1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2013-2015
4 * NVIDIA Corporation <www.nvidia.com>
5 */
6
7/* Tegra124 Clock control functions */
8
9#include <common.h>
10#include <init.h>
11#include <log.h>
12#include <asm/io.h>
13#include <asm/arch/clock.h>
14#include <asm/arch/sysctr.h>
15#include <asm/arch/tegra.h>
16#include <asm/arch-tegra/clk_rst.h>
17#include <asm/arch-tegra/timer.h>
18#include <div64.h>
19#include <fdtdec.h>
20#include <linux/delay.h>
21
22#include <dt-bindings/clock/tegra124-car.h>
23#include <dt-bindings/clock/tegra124-car-common.h>
24
25/*
26 * Clock types that we can use as a source. The Tegra124 has muxes for the
27 * peripheral clocks, and in most cases there are four options for the clock
28 * source. This gives us a clock 'type' and exploits what commonality exists
29 * in the device.
30 *
31 * Letters are obvious, except for T which means CLK_M, and S which means the
32 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
33 * datasheet) and PLL_M are different things. The former is the basic
34 * clock supplied to the SOC from an external oscillator. The latter is the
35 * memory clock PLL.
36 *
37 * See definitions in clock_id in the header file.
38 */
39enum clock_type_id {
40	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
41	CLOCK_TYPE_MCPA,	/* and so on */
42	CLOCK_TYPE_MCPT,
43	CLOCK_TYPE_PCM,
44	CLOCK_TYPE_PCMT,
45	CLOCK_TYPE_PDCT,
46	CLOCK_TYPE_ACPT,
47	CLOCK_TYPE_ASPTE,
48	CLOCK_TYPE_PMDACD2T,
49	CLOCK_TYPE_PCST,
50	CLOCK_TYPE_DP,
51
52	CLOCK_TYPE_PC2CC3M,
53	CLOCK_TYPE_PC2CC3S_T,
54	CLOCK_TYPE_PC2CC3M_T,
55	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
56	CLOCK_TYPE_MC2CC3P_A,
57	CLOCK_TYPE_M,
58	CLOCK_TYPE_MCPTM2C2C3,
59	CLOCK_TYPE_PC2CC3T_S,
60	CLOCK_TYPE_AC2CC3P_TS2,
61
62	CLOCK_TYPE_COUNT,
63	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
64};
65
66enum {
67	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
68};
69
70/*
71 * Clock source mux for each clock type. This just converts our enum into
72 * a list of mux sources for use by the code.
73 *
74 * Note:
75 *  The extra column in each clock source array is used to store the mask
76 *  bits in its register for the source.
77 */
78#define CLK(x) CLOCK_ID_ ## x
79static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
80	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(CLK_M),
81		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
82		MASK_BITS_31_30},
83	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
84		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
85		MASK_BITS_31_30},
86	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
87		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
88		MASK_BITS_31_30},
89	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
90		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
91		MASK_BITS_31_30},
92	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
93		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
94		MASK_BITS_31_30},
95	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
96		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
97		MASK_BITS_31_30},
98	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
99		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
100		MASK_BITS_31_30},
101	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
102		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
103		MASK_BITS_31_29},
104	{ CLK(PERIPH),	CLK(MEMORY),	CLK(DISPLAY),	CLK(AUDIO),
105		CLK(CGENERAL),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
106		MASK_BITS_31_29},
107	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
108		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
109		MASK_BITS_31_28},
110	/* CLOCK_TYPE_DP */
111	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
112		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
113		MASK_BITS_31_28},
114
115	/* Additional clock types on Tegra114+ */
116	/* CLOCK_TYPE_PC2CC3M */
117	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
118		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
119		MASK_BITS_31_29},
120	/* CLOCK_TYPE_PC2CC3S_T */
121	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
122		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
123		MASK_BITS_31_29},
124	/* CLOCK_TYPE_PC2CC3M_T */
125	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
126		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
127		MASK_BITS_31_29},
128	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
129	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
130		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
131		MASK_BITS_31_29},
132	/* CLOCK_TYPE_MC2CC3P_A */
133	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
134		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
135		MASK_BITS_31_29},
136	/* CLOCK_TYPE_M */
137	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
138		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
139		MASK_BITS_31_30},
