1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Copyright 2013 Broadcom Corporation.
4 */
5
6#include <linux/stddef.h>
7#include <linux/stringify.h>
8
9#ifdef CONFIG_CLK_DEBUG
10#undef writel
11#undef readl
12static inline void writel(u32 val, void *addr)
13{
14	printf("Write [0x%p] = 0x%08x\n", addr, val);
15	*(u32 *)addr = val;
16}
17
18static inline u32 readl(void *addr)
19{
20	u32 val = *(u32 *)addr;
21	printf("Read  [0x%p] = 0x%08x\n", addr, val);
22	return val;
23}
24#endif
25
26struct clk;
27
28struct clk_lookup {
29	const char *dev_id;
30	const char *con_id;
31	struct clk *clk;
32};
33
34extern struct clk_lookup arch_clk_tbl[];
35extern unsigned int arch_clk_tbl_array_size;
36
37/**
38 * struct clk_ops - standard clock operations
39 * @enable: enable/disable clock, see clk_enable() and clk_disable()
40 * @set_rate: set the clock rate, see clk_set_rate().
41 * @get_rate: get the clock rate, see clk_get_rate().
42 * @round_rate: round a given clock rate, see clk_round_rate().
43 * @set_parent: set the clock's parent, see clk_set_parent().
44 *
45 * Group the common clock implementations together so that we
46 * don't have to keep setting the same fiels again. We leave
47 * enable in struct clk.
48 *
49 */
50struct clk_ops {
51	int (*enable)(struct clk *c, int enable);
52	int (*set_rate)(struct clk *c, unsigned long rate);
53	unsigned long (*get_rate)(struct clk *c);
54	unsigned long (*round_rate)(struct clk *c, unsigned long rate);
55	int (*set_parent)(struct clk *c, struct clk *parent);
56};
57
58struct clk {
59	struct clk *parent;
60	const char *name;
61	int use_cnt;
62	unsigned long rate;	/* in HZ */
63
64	/* programmable divider. 0 means fixed ratio to parent clock */
65	unsigned long div;
66
67	struct clk_src *src;
68	struct clk_ops *ops;
69
70	unsigned long ccu_clk_mgr_base;
71	int sel;
72};
73
74struct refclk *refclk_str_to_clk(const char *name);
75
76/* The common clock framework uses u8 to represent a parent index */
77#define PARENT_COUNT_MAX	((u32)U8_MAX)
78
79#define BAD_CLK_INDEX		U8_MAX	/* Can't ever be valid */
80#define BAD_CLK_NAME		((const char *)-1)
81
82#define BAD_SCALED_DIV_VALUE	U64_MAX
83
84/*
85 * Utility macros for object flag management. If possible, flags
86 * should be defined such that 0 is the desired default value.
87 */
88#define FLAG(type, flag)		BCM_CLK_ ## type ## _FLAGS_ ## flag
89#define FLAG_SET(obj, type, flag)	((obj)->flags |= FLAG(type, flag))
90#define FLAG_CLEAR(obj, type, flag)	((obj)->flags &= ~(FLAG(type, flag)))
91#define FLAG_FLIP(obj, type, flag)	((obj)->flags ^= FLAG(type, flag))
92#define FLAG_TEST(obj, type, flag)	(!!((obj)->flags & FLAG(type, flag)))
93
94/* Clock field state tests */
95
96#define gate_exists(gate)		FLAG_TEST(gate, GATE, EXISTS)
97#define gate_is_enabled(gate)		FLAG_TEST(gate, GATE, ENABLED)
98#define gate_is_hw_controllable(gate)	FLAG_TEST(gate, GATE, HW)
99#define gate_is_sw_controllable(gate)	FLAG_TEST(gate, GATE, SW)
100#define gate_is_sw_managed(gate)	FLAG_TEST(gate, GATE, SW_MANAGED)
101#define gate_is_no_disable(gate)	FLAG_TEST(gate, GATE, NO_DISABLE)
102
103#define gate_flip_enabled(gate)		FLAG_FLIP(gate, GATE, ENABLED)
104
105#define divider_exists(div)		FLAG_TEST(div, DIV, EXISTS)
106#define divider_is_fixed(div)		FLAG_TEST(div, DIV, FIXED)
107#define divider_has_fraction(div)	(!divider_is_fixed(div) && \
108						(div)->frac_width > 0)
109
110#define selector_exists(sel)		((sel)->width != 0)
111#define trigger_exists(trig)		FLAG_TEST(trig, TRIG, EXISTS)
112
113/* Clock type, used to tell common block what it's part of */
114enum bcm_clk_type {
115	bcm_clk_none,		/* undefined clock type */
116	bcm_clk_bus,
117	bcm_clk_core,
118	bcm_clk_peri
119};
120
121/*
122 * Gating control and status is managed by a 32-bit gate register.
