2020 Marvell International Ltd.
4 *
5 * Support functions for managing command queues used for
6 * various hardware blocks.
7 *
8 * The common command queue infrastructure abstracts out the
9 * software necessary for adding to Octeon's chained queue
10 * structures. These structures are used for commands to the
11 * PKO, ZIP, DFA, RAID, HNA, and DMA engine blocks. Although each
12 * hardware unit takes commands and CSRs of different types,
13 * they all use basic linked command buffers to store the
14 * pending request. In general, users of the CVMX API don't
15 * call cvmx-cmd-queue functions directly. Instead the hardware
16 * unit specific wrapper should be used. The wrappers perform
17 * unit specific validation and CSR writes to submit the
18 * commands.
19 *
20 * Even though most software will never directly interact with
21 * cvmx-cmd-queue, knowledge of its internal workings can help
22 * in diagnosing performance problems and help with debugging.
23 *
24 * Command queue pointers are stored in a global named block
25 * called "cvmx_cmd_queues". Except for the PKO queues, each
26 * hardware queue is stored in its own cache line to reduce SMP
27 * contention on spin locks. The PKO queues are stored such that
28 * every 16th queue is next to each other in memory. This scheme
29 * allows for queues being in separate cache lines when there
30 * are low number of queues per port. With 16 queues per port,
31 * the first queue for each port is in the same cache area. The
32 * second queues for each port are in another area, etc. This
33 * allows software to implement very efficient lockless PKO with
34 * 16 queues per port using a minimum of cache lines per core.
35 * All queues for a given core will be isolated in the same
36 * cache area.
37 *
38 * In addition to the memory pointer layout, cvmx-cmd-queue
39 * provides an optimized fair ll/sc locking mechanism for the
40 * queues. The lock uses a "ticket / now serving" model to
41 * maintain fair order on contended locks. In addition, it uses
42 * predicted locking time to limit cache contention. When a core
43 * know it must wait in line for a lock, it spins on the
44 * internal cycle counter to completely eliminate any causes of
45 * bus traffic.
46 */
47
48#ifndef __CVMX_CMD_QUEUE_H__
49#define __CVMX_CMD_QUEUE_H__
50
51/**
52 * By default we disable the max depth support. Most programs
53 * don't use it and it slows down the command queue processing
54 * significantly.
55 */
56#ifndef CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH
57#define CVMX_CMD_QUEUE_ENABLE_MAX_DEPTH 0
58#endif
59
60/**
61 * Enumeration representing all hardware blocks that use command
62 * queues. Each hardware block has up to 65536 sub identifiers for
63 * multiple command queues. Not all chips support all hardware
64 * units.
65 */
66typedef enum {
67	CVMX_CMD_QUEUE_PKO_BASE = 0x00000,
68#define CVMX_CMD_QUEUE_PKO(queue)                                                                  \
69	((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_PKO_BASE + (0xffff & (queue))))
70	CVMX_CMD_QUEUE_ZIP = 0x10000,
71#define CVMX_CMD_QUEUE_ZIP_QUE(queue)                                                              \
72	((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_ZIP + (0xffff & (queue))))
73	CVMX_CMD_QUEUE_DFA = 0x20000,
74	CVMX_CMD_QUEUE_RAID = 0x30000,
75	CVMX_CMD_QUEUE_DMA_BASE = 0x40000,
76#define CVMX_CMD_QUEUE_DMA(queue)                                                                  \
77	((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_DMA_BASE + (0xffff & (queue))))
78	CVMX_CMD_QUEUE_BCH = 0x50000,
79#define CVMX_CMD_QUEUE_BCH(queue) ((cvmx_cmd_queue_id_t)(CVMX_CMD_QUEUE_BCH + (0xffff & (queue))))
80	CVMX_CMD_QUEUE_HNA = 0x60000,
81	CVMX_CMD_QUEUE_END = 0x70000,
82} cvmx_cmd_queue_id_t;
83
84#define CVMX_CMD_QUEUE_ZIP3_QUE(node, queue)                                                       \
85	((cvmx_cmd_queue_id_t)((node) << 24 | CVMX_CMD_QUEUE_ZIP | (0xffff & (queue))))
86
87/**
88 * Command write operations can fail if the command queue needs
89 * a new buffer and the associated FPA pool is empty. It can also
90 * fail if the number of queued command words reaches the maximum
91 * set at initialization.