140	/* CLOCK_TYPE_MCPTM2C2C3 */
141	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
142		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
143		MASK_BITS_31_29},
144	/* CLOCK_TYPE_PC2CC3T_S */
145	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
146		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
147		MASK_BITS_31_29},
148	/* CLOCK_TYPE_AC2CC3P_TS2 */
149	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
150		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
151		MASK_BITS_31_29},
152};
153
154/*
155 * Clock type for each peripheral clock source. We put the name in each
156 * record just so it is easy to match things up
157 */
158#define TYPE(name, type) type
159static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
160	/* 0x00 */
161	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
162	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
163	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
164	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
165	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
166	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
167	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
168	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
169
170	/* 0x08 */
171	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
172	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
173	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
174	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
175	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
176	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
177	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PMDACD2T),
178	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PMDACD2T),
179
180	/* 0x10 */
181	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
182	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
183	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
184	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
185	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
186	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
187	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
188	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
189
190	/* 0x18 */
191	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
192	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
193	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
194	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
195	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
196	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
197	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
198	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
199
200	/* 0x20 */
201	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
202	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
203	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
204	TYPE(PERIPHC_HDMI,	CLOCK_TYPE_PMDACD2T),
205	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
206	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
207	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
208	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
209
210	/* 0x28 */
211	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
212	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
213	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
214	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
215	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
216	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
217	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
218	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
219
220	/* 0x30 */
221	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
222	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
223	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
224	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
225	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
226	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
227	TYPE(PERIPHC_I2S0,	CLOCK_TYPE_AXPT),
228	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
229
230	/* 0x38 */
231	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
232	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
233	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
234	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
235	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
236	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
237	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
238	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
239
240	/* 0x40 */
241	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
242	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
243	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
244	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
245	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
246	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