123 *
124 * There are several types of gating available:
125 * - (no gate)
126 *     A clock with no gate is assumed to be always enabled.
127 * - hardware-only gating (auto-gating)
128 *     Enabling or disabling clocks with this type of gate is
129 *     managed automatically by the hardware. Such clocks can be
130 *     considered by the software to be enabled. The current status
131 *     of auto-gated clocks can be read from the gate status bit.
132 * - software-only gating
133 *     Auto-gating is not available for this type of clock.
134 *     Instead, software manages whether it's enabled by setting or
135 *     clearing the enable bit. The current gate status of a gate
136 *     under software control can be read from the gate status bit.
137 *     To ensure a change to the gating status is complete, the
138 *     status bit can be polled to verify that the gate has entered
139 *     the desired state.
140 * - selectable hardware or software gating
141 *     Gating for this type of clock can be configured to be either
142 *     under software or hardware control. Which type is in use is
143 *     determined by the hw_sw_sel bit of the gate register.
144 */
145struct bcm_clk_gate {
146	u32 offset;		/* gate register offset */
147	u32 status_bit;		/* 0: gate is disabled; 0: gatge is enabled */
148	u32 en_bit;		/* 0: disable; 1: enable */
149	u32 hw_sw_sel_bit;	/* 0: hardware gating; 1: software gating */
150	u32 flags;		/* BCM_CLK_GATE_FLAGS_* below */
151};
152
153/*
154 * Gate flags:
155 *   HW         means this gate can be auto-gated
156 *   SW         means the state of this gate can be software controlled
157 *   NO_DISABLE means this gate is (only) enabled if under software control
158 *   SW_MANAGED means the status of this gate is under software control
159 *   ENABLED    means this software-managed gate is *supposed* to be enabled
160 */
161#define BCM_CLK_GATE_FLAGS_EXISTS	((u32)1 << 0)	/* Gate is valid */
162#define BCM_CLK_GATE_FLAGS_HW		((u32)1 << 1)	/* Can auto-gate */
163#define BCM_CLK_GATE_FLAGS_SW		((u32)1 << 2)	/* Software control */
164#define BCM_CLK_GATE_FLAGS_NO_DISABLE	((u32)1 << 3)	/* HW or enabled */
165#define BCM_CLK_GATE_FLAGS_SW_MANAGED	((u32)1 << 4)	/* SW now in control */
166#define BCM_CLK_GATE_FLAGS_ENABLED	((u32)1 << 5)	/* If SW_MANAGED */
167
168/*
169 * Gate initialization macros.
170 *
171 * Any gate initially under software control will be enabled.
