1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (c) 2011 The Chromium OS Authors.
4 * (C) Copyright 2010-2015
5 * NVIDIA Corporation <www.nvidia.com>
6 */
7
8/* Tegra20 Clock control functions */
9
10#include <common.h>
11#include <errno.h>
12#include <init.h>
13#include <log.h>
14#include <asm/io.h>
15#include <asm/arch/clock.h>
16#include <asm/arch/tegra.h>
17#include <asm/arch-tegra/clk_rst.h>
18#include <asm/arch-tegra/timer.h>
19#include <div64.h>
20#include <fdtdec.h>
21#include <linux/delay.h>
22#include <linux/printk.h>
23
24#include <dt-bindings/clock/tegra20-car.h>
25
26/*
27 * Clock types that we can use as a source. The Tegra20 has muxes for the
28 * peripheral clocks, and in most cases there are four options for the clock
29 * source. This gives us a clock 'type' and exploits what commonality exists
30 * in the device.
31 *
32 * Letters are obvious, except for T which means CLK_M, and S which means the
33 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
34 * datasheet) and PLL_M are different things. The former is the basic
35 * clock supplied to the SOC from an external oscillator. The latter is the
36 * memory clock PLL.
37 *
38 * See definitions in clock_id in the header file.
39 */
40enum clock_type_id {
41	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
42	CLOCK_TYPE_MCPA,	/* and so on */
43	CLOCK_TYPE_MCPT,
44	CLOCK_TYPE_PCM,
45	CLOCK_TYPE_PCMT,
46	CLOCK_TYPE_PCMT16,	/* CLOCK_TYPE_PCMT with 16-bit divider */
47	CLOCK_TYPE_PCXTS,
48	CLOCK_TYPE_PDCT,
49
50	CLOCK_TYPE_COUNT,
51	CLOCK_TYPE_NONE = -1,	/* invalid clock type */
52};
53
54enum {
55	CLOCK_MAX_MUX	= 4	/* number of source options for each clock */
56};
57
58/*
59 * Clock source mux for each clock type. This just converts our enum into
60 * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
61 * is special as it has 5 sources. Since it also has a different number of
62 * bits in its register for the source, we just handle it with a special
63 * case in the code.
64 */
65#define CLK(x) CLOCK_ID_ ## x
66static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
67	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC)	},
68	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO)	},
69	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC)	},
70	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE)	},
71	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
72	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC)	},
73	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(XCPU),	CLK(OSC)	},
74	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC)	},
75};
76
77/*
78 * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
79 * not in the header file since it is for purely internal use - we want
80 * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
81 * confusion bewteen PERIPH_ID_... and PERIPHC_...
82 *
83 * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
84 * confusing.
85 *
86 * Note to SOC vendors: perhaps define a unified numbering for peripherals and
87 * use it for reset, clock enable, clock source/divider and even pinmuxing
88 * if you can.
89 */
90enum periphc_internal_id {
91	/* 0x00 */
92	PERIPHC_I2S1,
93	PERIPHC_I2S2,
94	PERIPHC_SPDIF_OUT,
95	PERIPHC_SPDIF_IN,
96	PERIPHC_PWM,
97	PERIPHC_SPI1,
98	PERIPHC_SPI2,
99	PERIPHC_SPI3,
100
101	/* 0x08 */
102	PERIPHC_XIO,
103	PERIPHC_I2C1,
104	PERIPHC_DVC_I2C,
105	PERIPHC_TWC,
106	PERIPHC_0c,
107	PERIPHC_10,	/* PERIPHC_SPI1, what is this really? */
108	PERIPHC_DISP1,
109	PERIPHC_DISP2,
110
111	/* 0x10 */
112	PERIPHC_CVE,
113	PERIPHC_IDE0,
114	PERIPHC_VI,
115	PERIPHC_1c,
116	PERIPHC_SDMMC1,
117	PERIPHC_SDMMC2,
118	PERIPHC_G3D,
119	PERIPHC_G2D,
120
121	/* 0x18 */
122	PERIPHC_NDFLASH,
123	PERIPHC_SDMMC4,
124	PERIPHC_VFIR,
125	PERIPHC_EPP,
126	PERIPHC_MPE,
127	PERIPHC_MIPI,
128	PERIPHC_UART1,
129	PERIPHC_UART2,
130
131	/* 0x20 */
132	PERIPHC_HOST1X,