247	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
248	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
249
250	/* 0x48 */
251	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
252	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
253	TYPE(PERIPHC_DAM0,	CLOCK_TYPE_AC2CC3P_TS2),
254	TYPE(PERIPHC_DAM1,	CLOCK_TYPE_AC2CC3P_TS2),
255	TYPE(PERIPHC_DAM2,	CLOCK_TYPE_AC2CC3P_TS2),
256	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
257	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
258	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
259
260	/* 0x50 */
261	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
262	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
263	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
264	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
265	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
266	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
267	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
268	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
269
270	/* 0x58 */
271	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
272	TYPE(PERIPHC_SOR,	CLOCK_TYPE_NONE),
273	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
274	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
275	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
276	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
277	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
278	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
279
280	/* 0x60 */
281	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
282	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
283	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
284	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
285	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
286	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
287	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
288	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
289
290	/* 0x68 */
291	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
292	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
293	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
294	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
295	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
296	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
297	TYPE(PERIPHC_ADX0,	CLOCK_TYPE_NONE),
298	TYPE(PERIPHC_AMX0,	CLOCK_TYPE_NONE),
299
300	/* 0x70 */
301	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
302	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
303	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
304	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
305	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
306	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
307	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
308	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
309
310	/* 0x78 */
311	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
312	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
313	TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
314	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
315	TYPE(PERIPHC_ADX1,	CLOCK_TYPE_AC2CC3P_TS2),
316	TYPE(PERIPHC_AMX1,	CLOCK_TYPE_AC2CC3P_TS2),
317	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
318	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
319};
320
321/*
322 * This array translates a periph_id to a periphc_internal_id
323 *
324 * Not present/matched up:
325 *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
326 *	SPDIF - which is both 0x08 and 0x0c
327 *
328 */
329#define NONE(name) (-1)
330#define OFFSET(name, value) PERIPHC_ ## name
331static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
332	/* Low word: 31:0 */
333	NONE(CPU),
334	NONE(COP),
335	NONE(TRIGSYS),
336	NONE(ISPB),
337	NONE(RESERVED4),
338	NONE(TMR),
339	PERIPHC_UART1,
340	PERIPHC_UART2,	/* and vfir 0x68 */
341
342	/* 8 */
343	NONE(GPIO),
344	PERIPHC_SDMMC2,
345	PERIPHC_SPDIF_IN,
346	PERIPHC_I2S1,
347	PERIPHC_I2C1,
348	NONE(RESERVED13),
349	PERIPHC_SDMMC1,
350	PERIPHC_SDMMC4,
351
352	/* 16 */
353	NONE(TCW),
354	PERIPHC_PWM,
355	PERIPHC_I2S2,
356	NONE(RESERVED19),
357	PERIPHC_VI,
358	NONE(RESERVED21),
359	NONE(USBD),
360	NONE(ISP),
361
362	/* 24 */
363	NONE(RESERVED24),
364	NONE(RESERVED25),
365	PERIPHC_DISP2,
366	PERIPHC_DISP1,
367	PERIPHC_HOST1X,
368	NONE(VCP),
369	PERIPHC_I2S0,
370	NONE(CACHE2),
371
372	/* Middle word: 63:32 */
373	NONE(MEM),
374	NONE(AHBDMA),
375	NONE(APBDMA),
376	NONE(RESERVED35),
377	NONE(RESERVED36),
378	NONE(STAT_MON),
379	NONE(RESERVED38),
380	NONE(FUSE),
381
382	/* 40 */
383	NONE(KFUSE),
384	PERIPHC_SBC1,		/* SBCx = SPIx */
385	PERIPHC_NOR,
386	NONE(RESERVED43),
387	PERIPHC_SBC2,
388	NONE(XIO),
389	PERIPHC_SBC3,
390	PERIPHC_I2C5,
391
392	/* 48 */
393	NONE(DSI),
394	NONE(RESERVED49),
395	PERIPHC_HSI,
396	PERIPHC_HDMI,
397	NONE(CSI),
398	NONE(RESERVED53),