172 */
173
174/* A hardware/software gate initially under software control */
175#define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
176	{								\
177		.offset = (_offset),					\
178		.status_bit = (_status_bit),				\
179		.en_bit = (_en_bit),					\
180		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
181		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
182			FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|	\
183			FLAG(GATE, EXISTS),				\
184	}
185
186/* A hardware/software gate initially under hardware control */
187#define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
188	{								\
189		.offset = (_offset),					\
190		.status_bit = (_status_bit),				\
191		.en_bit = (_en_bit),					\
192		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
193		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
194			FLAG(GATE, EXISTS),				\
195	}
196
197/* A hardware-or-enabled gate (enabled if not under hardware control) */
198#define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)	\
199	{								\
200		.offset = (_offset),					\
201		.status_bit = (_status_bit),				\
202		.en_bit = (_en_bit),					\
203		.hw_sw_sel_bit = (_hw_sw_sel_bit),			\
204		.flags = FLAG(GATE, HW)|FLAG(GATE, SW)|			\
205			FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),	\
206	}
207
208/* A software-only gate */
209#define SW_ONLY_GATE(_offset, _status_bit, _en_bit)			\
210	{								\
211		.offset = (_offset),					\
212		.status_bit = (_status_bit),				\
213		.en_bit = (_en_bit),					\
214		.flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|		\
215			FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),		\
216	}
217
218/* A hardware-only gate */
219#define HW_ONLY_GATE(_offset, _status_bit)				\
220	{								\
221		.offset = (_offset),					\
222		.status_bit = (_status_bit),				\
223		.flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),		\
224	}
225
226/*
227 * Each clock can have zero, one, or two dividers which change the
228 * output rate of the clock. Each divider can be either fixed or
229 * variable. If there are two dividers, they are the "pre-divider"
230 * and the "regular" or "downstream" divider. If there is only one,
231 * there is no pre-divider.
232 *
233 * A fixed divider is any non-zero (positive) value, and it
234 * indicates how the input rate is affected by the divider.
235 *
236 * The value of a variable divider is maintained in a sub-field of a
237 * 32-bit divider register. The position of the field in the
238 * register is defined by its offset and width. The value recorded
239 * in this field is always 1 less than the value it represents.
240 *
241 * In addition, a variable divider can indicate that some subset
242 * of its bits represent a "fractional" part of the divider. Such
243 * bits comprise the low-order portion of the divider field, and can
244 * be viewed as representing the portion of the divider that lies to
245 * the right of the decimal point. Most variable dividers have zero
246 * fractional bits. Variable dividers with non-zero fraction width
247 * still record a value 1 less than the value they represent; the
248 * added 1 does *not* affect the low-order bit in this case, it
249 * affects the bits above the fractional part only. (Often in this
250 * code a divider field value is distinguished from the value it
251 * represents by referring to the latter as a "divisor".)
252 *
253 * In order to avoid dealing with fractions, divider arithmetic is
254 * performed using "scaled" values. A scaled value is one that's
255 * been left-shifted by the fractional width of a divider. Dividing
256 * a scaled value by a scaled divisor produces the desired quotient
257 * without loss of precision and without any other special handling
258 * for fractions.
259 *
260 * The recorded value of a variable divider can be modified. To
261 * modify either divider (or both), a clock must be enabled (i.e.,
262 * using its gate). In addition, a trigger register (described
263 * below) must be used to commit the change, and polled to verify
264 * the change is complete.