133	PERIPHC_21,
134	PERIPHC_TVO,
135	PERIPHC_HDMI,
136	PERIPHC_24,
137	PERIPHC_TVDAC,
138	PERIPHC_I2C2,
139	PERIPHC_EMC,
140
141	/* 0x28 */
142	PERIPHC_UART3,
143	PERIPHC_29,
144	PERIPHC_VI_SENSOR,
145	PERIPHC_2b,
146	PERIPHC_2c,
147	PERIPHC_SPI4,
148	PERIPHC_I2C3,
149	PERIPHC_SDMMC3,
150
151	/* 0x30 */
152	PERIPHC_UART4,
153	PERIPHC_UART5,
154	PERIPHC_VDE,
155	PERIPHC_OWR,
156	PERIPHC_NOR,
157	PERIPHC_CSITE,
158
159	PERIPHC_COUNT,
160
161	PERIPHC_NONE = -1,
162};
163
164/*
165 * Clock type for each peripheral clock source. We put the name in each
166 * record just so it is easy to match things up
167 */
168#define TYPE(name, type) type
169static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
170	/* 0x00 */
171	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
172	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
173	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
174	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PCM),
175	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PCXTS),
176	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
177	TYPE(PERIPHC_SPI22,	CLOCK_TYPE_PCMT),
178	TYPE(PERIPHC_SPI3,	CLOCK_TYPE_PCMT),
179
180	/* 0x08 */
181	TYPE(PERIPHC_XIO,	CLOCK_TYPE_PCMT),
182	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PCMT16),
183	TYPE(PERIPHC_DVC_I2C,	CLOCK_TYPE_PCMT16),
184	TYPE(PERIPHC_TWC,	CLOCK_TYPE_PCMT),
185	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
186	TYPE(PERIPHC_SPI1,	CLOCK_TYPE_PCMT),
187	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PDCT),
188	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PDCT),
189
190	/* 0x10 */
191	TYPE(PERIPHC_CVE,	CLOCK_TYPE_PDCT),
192	TYPE(PERIPHC_IDE0,	CLOCK_TYPE_PCMT),
193	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
194	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
195	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PCMT),
196	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PCMT),
197	TYPE(PERIPHC_G3D,	CLOCK_TYPE_MCPA),
198	TYPE(PERIPHC_G2D,	CLOCK_TYPE_MCPA),
199
200	/* 0x18 */
201	TYPE(PERIPHC_NDFLASH,	CLOCK_TYPE_PCMT),
202	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PCMT),
203	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PCMT),
204	TYPE(PERIPHC_EPP,	CLOCK_TYPE_MCPA),
205	TYPE(PERIPHC_MPE,	CLOCK_TYPE_MCPA),
206	TYPE(PERIPHC_MIPI,	CLOCK_TYPE_PCMT),
207	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PCMT),
208	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PCMT),
209
210	/* 0x20 */
211	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MCPA),
212	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
213	TYPE(PERIPHC_TVO,	CLOCK_TYPE_PDCT),
214	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PDCT),
215	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
216	TYPE(PERIPHC_TVDAC,	CLOCK_TYPE_PDCT),
217	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PCMT16),
218	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPT),
219
220	/* 0x28 */
221	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PCMT),
222	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
223	TYPE(PERIPHC_VI,	CLOCK_TYPE_MCPA),
224	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
225	TYPE(PERIPHC_NONE,	CLOCK_TYPE_NONE),
226	TYPE(PERIPHC_SPI4,	CLOCK_TYPE_PCMT),
227	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PCMT16),
228	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PCMT),
229
230	/* 0x30 */
231	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PCMT),
232	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PCMT),
233	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PCMT),
234	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PCMT),
235	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PCMT),
236	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PCMT),
237};
238
239/*
240 * This array translates a periph_id to a periphc_internal_id