399	PERIPHC_I2C2,
400	PERIPHC_UART3,
401
402	/* 56 */
403	NONE(MIPI_CAL),
404	PERIPHC_EMC,
405	NONE(USB2),
406	NONE(USB3),
407	NONE(RESERVED60),
408	PERIPHC_VDE,
409	NONE(BSEA),
410	NONE(BSEV),
411
412	/* Upper word 95:64 */
413	NONE(RESERVED64),
414	PERIPHC_UART4,
415	PERIPHC_UART5,
416	PERIPHC_I2C3,
417	PERIPHC_SBC4,
418	PERIPHC_SDMMC3,
419	NONE(PCIE),
420	PERIPHC_OWR,
421
422	/* 72 */
423	NONE(AFI),
424	PERIPHC_CSITE,
425	NONE(PCIEXCLK),
426	NONE(AVPUCQ),
427	NONE(LA),
428	NONE(TRACECLKIN),
429	NONE(SOC_THERM),
430	NONE(DTV),
431
432	/* 80 */
433	NONE(RESERVED80),
434	PERIPHC_I2CSLOW,
435	NONE(DSIB),
436	PERIPHC_TSEC,
437	NONE(RESERVED84),
438	NONE(RESERVED85),
439	NONE(RESERVED86),
440	NONE(EMUCIF),
441
442	/* 88 */
443	NONE(RESERVED88),
444	NONE(XUSB_HOST),
445	NONE(RESERVED90),
446	PERIPHC_MSENC,
447	NONE(RESERVED92),
448	NONE(RESERVED93),
449	NONE(RESERVED94),
450	NONE(XUSB_DEV),
451
452	/* V word: 31:0 */
453	NONE(CPUG),
454	NONE(CPULP),
455	NONE(V_RESERVED2),
456	PERIPHC_MSELECT,
457	NONE(V_RESERVED4),
458	PERIPHC_I2S3,
459	PERIPHC_I2S4,
460	PERIPHC_I2C4,
461
462	/* 104 */
463	PERIPHC_SBC5,
464	PERIPHC_SBC6,
465	PERIPHC_AUDIO,
466	NONE(APBIF),
467	PERIPHC_DAM0,
468	PERIPHC_DAM1,
469	PERIPHC_DAM2,
470	PERIPHC_HDA2CODEC2X,
471
472	/* 112 */
473	NONE(ATOMICS),
474	NONE(V_RESERVED17),
475	NONE(V_RESERVED18),
476	NONE(V_RESERVED19),
477	NONE(V_RESERVED20),
478	NONE(V_RESERVED21),
479	NONE(V_RESERVED22),
480	PERIPHC_ACTMON,
481
482	/* 120 */
483	PERIPHC_EXTPERIPH1,
484	NONE(EXTPERIPH2),
485	NONE(EXTPERIPH3),
486	NONE(OOB),
487	PERIPHC_SATA,
488	PERIPHC_HDA,
489	NONE(TZRAM),
490	NONE(SE),
491
492	/* W word: 31:0 */
493	NONE(HDA2HDMICODEC),
494	NONE(SATACOLD),
495	NONE(W_RESERVED2),
496	NONE(W_RESERVED3),
497	NONE(W_RESERVED4),
498	NONE(W_RESERVED5),
499	NONE(W_RESERVED6),
500	NONE(W_RESERVED7),
501
502	/* 136 */
503	NONE(CEC),
504	NONE(W_RESERVED9),
505	NONE(W_RESERVED10),
506	NONE(W_RESERVED11),
507	NONE(W_RESERVED12),
508	NONE(W_RESERVED13),
509	NONE(XUSB_PADCTL),
510	NONE(W_RESERVED15),
511
512	/* 144 */
513	NONE(W_RESERVED16),
514	NONE(W_RESERVED17),
515	NONE(W_RESERVED18),
516	NONE(W_RESERVED19),
517	NONE(W_RESERVED20),
518	NONE(ENTROPY),
519	NONE(DDS),
520	NONE(W_RESERVED23),
521
522	/* 152 */
523	NONE(DP2),
524	NONE(AMX0),
525	NONE(ADX0),
526	NONE(DVFS),
527	NONE(XUSB_SS),
528	NONE(W_RESERVED29),
529	NONE(W_RESERVED30),
530	NONE(W_RESERVED31),
531
532	/* X word: 31:0 */
533	NONE(SPARE),
534	NONE(X_RESERVED1),
535	NONE(X_RESERVED2),
536	NONE(X_RESERVED3),
537	NONE(CAM_MCLK),
538	NONE(CAM_MCLK2),
539	PERIPHC_I2C6,
540	NONE(X_RESERVED7),
541
542	/* 168 */
543	NONE(X_RESERVED8),
544	NONE(X_RESERVED9),
545	NONE(X_RESERVED10),
546	NONE(VIM2_CLK),
547	NONE(X_RESERVED12),
548	NONE(X_RESERVED13),
549	NONE(EMC_DLL),
550	NONE(X_RESERVED15),
551
552	/* 176 */
553	NONE(HDMI_AUDIO),
554	NONE(CLK72MHZ),
555	NONE(VIC),
556	NONE(X_RESERVED19),
557	NONE(ADX1),
558	NONE(DPAUX),
559	PERIPHC_SOR,
560	NONE(X_RESERVED23),
561
562	/* 184 */
563	NONE(GPU),
564	NONE(AMX1),
565	NONE(X_RESERVED26),
566	NONE(X_RESERVED27),
567	NONE(X_RESERVED28),
568	NONE(X_RESERVED29),
569	NONE(X_RESERVED30),
570	NONE(X_RESERVED31),
571};
572
573/*
574 * PLL divider shift/mask tables for all PLL IDs.
575 */
576struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
577	/*
578	 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
579	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
580	 *       If lock_ena or lock_det are >31, they're not used in that PLL.
581	 */
582
583	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
584	  .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 },	/* PLLC */
585	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
586	  .lock_ena = 0,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
587	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
588	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLP */
589	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
590	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLA */
591	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
592	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLU */
593	{ .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
594	  .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLD */
595	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20, .p_mask = 0x0F,
596	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLX */
597	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 0,  .p_mask = 0,
598	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
599	{ .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
600	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF },	/* PLLS (RESERVED) */
601	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 20,  .p_mask = 0xF,
602	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
603};
604
605/*
606 * Get the oscillator frequency, from the corresponding hardware configuration
607 * field. Note that T30+ supports 3 new higher freqs.