92 */
93typedef enum {
94	CVMX_CMD_QUEUE_SUCCESS = 0,
95	CVMX_CMD_QUEUE_NO_MEMORY = -1,
96	CVMX_CMD_QUEUE_FULL = -2,
97	CVMX_CMD_QUEUE_INVALID_PARAM = -3,
98	CVMX_CMD_QUEUE_ALREADY_SETUP = -4,
99} cvmx_cmd_queue_result_t;
100
101typedef struct {
102	/* First 64-bit word: */
103	u64 fpa_pool : 16;
104	u64 base_paddr : 48;
105	s32 index;
106	u16 max_depth;
107	u16 pool_size_m1;
108} __cvmx_cmd_queue_state_t;
109
110/**
111 * command-queue locking uses a fair ticket spinlock algo,
112 * with 64-bit tickets for endianness-neutrality and
113 * counter overflow protection.
114 * Lock is free when both counters are of equal value.
115 */
116typedef struct {
117	u64 ticket;
118	u64 now_serving;
119} __cvmx_cmd_queue_lock_t;
120
121/**
122 * @INTERNAL
123 * This structure contains the global state of all command queues.
124 * It is stored in a bootmem named block and shared by all
125 * applications running on Octeon. Tickets are stored in a different
126 * cache line that queue information to reduce the contention on the
127 * ll/sc used to get a ticket. If this is not the case, the update
128 * of queue state causes the ll/sc to fail quite often.
129 */
130typedef struct {
131	__cvmx_cmd_queue_lock_t lock[(CVMX_CMD_QUEUE_END >> 16) * 256];
132	__cvmx_cmd_queue_state_t state[(CVMX_CMD_QUEUE_END >> 16) * 256];
133} __cvmx_cmd_queue_all_state_t;
134
135extern __cvmx_cmd_queue_all_state_t *__cvmx_cmd_queue_state_ptrs[CVMX_MAX_NODES];
136
137/**
138 * @INTERNAL
139 * Internal function to handle the corner cases
140 * of adding command words to a queue when the current
141 * block is getting full.
142 */
143cvmx_cmd_queue_result_t __cvmx_cmd_queue_write_raw(cvmx_cmd_queue_id_t queue_id,
144						   __cvmx_cmd_queue_state_t *qptr, int cmd_count,
145						   const u64 *cmds);
146
147/**
148 * Initialize a command queue for use. The initial FPA buffer is
149 * allocated and the hardware unit is configured to point to the
150 * new command queue.
151 *
152 * @param queue_id  Hardware command queue to initialize.
153 * @param max_depth Maximum outstanding commands that can be queued.
154 * @param fpa_pool  FPA pool the command queues should come from.
155 * @param pool_size Size of each buffer in the FPA pool (bytes)
156 *
157 * Return: CVMX_CMD_QUEUE_SUCCESS or a failure code
158 */
159cvmx_cmd_queue_result_t cvmx_cmd_queue_initialize(cvmx_cmd_queue_id_t queue_id, int max_depth,
160						  int fpa_pool, int pool_size);
161
162/**
163 * Shutdown a queue a free it's command buffers to the FPA. The
164 * hardware connected to the queue must be stopped before this
165 * function is called.
166 *
167 * @param queue_id Queue to shutdown
168 *
169 * Return: CVMX_CMD_QUEUE_SUCCESS or a failure code
170 */
171cvmx_cmd_queue_result_t cvmx_cmd_queue_shutdown(cvmx_cmd_queue_id_t queue_id);
172
173/**
174 * Return the number of command words pending in the queue. This
175 * function may be relatively slow for some hardware units.
176 *
177 * @param queue_id Hardware command queue to query
178 *
179 * Return: Number of outstanding commands
180 */
181int cvmx_cmd_queue_length(cvmx_cmd_queue_id_t queue_id);
182
183/**
184 * Return the command buffer to be written to. The purpose of this
185 * function is to allow CVMX routine access to the low level buffer
186 * for initial hardware setup. User applications should not call this
187 * function directly.
188 *
189 * @param queue_id Command queue to query
190 *
191 * Return: Command buffer or NULL on failure
192 */
193void *cvmx_cmd_queue_buffer(cvmx_cmd_queue_id_t queue_id);
194
195/**
196 * @INTERNAL
197 * Retrieve or allocate command queue state named block
198 */
199cvmx_cmd_queue_result_t __cvmx_cmd_queue_init_state_ptr(unsigned int node);
200
201/**
202 * @INTERNAL
203 * Get the index into the state arrays for the supplied queue id.