241 *
242 * Not present/matched up:
243 *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
244 *	SPDIF - which is both 0x08 and 0x0c
245 *
246 */
247#define NONE(name) (-1)
248#define OFFSET(name, value) PERIPHC_ ## name
249static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
250	/* Low word: 31:0 */
251	NONE(CPU),
252	NONE(RESERVED1),
253	NONE(RESERVED2),
254	NONE(AC97),
255	NONE(RTC),
256	NONE(TMR),
257	PERIPHC_UART1,
258	PERIPHC_UART2,	/* and vfir 0x68 */
259
260	/* 0x08 */
261	NONE(GPIO),
262	PERIPHC_SDMMC2,
263	NONE(SPDIF),		/* 0x08 and 0x0c, unclear which to use */
264	PERIPHC_I2S1,
265	PERIPHC_I2C1,
266	PERIPHC_NDFLASH,
267	PERIPHC_SDMMC1,
268	PERIPHC_SDMMC4,
269
270	/* 0x10 */
271	PERIPHC_TWC,
272	PERIPHC_PWM,
273	PERIPHC_I2S2,
274	PERIPHC_EPP,
275	PERIPHC_VI,
276	PERIPHC_G2D,
277	NONE(USBD),
278	NONE(ISP),
279
280	/* 0x18 */
281	PERIPHC_G3D,
282	PERIPHC_IDE0,
283	PERIPHC_DISP2,
284	PERIPHC_DISP1,
285	PERIPHC_HOST1X,
286	NONE(VCP),
287	NONE(RESERVED30),
288	NONE(CACHE2),
289
290	/* Middle word: 63:32 */
291	NONE(MEM),
292	NONE(AHBDMA),
293	NONE(APBDMA),
294	NONE(RESERVED35),
295	NONE(KBC),
296	NONE(STAT_MON),
297	NONE(PMC),
298	NONE(FUSE),
299
300	/* 0x28 */
301	NONE(KFUSE),
302	NONE(SBC1),	/* SBC1, 0x34, is this SPI1? */
303	PERIPHC_NOR,
304	PERIPHC_SPI1,
305	PERIPHC_SPI2,
306	PERIPHC_XIO,
307	PERIPHC_SPI3,
308	PERIPHC_DVC_I2C,
309
310	/* 0x30 */
311	NONE(DSI),
312	PERIPHC_TVO,	/* also CVE 0x40 */
313	PERIPHC_MIPI,
314	PERIPHC_HDMI,
315	PERIPHC_CSITE,
316	PERIPHC_TVDAC,
317	PERIPHC_I2C2,
318	PERIPHC_UART3,
319
320	/* 0x38 */
321	NONE(RESERVED56),
322	PERIPHC_EMC,
323	NONE(USB2),
324	NONE(USB3),
325	PERIPHC_MPE,
326	PERIPHC_VDE,
327	NONE(BSEA),
328	NONE(BSEV),
329
330	/* Upper word 95:64 */
331	NONE(SPEEDO),
332	PERIPHC_UART4,
333	PERIPHC_UART5,
334	PERIPHC_I2C3,
335	PERIPHC_SPI4,
336	PERIPHC_SDMMC3,
337	NONE(PCIE),
338	PERIPHC_OWR,
339
340	/* 0x48 */
341	NONE(AFI),
342	NONE(CORESIGHT),
343	NONE(PCIEXCLK),
344	NONE(AVPUCQ),
345	NONE(RESERVED76),
346	NONE(RESERVED77),
347	NONE(RESERVED78),
348	NONE(RESERVED79),
349
350	/* 0x50 */
351	NONE(RESERVED80),
352	NONE(RESERVED81),
353	NONE(RESERVED82),
354	NONE(RESERVED83),
355	NONE(IRAMA),
356	NONE(IRAMB),
357	NONE(IRAMC),
358	NONE(IRAMD),
359
360	/* 0x58 */
361	NONE(CRAM2),
362};
363
364/*
365 * PLL divider shift/mask tables for all PLL IDs.
366 */
367struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
368	/*
369	 * T20 and T25
370	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
371	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
372	 */
373
374	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
375	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
376	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 0,  .p_mask = 0,
377	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
378	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
379	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
380	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
381	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
382	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
383	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
384	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
385	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
386	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF,  .p_shift = 20, .p_mask = 0x0F,
387	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
388	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
389	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
390	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
391	  .lock_ena = 18, .lock_det = 0, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS */
392};
393
394/*
395 * Get the oscillator frequency, from the corresponding hardware configuration
396 * field. T20 has 4 frequencies that it supports.