608 */
609enum clock_osc_freq clock_get_osc_freq(void)
610{
611	struct clk_rst_ctlr *clkrst =
612			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
613	u32 reg;
614
615	reg = readl(&clkrst->crc_osc_ctrl);
616	return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
617}
618
619/* Returns a pointer to the clock source register for a peripheral */
620u32 *get_periph_source_reg(enum periph_id periph_id)
621{
622	struct clk_rst_ctlr *clkrst =
623		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
624	enum periphc_internal_id internal_id;
625
626	/* Coresight is a special case */
627	if (periph_id == PERIPH_ID_CSI)
628		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
629
630	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
631	internal_id = periph_id_to_internal_id[periph_id];
632	assert(internal_id != -1);
633	if (internal_id >= PERIPHC_X_FIRST) {
634		internal_id -= PERIPHC_X_FIRST;
635		return &clkrst->crc_clk_src_x[internal_id];
636	} else if (internal_id >= PERIPHC_VW_FIRST) {
637		internal_id -= PERIPHC_VW_FIRST;
638		return &clkrst->crc_clk_src_vw[internal_id];
639	} else {
640		return &clkrst->crc_clk_src[internal_id];
641	}
642}
643
644int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
645			  int *divider_bits, int *type)
646{
647	enum periphc_internal_id internal_id;
648
649	if (!clock_periph_id_isvalid(periph_id))
650		return -1;
651
652	internal_id = periph_id_to_internal_id[periph_id];
653	if (!periphc_internal_id_isvalid(internal_id))
654		return -1;
655
656	*type = clock_periph_type[internal_id];
657	if (!clock_type_id_isvalid(*type))
658		return -1;
659
660	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
661
662	if (*type == CLOCK_TYPE_PC2CC3M_T16)
663		*divider_bits = 16;
664	else
665		*divider_bits = 8;
666
667	return 0;
668}
669
670enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
671{
672	enum periphc_internal_id internal_id;
673	int type;
674
675	if (!clock_periph_id_isvalid(periph_id))
676		return CLOCK_ID_NONE;
677
678	internal_id = periph_id_to_internal_id[periph_id];
679	if (!periphc_internal_id_isvalid(internal_id))
680		return CLOCK_ID_NONE;
681
682	type = clock_periph_type[internal_id];
683	if (!clock_type_id_isvalid(type))
684		return CLOCK_ID_NONE;
685
686	return clock_source[type][source];
687}
688
689/**
690 * Given a peripheral ID and the required source clock, this returns which
691 * value should be programmed into the source mux for that peripheral.
692 *
693 * There is special code here to handle the one source type with 5 sources.
694 *
695 * @param periph_id	peripheral to start
696 * @param source	PLL id of required parent clock
697 * @param mux_bits	Set to number of bits in mux register: 2 or 4
698 * @param divider_bits Set to number of divider bits (8 or 16)
699 * Return: mux value (0-4, or -1 if not found)
700 */
701int get_periph_clock_source(enum periph_id periph_id,
702	enum clock_id parent, int *mux_bits, int *divider_bits)
703{
704	enum clock_type_id type;
705	int mux, err;
706
707	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
708	assert(!err);
709
710	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
711		if (clock_source[type][mux] == parent)
712			return mux;
713
714	/* if we get here, either us or the caller has made a mistake */
715	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
716	       parent);
717	return -1;
718}
719
720void clock_set_enable(enum periph_id periph_id, int enable)
721{
722	struct clk_rst_ctlr *clkrst =
723		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
724	u32 *clk;
725	u32 reg;
726
727	/* Enable/disable the clock to this peripheral */
728	assert(clock_periph_id_isvalid(periph_id));
729	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
730		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
731	else if ((int)periph_id < PERIPH_ID_X_FIRST)
732		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
733	else
734		clk = &clkrst->crc_clk_out_enb_x;
735	reg = readl(clk);
736	if (enable)
737		reg |= PERIPH_MASK(periph_id);
738	else
739		reg &= ~PERIPH_MASK(periph_id);
740	writel(reg, clk);
741}
742
743void reset_set_enable(enum periph_id periph_id, int enable)
744{
745	struct clk_rst_ctlr *clkrst =
746		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
747	u32 *reset;
748	u32 reg;
749
750	/* Enable/disable reset to the peripheral */
751	assert(clock_periph_id_isvalid(periph_id));
752	if (periph_id < PERIPH_ID_VW_FIRST)
753		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
754	else if ((int)periph_id < PERIPH_ID_X_FIRST)
755		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
756	else
757		reset = &clkrst->crc_rst_devices_x;
758	reg = readl(reset);
759	if (enable)
760		reg |= PERIPH_MASK(periph_id);
761	else
762		reg &= ~PERIPH_MASK(periph_id);
763	writel(reg, reset);
764}
765
766#if CONFIG_IS_ENABLED(OF_CONTROL)
767/*
768 * Convert a device tree clock ID to our peripheral ID. They are mostly
769 * the same but we are very cautious so we check that a valid clock ID is
770 * provided.