204 *
205 * @param queue_id Queue ID to get an index for
206 *
207 * Return: Index into the state arrays
208 */
209static inline unsigned int __cvmx_cmd_queue_get_index(cvmx_cmd_queue_id_t queue_id)
210{
211	/* Warning: This code currently only works with devices that have 256
212	 * queues or less.  Devices with more than 16 queues are laid out in
213	 * memory to allow cores quick access to every 16th queue. This reduces
214	 * cache thrashing when you are running 16 queues per port to support
215	 * lockless operation
216	 */
217	unsigned int unit = (queue_id >> 16) & 0xff;
218	unsigned int q = (queue_id >> 4) & 0xf;
219	unsigned int core = queue_id & 0xf;
220
221	return (unit << 8) | (core << 4) | q;
222}
223
224static inline int __cvmx_cmd_queue_get_node(cvmx_cmd_queue_id_t queue_id)
225{
226	unsigned int node = queue_id >> 24;
227	return node;
228}
229
230/**
231 * @INTERNAL
232 * Lock the supplied queue so nobody else is updating it at the same
233 * time as us.
234 *
235 * @param queue_id Queue ID to lock
236 *
237 */
238static inline void __cvmx_cmd_queue_lock(cvmx_cmd_queue_id_t queue_id)
239{
240}
241
242/**
243 * @INTERNAL
244 * Unlock the queue, flushing all writes.
245 *
246 * @param queue_id Queue ID to lock
247 *
248 */
249static inline void __cvmx_cmd_queue_unlock(cvmx_cmd_queue_id_t queue_id)
250{
251	CVMX_SYNCWS; /* nudge out the unlock. */
252}
253
254/**
255 * @INTERNAL
256 * Initialize a command-queue lock to "unlocked" state.
257 */
258static inline void __cvmx_cmd_queue_lock_init(cvmx_cmd_queue_id_t queue_id)
259{
260	unsigned int index = __cvmx_cmd_queue_get_index(queue_id);
261	unsigned int node = __cvmx_cmd_queue_get_node(queue_id);
262
263	__cvmx_cmd_queue_state_ptrs[node]->lock[index] = (__cvmx_cmd_queue_lock_t){ 0, 0 };
264	CVMX_SYNCWS;
265}
266
267/**
268 * @INTERNAL
269 * Get the queue state structure for the given queue id
270 *
271 * @param queue_id Queue id to get
272 *
273 * Return: Queue structure or NULL on failure
274 */
275static inline __cvmx_cmd_queue_state_t *__cvmx_cmd_queue_get_state(cvmx_cmd_queue_id_t queue_id)
276{
277	unsigned int index;
278	unsigned int node;
279	__cvmx_cmd_queue_state_t *qptr;
280
281	node = __cvmx_cmd_queue_get_node(queue_id);
282	index = __cvmx_cmd_queue_get_index(queue_id);
283
284	if (cvmx_unlikely(!__cvmx_cmd_queue_state_ptrs[node]))
285		__cvmx_cmd_queue_init_state_ptr(node);
286
287	qptr = &__cvmx_cmd_queue_state_ptrs[node]->state[index];
288	return qptr;
289}
290
291/**
292 * Write an arbitrary number of command words to a command queue.
293 * This is a generic function; the fixed number of command word
294 * functions yield higher performance.
295 *
296 * @param queue_id  Hardware command queue to write to
297 * @param use_locking
298 *                  Use internal locking to ensure exclusive access for queue
299 *                  updates. If you don't use this locking you must ensure
300 *                  exclusivity some other way. Locking is strongly recommended.
301 * @param cmd_count Number of command words to write
302 * @param cmds      Array of commands to write
303 *
304 * Return: CVMX_CMD_QUEUE_SUCCESS or a failure code
305 */
306static inline cvmx_cmd_queue_result_t
307cvmx_cmd_queue_write(cvmx_cmd_queue_id_t queue_id, bool use_locking, int cmd_count, const u64 *cmds)
308{
309	cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
310	u64 *cmd_ptr;
311
312	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
313
314	/* Make sure nobody else is updating the same queue */
315	if (cvmx_likely(use_locking))
316		__cvmx_cmd_queue_lock(queue_id);
317
318	/* Most of the time there is lots of free words in current block */
319	if (cvmx_unlikely((qptr->index + cmd_count) >= qptr->pool_size_m1)) {
320		/* The rare case when nearing end of block */
321		ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, cmd_count, cmds);
322	} else {
323		cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
324		/* Loop easy for compiler to unroll for the likely case */
325		while (cmd_count > 0) {
326			cmd_ptr[qptr->index++] = *cmds++;
327			cmd_count--;
328		}
329	}
330
331	/* All updates are complete. Release the lock and return */
332	if (cvmx_likely(use_locking))
333		__cvmx_cmd_queue_unlock(queue_id);
334	else
335		CVMX_SYNCWS;
336
337	return ret;
338}
339
340/**
341 * Simple function to write two command words to a command queue.