397 */
398enum clock_osc_freq clock_get_osc_freq(void)
399{
400	struct clk_rst_ctlr *clkrst =
401			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
402	u32 reg;
403
404	reg = readl(&clkrst->crc_osc_ctrl);
405	reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
406
407	return reg << 2;
408}
409
410/* Returns a pointer to the clock source register for a peripheral */
411u32 *get_periph_source_reg(enum periph_id periph_id)
412{
413	struct clk_rst_ctlr *clkrst =
414			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
415	enum periphc_internal_id internal_id;
416
417	assert(clock_periph_id_isvalid(periph_id));
418	internal_id = periph_id_to_internal_id[periph_id];
419	assert(internal_id != -1);
420	return &clkrst->crc_clk_src[internal_id];
421}
422
423int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
424			  int *divider_bits, int *type)
425{
426	enum periphc_internal_id internal_id;
427
428	if (!clock_periph_id_isvalid(periph_id))
429		return -1;
430
431	internal_id = periph_id_to_internal_id[periph_id];
432	if (!periphc_internal_id_isvalid(internal_id))
433		return -1;
434
435	*type = clock_periph_type[internal_id];
436	if (!clock_type_id_isvalid(*type))
437		return -1;
438
439	/*
440	 * Special cases here for the clock with a 4-bit source mux and I2C
441	 * with its 16-bit divisor
442	 */
443	if (*type == CLOCK_TYPE_PCXTS)
444		*mux_bits = MASK_BITS_31_28;
445	else
446		*mux_bits = MASK_BITS_31_30;
447	if (*type == CLOCK_TYPE_PCMT16)
448		*divider_bits = 16;
449	else
450		*divider_bits = 8;
451
452	return 0;
453}
454
455enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
456{
457	enum periphc_internal_id internal_id;
458	int type;
459
460	if (!clock_periph_id_isvalid(periph_id))
461		return CLOCK_ID_NONE;
462
463	internal_id = periph_id_to_internal_id[periph_id];
464	if (!periphc_internal_id_isvalid(internal_id))
465		return CLOCK_ID_NONE;
466
467	type = clock_periph_type[internal_id];
468	if (!clock_type_id_isvalid(type))
469		return CLOCK_ID_NONE;
470
471	return clock_source[type][source];
472}
473
474/**
475 * Given a peripheral ID and the required source clock, this returns which
476 * value should be programmed into the source mux for that peripheral.
477 *
478 * There is special code here to handle the one source type with 5 sources.
479 *
480 * @param periph_id	peripheral to start
481 * @param source	PLL id of required parent clock
482 * @param mux_bits	Set to number of bits in mux register: 2 or 4
483 * @param divider_bits	Set to number of divider bits (8 or 16)
484 * Return: mux value (0-4, or -1 if not found)
485 */
486int get_periph_clock_source(enum periph_id periph_id,
487		enum clock_id parent, int *mux_bits, int *divider_bits)
488{
489	enum clock_type_id type;
490	int mux, err;
491
492	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
493	assert(!err);
494
495	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
496		if (clock_source[type][mux] == parent)
497			return mux;
498
499	/*
500	 * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
501	 * which is not in our table. If not, then they are asking for a
502	 * source which this peripheral can't access through its mux.
503	 */
504	assert(type == CLOCK_TYPE_PCXTS);
505	assert(parent == CLOCK_ID_SFROM32KHZ);
506	if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
507		return 4;	/* mux value for this clock */
508
509	/* if we get here, either us or the caller has made a mistake */
510	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
511		parent);
512	return -1;
513}
514
515void clock_set_enable(enum periph_id periph_id, int enable)
516{
517	struct clk_rst_ctlr *clkrst =
518			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
519	u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
520	u32 reg;
521
522	/* Enable/disable the clock to this peripheral */
523	assert(clock_periph_id_isvalid(periph_id));
524	reg = readl(clk);
525	if (enable)
526		reg |= PERIPH_MASK(periph_id);
527	else
528		reg &= ~PERIPH_MASK(periph_id);
529	writel(reg, clk);
530}
531
532void reset_set_enable(enum periph_id periph_id, int enable)
533{
534	struct clk_rst_ctlr *clkrst =
535			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
536	u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
537	u32 reg;
538
539	/* Enable/disable reset to the peripheral */
540	assert(clock_periph_id_isvalid(periph_id));
541	reg = readl(reset);
542	if (enable)
543		reg |= PERIPH_MASK(periph_id);
544	else
545		reg &= ~PERIPH_MASK(periph_id);
546	writel(reg, reset);
547}
548
549#if CONFIG_IS_ENABLED(OF_CONTROL)
550/*
551 * Convert a device tree clock ID to our peripheral ID. They are mostly
552 * the same but we are very cautious so we check that a valid clock ID is
553 * provided.