771 *
772 * @param clk_id    Clock ID according to tegra124 device tree binding
773 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
774 */
775enum periph_id clk_id_to_periph_id(int clk_id)
776{
777	if (clk_id > PERIPH_ID_COUNT)
778		return PERIPH_ID_NONE;
779
780	switch (clk_id) {
781	case PERIPH_ID_RESERVED4:
782	case PERIPH_ID_RESERVED25:
783	case PERIPH_ID_RESERVED35:
784	case PERIPH_ID_RESERVED36:
785	case PERIPH_ID_RESERVED38:
786	case PERIPH_ID_RESERVED43:
787	case PERIPH_ID_RESERVED49:
788	case PERIPH_ID_RESERVED53:
789	case PERIPH_ID_RESERVED64:
790	case PERIPH_ID_RESERVED84:
791	case PERIPH_ID_RESERVED85:
792	case PERIPH_ID_RESERVED86:
793	case PERIPH_ID_RESERVED88:
794	case PERIPH_ID_RESERVED90:
795	case PERIPH_ID_RESERVED92:
796	case PERIPH_ID_RESERVED93:
797	case PERIPH_ID_RESERVED94:
798	case PERIPH_ID_V_RESERVED2:
799	case PERIPH_ID_V_RESERVED4:
800	case PERIPH_ID_V_RESERVED17:
801	case PERIPH_ID_V_RESERVED18:
802	case PERIPH_ID_V_RESERVED19:
803	case PERIPH_ID_V_RESERVED20:
804	case PERIPH_ID_V_RESERVED21:
805	case PERIPH_ID_V_RESERVED22:
806	case PERIPH_ID_W_RESERVED2:
807	case PERIPH_ID_W_RESERVED3:
808	case PERIPH_ID_W_RESERVED4:
809	case PERIPH_ID_W_RESERVED5:
810	case PERIPH_ID_W_RESERVED6:
811	case PERIPH_ID_W_RESERVED7:
812	case PERIPH_ID_W_RESERVED9:
813	case PERIPH_ID_W_RESERVED10:
814	case PERIPH_ID_W_RESERVED11:
815	case PERIPH_ID_W_RESERVED12:
816	case PERIPH_ID_W_RESERVED13:
817	case PERIPH_ID_W_RESERVED15:
818	case PERIPH_ID_W_RESERVED16:
819	case PERIPH_ID_W_RESERVED17:
820	case PERIPH_ID_W_RESERVED18:
821	case PERIPH_ID_W_RESERVED19:
822	case PERIPH_ID_W_RESERVED20:
823	case PERIPH_ID_W_RESERVED23:
824	case PERIPH_ID_W_RESERVED29:
825	case PERIPH_ID_W_RESERVED30:
826	case PERIPH_ID_W_RESERVED31:
827		return PERIPH_ID_NONE;
828	default:
829		return clk_id;
830	}
831}
832
833/*
834 * Convert a device tree clock ID to our PLL ID.
835 *
836 * @param clk_id	Clock ID according to tegra124 device tree binding
837 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
838 */
839enum clock_id clk_id_to_pll_id(int clk_id)
840{
841	switch (clk_id) {
842	case TEGRA124_CLK_PLL_C:
843		return CLOCK_ID_CGENERAL;
844	case TEGRA124_CLK_PLL_M:
845		return CLOCK_ID_MEMORY;
846	case TEGRA124_CLK_PLL_P:
847		return CLOCK_ID_PERIPH;
848	case TEGRA124_CLK_PLL_A:
849		return CLOCK_ID_AUDIO;
850	case TEGRA124_CLK_PLL_U:
851		return CLOCK_ID_USB;
852	case TEGRA124_CLK_PLL_D:
853	case TEGRA124_CLK_PLL_D_OUT0:
854		return CLOCK_ID_DISPLAY;
855	case TEGRA124_CLK_PLL_X:
856		return CLOCK_ID_XCPU;
857	case TEGRA124_CLK_PLL_E:
858		return CLOCK_ID_EPCI;
859	case TEGRA124_CLK_CLK_32K:
860		return CLOCK_ID_32KHZ;
861	case TEGRA124_CLK_CLK_M:
862		return CLOCK_ID_CLK_M;
863	default:
864		return CLOCK_ID_NONE;
865	}
866}
867#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
868
869void clock_early_init(void)
870{
871	struct clk_rst_ctlr *clkrst =
872		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
873	struct clk_pll_info *pllinfo;
874	u32 data;
875
876	tegra30_set_up_pllp();
877
878	/* clear IDDQ before accessing any other PLLC registers */
879	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
880	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
881	udelay(2);
882
883	/*
884	 * PLLC output frequency set to 600Mhz
885	 * PLLD output frequency set to 925Mhz
886	 */
887	switch (clock_get_osc_freq()) {
888	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
889	case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
890		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
891		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
892		break;
893
894	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
895		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
896		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
897		break;
898
899	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
900	case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
901		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
902		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
903		break;
904	case CLOCK_OSC_FREQ_19_2:
905	case CLOCK_OSC_FREQ_38_4:
906	default:
907		/*
908		 * These are not supported. It is too early to print a
909		 * message and the UART likely won't work anyway due to the
910		 * oscillator being wrong.