342 *
343 * @param queue_id Hardware command queue to write to
344 * @param use_locking
345 *                 Use internal locking to ensure exclusive access for queue
346 *                 updates. If you don't use this locking you must ensure
347 *                 exclusivity some other way. Locking is strongly recommended.
348 * @param cmd1     Command
349 * @param cmd2     Command
350 *
351 * Return: CVMX_CMD_QUEUE_SUCCESS or a failure code
352 */
353static inline cvmx_cmd_queue_result_t cvmx_cmd_queue_write2(cvmx_cmd_queue_id_t queue_id,
354							    bool use_locking, u64 cmd1, u64 cmd2)
355{
356	cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
357	u64 *cmd_ptr;
358
359	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
360
361	/* Make sure nobody else is updating the same queue */
362	if (cvmx_likely(use_locking))
363		__cvmx_cmd_queue_lock(queue_id);
364
365	if (cvmx_unlikely((qptr->index + 2) >= qptr->pool_size_m1)) {
366		/* The rare case when nearing end of block */
367		u64 cmds[2];
368
369		cmds[0] = cmd1;
370		cmds[1] = cmd2;
371		ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, 2, cmds);
372	} else {
373		/* Likely case to work fast */
374		cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
375		cmd_ptr += qptr->index;
376		qptr->index += 2;
377		cmd_ptr[0] = cmd1;
378		cmd_ptr[1] = cmd2;
379	}
380
381	/* All updates are complete. Release the lock and return */
382	if (cvmx_likely(use_locking))
383		__cvmx_cmd_queue_unlock(queue_id);
384	else
385		CVMX_SYNCWS;
386
387	return ret;
388}
389
390/**
391 * Simple function to write three command words to a command queue.
392 *
393 * @param queue_id Hardware command queue to write to
394 * @param use_locking
395 *                 Use internal locking to ensure exclusive access for queue
396 *                 updates. If you don't use this locking you must ensure
397 *                 exclusivity some other way. Locking is strongly recommended.
398 * @param cmd1     Command
399 * @param cmd2     Command
400 * @param cmd3     Command
401 *
402 * Return: CVMX_CMD_QUEUE_SUCCESS or a failure code
403 */
404static inline cvmx_cmd_queue_result_t
405cvmx_cmd_queue_write3(cvmx_cmd_queue_id_t queue_id, bool use_locking, u64 cmd1, u64 cmd2, u64 cmd3)
406{
407	cvmx_cmd_queue_result_t ret = CVMX_CMD_QUEUE_SUCCESS;
408	__cvmx_cmd_queue_state_t *qptr = __cvmx_cmd_queue_get_state(queue_id);
409	u64 *cmd_ptr;
410
411	/* Make sure nobody else is updating the same queue */
412	if (cvmx_likely(use_locking))
413		__cvmx_cmd_queue_lock(queue_id);
414
415	if (cvmx_unlikely((qptr->index + 3) >= qptr->pool_size_m1)) {
416		/* Most of the time there is lots of free words in current block */
417		u64 cmds[3];
418
419		cmds[0] = cmd1;
420		cmds[1] = cmd2;
421		cmds[2] = cmd3;
422		ret = __cvmx_cmd_queue_write_raw(queue_id, qptr, 3, cmds);
423	} else {
424		cmd_ptr = (u64 *)cvmx_phys_to_ptr((u64)qptr->base_paddr);
425		cmd_ptr += qptr->index;
426		qptr->index += 3;
427		cmd_ptr[0] = cmd1;
428		cmd_ptr[1] = cmd2;
429		cmd_ptr[2] = cmd3;
430	}
431
432	/* All updates are complete. Release the lock and return */
433	if (cvmx_likely(use_locking))
434		__cvmx_cmd_queue_unlock(queue_id);
435	else
436		CVMX_SYNCWS;
437
438	return ret;
439}
440
441#endif /* __CVMX_CMD_QUEUE_H__ */
442