554 *
555 * @param clk_id	Clock ID according to tegra20 device tree binding
556 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
557 */
558enum periph_id clk_id_to_periph_id(int clk_id)
559{
560	if (clk_id > PERIPH_ID_COUNT)
561		return PERIPH_ID_NONE;
562
563	switch (clk_id) {
564	case PERIPH_ID_RESERVED1:
565	case PERIPH_ID_RESERVED2:
566	case PERIPH_ID_RESERVED30:
567	case PERIPH_ID_RESERVED35:
568	case PERIPH_ID_RESERVED56:
569	case PERIPH_ID_PCIEXCLK:
570	case PERIPH_ID_RESERVED76:
571	case PERIPH_ID_RESERVED77:
572	case PERIPH_ID_RESERVED78:
573	case PERIPH_ID_RESERVED79:
574	case PERIPH_ID_RESERVED80:
575	case PERIPH_ID_RESERVED81:
576	case PERIPH_ID_RESERVED82:
577	case PERIPH_ID_RESERVED83:
578	case PERIPH_ID_RESERVED91:
579		return PERIPH_ID_NONE;
580	default:
581		return clk_id;
582	}
583}
584
585/*
586 * Convert a device tree clock ID to our PLL ID.
587 *
588 * @param clk_id	Clock ID according to tegra20 device tree binding
589 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
590 */
591enum clock_id clk_id_to_pll_id(int clk_id)
592{
593	switch (clk_id) {
594	case TEGRA20_CLK_PLL_C:
595		return CLOCK_ID_CGENERAL;
596	case TEGRA20_CLK_PLL_M:
597		return CLOCK_ID_MEMORY;
598	case TEGRA20_CLK_PLL_P:
599		return CLOCK_ID_PERIPH;
600	case TEGRA20_CLK_PLL_A:
601		return CLOCK_ID_AUDIO;
602	case TEGRA20_CLK_PLL_U:
603		return CLOCK_ID_USB;
604	case TEGRA20_CLK_PLL_D:
605	case TEGRA20_CLK_PLL_D_OUT0:
606		return CLOCK_ID_DISPLAY;
607	case TEGRA20_CLK_PLL_X:
608		return CLOCK_ID_XCPU;
609	case TEGRA20_CLK_PLL_E:
610		return CLOCK_ID_EPCI;
611	case TEGRA20_CLK_CLK_32K:
612		return CLOCK_ID_32KHZ;
613	case TEGRA20_CLK_CLK_M:
614		return CLOCK_ID_CLK_M;
615	default:
616		return CLOCK_ID_NONE;
617	}
618}
619#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
620
621void clock_early_init(void)
622{
623	/*
624	 * PLLP output frequency set to 216MHz
625	 * PLLC output frequency set to 600Mhz
626	 *
627	 * TODO: Can we calculate these values instead of hard-coding?
628	 */
629	switch (clock_get_osc_freq()) {
630	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
631		clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
632		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
633		break;
634
635	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
636		clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
637		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
638		break;
639
640	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
641		clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
642		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
643		break;
644	case CLOCK_OSC_FREQ_19_2:
645	default:
646		/*
647		 * These are not supported. It is too early to print a
648		 * message and the UART likely won't work anyway due to the
649		 * oscillator being wrong.