911		 */
912		break;
913	}
914
915	/* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
916	writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
917
918	/* PLLC_MISC: Set LOCK_ENABLE */
919	pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
920	setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
921	udelay(2);
922
923	/* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
924	pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
925	data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
926	data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
927	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
928	udelay(2);
929}
930
931/*
932 * clock_early_init_done - Check if clock_early_init() has been called
933 *
934 * Check a register that we set up to see if clock_early_init() has already
935 * been called.
936 *
937 * Return: true if clock_early_init() was called, false if not
938 */
939bool clock_early_init_done(void)
940{
941	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
942	u32 val;
943
944	val = readl(&clkrst->crc_sclk_brst_pol);
945
946	return val == 0x20002222;
947}
948
949void arch_timer_init(void)
950{
951	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
952	u32 freq, val;
953
954	freq = clock_get_rate(CLOCK_ID_CLK_M);
955	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
956
957	/* ARM CNTFRQ */
958	asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
959
960	/* Only Tegra114+ has the System Counter regs */
961	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
962	writel(freq, &sysctr->cntfid0);
963
964	val = readl(&sysctr->cntcr);
965	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
966	writel(val, &sysctr->cntcr);
967	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
968}
969
970#define PLLE_SS_CNTL 0x68
971#define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
972#define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
973#define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
974#define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
975#define  PLLE_SS_CNTL_SSCBYP (1 << 12)
976#define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
977#define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
978#define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
979
980#define PLLE_BASE 0x0e8
981#define  PLLE_BASE_ENABLE (1 << 30)
982#define  PLLE_BASE_LOCK_OVERRIDE (1 << 29)
983#define  PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
984#define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
985#define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
986
987#define PLLE_MISC 0x0ec
988#define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
989#define  PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
990#define  PLLE_MISC_LOCK_ENABLE (1 << 9)
991#define  PLLE_MISC_PTS (1 << 8)
992#define  PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
993#define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
994
995#define PLLE_AUX 0x48c
996#define  PLLE_AUX_SEQ_ENABLE (1 << 24)
997#define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
998
999int tegra_plle_enable(void)
1000{
1001	unsigned int m = 1, n = 200, cpcon = 13;
1002	u32 value;
1003
1004	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1005	value &= ~PLLE_BASE_LOCK_OVERRIDE;
1006	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1007
1008	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1009	value |= PLLE_AUX_ENABLE_SWCTL;
1010	value &= ~PLLE_AUX_SEQ_ENABLE;
1011	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1012
1013	udelay(1);
1014
1015	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1016	value |= PLLE_MISC_IDDQ_SWCTL;
1017	value &= ~PLLE_MISC_IDDQ_OVERRIDE;
1018	value |= PLLE_MISC_LOCK_ENABLE;
1019	value |= PLLE_MISC_PTS;
1020	value |= PLLE_MISC_VREG_BG_CTRL(3);
1021	value |= PLLE_MISC_VREG_CTRL(2);
1022	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1023
1024	udelay(5);
1025
1026	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1027	value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
1028		 PLLE_SS_CNTL_BYPASS_SS;
1029	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1030
1031	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1032	value &= ~PLLE_BASE_PLDIV_CML(0xf);
1033	value &= ~PLLE_BASE_NDIV(0xff);
1034	value &= ~PLLE_BASE_MDIV(0xff);
1035	value |= PLLE_BASE_PLDIV_CML(cpcon);
1036	value |= PLLE_BASE_NDIV(n);
1037	value |= PLLE_BASE_MDIV(m);
1038	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1039
1040	udelay(1);
1041
1042	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1043	value |= PLLE_BASE_ENABLE;
1044	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1045
1046	/* wait for lock */
1047	udelay(300);
1048
1049	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1050	value &= ~PLLE_SS_CNTL_SSCINVERT;
1051	value &= ~PLLE_SS_CNTL_SSCCENTER;
1052
1053	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1054	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1055	value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1056
1057	value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1058	value |= PLLE_SS_CNTL_SSCINC(0x01);
1059	value |= PLLE_SS_CNTL_SSCMAX(0x25);
1060
1061	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1062
1063	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1064	value &= ~PLLE_SS_CNTL_SSCBYP;
1065	value &= ~PLLE_SS_CNTL_BYPASS_SS;
1066	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1067
1068	udelay(1);
1069
1070	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1071	value &= ~PLLE_SS_CNTL_INTERP_RESET;
1072	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1073
1074	udelay(1);
1075
1076	return 0;
1077}
1078
1079void clock_sor_enable_edp_clock(void)
1080{
1081	u32 *reg;
1082
1083	/* uses PLLP, has a non-standard bit layout. */
1084	reg = get_periph_source_reg(PERIPH_ID_SOR0);
1085	setbits_le32(reg, SOR0_CLK_SEL0);
1086}
1087
1088u32 clock_set_display_rate(u32 frequency)
1089{
1090	/**
1091	 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1092	 *           = (cf * n) >> p, where 1MHz < cf < 6MHz
1093	 *           = ((ref / m) * n) >> p
1094	 *
1095	 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1096	 * safe vco, then find best (m, n). since m has only 5 bits, we can
1097	 * iterate all possible values.  Note Tegra 124 supports 11 bits for n,
1098	 * but our pll_fields has only 10 bits for n.