650		 */
651		break;
652	}
653}
654
655void arch_timer_init(void)
656{
657}
658
659#define PMC_SATA_PWRGT 0x1ac
660#define  PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
661#define  PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
662
663#define PLLE_SS_CNTL 0x68
664#define  PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
665#define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
666#define  PLLE_SS_CNTL_SSCBYP (1 << 12)
667#define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
668#define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
669#define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
670
671#define PLLE_BASE 0x0e8
672#define  PLLE_BASE_ENABLE_CML (1 << 31)
673#define  PLLE_BASE_ENABLE (1 << 30)
674#define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
675#define  PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
676#define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
677#define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
678
679#define PLLE_MISC 0x0ec
680#define  PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
681#define  PLLE_MISC_PLL_READY (1 << 15)
682#define  PLLE_MISC_LOCK (1 << 11)
683#define  PLLE_MISC_LOCK_ENABLE (1 << 9)
684#define  PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
685
686static int tegra_plle_train(void)
687{
688	unsigned int timeout = 2000;
689	unsigned long value;
690
691	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
692	value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
693	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
694
695	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
696	value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
697	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
698
699	value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
700	value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
701	writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
702
703	do {
704		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
705		if (value & PLLE_MISC_PLL_READY)
706			break;
707
708		udelay(100);
709	} while (--timeout);
710
711	if (timeout == 0) {
712		pr_err("timeout waiting for PLLE to become ready");
713		return -ETIMEDOUT;
714	}
715
716	return 0;
717}
718
719int tegra_plle_enable(void)
720{
721	unsigned int timeout = 1000;
722	u32 value;
723	int err;
724
725	/* disable PLLE clock */
726	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
727	value &= ~PLLE_BASE_ENABLE_CML;
728	value &= ~PLLE_BASE_ENABLE;
729	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
730
731	/* clear lock enable and setup field */
732	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
733	value &= ~PLLE_MISC_LOCK_ENABLE;
734	value &= ~PLLE_MISC_SETUP_BASE(0xffff);
735	value &= ~PLLE_MISC_SETUP_EXT(0x3);
736	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
737
738	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
739	if ((value & PLLE_MISC_PLL_READY) == 0) {
740		err = tegra_plle_train();
741		if (err < 0) {
742			pr_err("failed to train PLLE: %d", err);
743			return err;
744		}
745	}
746
747	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
748	value |= PLLE_MISC_SETUP_BASE(0x7);
749	value |= PLLE_MISC_LOCK_ENABLE;
750	value |= PLLE_MISC_SETUP_EXT(0);
751	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
752
753	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
754	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
755		 PLLE_SS_CNTL_BYPASS_SS;
756	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
757
758	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
759	value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
760	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
761
762	do {
763		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
764		if (value & PLLE_MISC_LOCK)
765			break;
766
767		udelay(2);
768	} while (--timeout);
769
770	if (timeout == 0) {
771		pr_err("timeout waiting for PLLE to lock");
772		return -ETIMEDOUT;
773	}
774
775	udelay(50);
776
777	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
778	value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
779	value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
780
781	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
782	value |= PLLE_SS_CNTL_SSCINC(0x01);
783
784	value &= ~PLLE_SS_CNTL_SSCBYP;
785	value &= ~PLLE_SS_CNTL_INTERP_RESET;
786	value &= ~PLLE_SS_CNTL_BYPASS_SS;
787
788	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
789	value |= PLLE_SS_CNTL_SSCMAX(0x24);
790	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
791
792	return 0;
793}
794
795struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
796{
797	struct clk_rst_ctlr *clkrst =
798			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
799
800	switch (clkid) {
801	case CLOCK_ID_XCPU:
802	case CLOCK_ID_EPCI:
803	case CLOCK_ID_SFROM32KHZ:
804		return &clkrst->crc_pll_simple[clkid - CLOCK_ID_FIRST_SIMPLE];
805	default:
806		return NULL;
807	}
808}
809
810struct periph_clk_init periph_clk_init_table[] = {
811	{ PERIPH_ID_SPI1, CLOCK_ID_PERIPH },
812	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
813	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
814	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
815	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
816	{ PERIPH_ID_HOST1X, CLOCK_ID_CGENERAL },
817	{ PERIPH_ID_DISP1, CLOCK_ID_PERIPH },
818	{ PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
819	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
820	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
821	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
822	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
823	{ PERIPH_ID_PWM, CLOCK_ID_PERIPH },
824	{ PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
825	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
826	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
827	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
828	{ -1, },
829};
830