1099	 *
1100	 * Note values undershoot or overshoot target output frequency may not
1101	 * work if the values are not in "safe" range by panel specification.
1102	 */
1103	u32 ref = clock_get_rate(CLOCK_ID_OSC);
1104	u32 divm, divn, divp, cpcon;
1105	u32 cf, vco, rounded_rate = frequency;
1106	u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1107	const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1108		  mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1109		  min_cf = 1 * mhz, max_cf = 6 * mhz;
1110	int mux_bits, divider_bits, source;
1111
1112	for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1113		vco <<= 1;
1114
1115	if (vco < min_vco || vco > max_vco) {
1116		printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1117		       __func__, frequency);
1118		return 0;
1119	}
1120
1121	best_p = divp;
1122	best_diff = vco;
1123
1124	for (divm = 1; divm < max_m && best_diff; divm++) {
1125		cf = ref / divm;
1126		if (cf < min_cf)
1127			break;
1128		if (cf > max_cf)
1129			continue;
1130
1131		divn = vco / cf;
1132		if (divn >= max_n)
1133			continue;
1134
1135		diff = vco - divn * cf;
1136		if (divn + 1 < max_n && diff > cf / 2) {
1137			divn++;
1138			diff = cf - diff;
1139		}
1140
1141		if (diff >= best_diff)
1142			continue;
1143
1144		best_diff = diff;
1145		best_m = divm;
1146		best_n = divn;
1147	}
1148
1149	if (best_n < 50)
1150		cpcon = 2;
1151	else if (best_n < 300)
1152		cpcon = 3;
1153	else if (best_n < 600)
1154		cpcon = 8;
1155	else
1156		cpcon = 12;
1157
1158	if (best_diff) {
1159		printf("%s: Failed to match output frequency %u, best difference is %u\n",
1160		       __func__, frequency, best_diff);
1161		rounded_rate = (ref / best_m * best_n) >> best_p;
1162	}
1163
1164	debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1165	      __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1166
1167	source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1168					 &mux_bits, &divider_bits);
1169	clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1170	clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1171
1172	return rounded_rate;
1173}
1174
1175void clock_set_up_plldp(void)
1176{
1177	struct clk_rst_ctlr *clkrst =
1178			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1179	u32 value;
1180
1181	value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1182	writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1183	clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1184	writel(value, &clkrst->crc_plldp_ss_cfg);
1185}
1186
1187struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1188{
1189	struct clk_rst_ctlr *clkrst =
1190			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1191
1192	switch (clkid) {
1193	case CLOCK_ID_XCPU:
1194	case CLOCK_ID_EPCI:
1195	case CLOCK_ID_SFROM32KHZ:
1196		return &clkrst->crc_pll_simple[clkid - CLOCK_ID_FIRST_SIMPLE];
1197	case CLOCK_ID_DP:
1198		return &clkrst->plldp;
1199	default:
1200		return NULL;
1201	}
1202}
1203
1204struct periph_clk_init periph_clk_init_table[] = {
1205	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1206	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1207	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1208	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1209	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1210	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1211	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1212	{ PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1213	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1214	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1215	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1216	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1217	{ PERIPH_ID_PWM, CLOCK_ID_PERIPH },
1218	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1219	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1220	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1221	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1222	{ PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1223	{ PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1224	{ -1, },
1225};
1226