265 */
266struct bcm_clk_div {
267	union {
268		struct {	/* variable divider */
269			u32 offset;	/* divider register offset */
270			u32 shift;	/* field shift */
271			u32 width;	/* field width */
272			u32 frac_width;	/* field fraction width */
273
274			u64 scaled_div;	/* scaled divider value */
275		};
276		u32 fixed;	/* non-zero fixed divider value */
277	};
278	u32 flags;		/* BCM_CLK_DIV_FLAGS_* below */
279};
280
281/*
282 * Divider flags:
283 *   EXISTS means this divider exists
284 *   FIXED means it is a fixed-rate divider
285 */
286#define BCM_CLK_DIV_FLAGS_EXISTS	((u32)1 << 0)	/* Divider is valid */
287#define BCM_CLK_DIV_FLAGS_FIXED		((u32)1 << 1)	/* Fixed-value */
288
289/* Divider initialization macros */
290
291/* A fixed (non-zero) divider */
292#define FIXED_DIVIDER(_value)						\
293	{								\
294		.fixed = (_value),					\
295		.flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),		\
296	}
297
298/* A divider with an integral divisor */
299#define DIVIDER(_offset, _shift, _width)				\
300	{								\
301		.offset = (_offset),					\
302		.shift = (_shift),					\
303		.width = (_width),					\
304		.scaled_div = BAD_SCALED_DIV_VALUE,			\
305		.flags = FLAG(DIV, EXISTS),				\
306	}
307
308/* A divider whose divisor has an integer and fractional part */
309#define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)		\
310	{								\
311		.offset = (_offset),					\
312		.shift = (_shift),					\
313		.width = (_width),					\
314		.frac_width = (_frac_width),				\
315		.scaled_div = BAD_SCALED_DIV_VALUE,			\
316		.flags = FLAG(DIV, EXISTS),				\
317	}
318
319/*
320 * Clocks may have multiple "parent" clocks. If there is more than
321 * one, a selector must be specified to define which of the parent
322 * clocks is currently in use. The selected clock is indicated in a
323 * sub-field of a 32-bit selector register. The range of
324 * representable selector values typically exceeds the number of
325 * available parent clocks. Occasionally the reset value of a
326 * selector field is explicitly set to a (specific) value that does
327 * not correspond to a defined input clock.
328 *
329 * We register all known parent clocks with the common clock code
330 * using a packed array (i.e., no empty slots) of (parent) clock
331 * names, and refer to them later using indexes into that array.
332 * We maintain an array of selector values indexed by common clock
333 * index values in order to map between these common clock indexes
334 * and the selector values used by the hardware.
335 *
336 * Like dividers, a selector can be modified, but to do so a clock
337 * must be enabled, and a trigger must be used to commit the change.
338 */
339struct bcm_clk_sel {
340	u32 offset;		/* selector register offset */
341	u32 shift;		/* field shift */
342	u32 width;		/* field width */
343
344	u32 parent_count;	/* number of entries in parent_sel[] */
345	u32 *parent_sel;	/* array of parent selector values */
346	u8 clk_index;		/* current selected index in parent_sel[] */
347};
348
349/* Selector initialization macro */
350#define SELECTOR(_offset, _shift, _width)				\
351	{								\
352		.offset = (_offset),					\
353		.shift = (_shift),					\
354		.width = (_width),					\
355		.clk_index = BAD_CLK_INDEX,				\
356	}
357
358/*
359 * Making changes to a variable divider or a selector for a clock
360 * requires the use of a trigger. A trigger is defined by a single
361 * bit within a register. To signal a change, a 1 is written into
362 * that bit. To determine when the change has been completed, that
363 * trigger bit is polled; the read value will be 1 while the change
364 * is in progress, and 0 when it is complete.
365 *
366 * Occasionally a clock will have more than one trigger. In this
367 * case, the "pre-trigger" will be used when changing a clock's
368 * selector and/or its pre-divider.
369 */
370struct bcm_clk_trig {
371	u32 offset;		/* trigger register offset */
372	u32 bit;		/* trigger bit */
373	u32 flags;		/* BCM_CLK_TRIG_FLAGS_* below */
374};
375
376/*
377 * Trigger flags:
378 *   EXISTS means this trigger exists
379 */
380#define BCM_CLK_TRIG_FLAGS_EXISTS	((u32)1 << 0)	/* Trigger is valid */
381
382/* Trigger initialization macro */
383#define TRIGGER(_offset, _bit)						\
384	{								\
385		.offset = (_offset),					\
386		.bit = (_bit),						\
387		.flags = FLAG(TRIG, EXISTS),				\
388	}
389
390struct bus_clk_data {
391	struct bcm_clk_gate gate;
392};
393
394struct core_clk_data {
395	struct bcm_clk_gate gate;
396};
397
398struct peri_clk_data {
399	struct bcm_clk_gate gate;
400	struct bcm_clk_trig pre_trig;
401	struct bcm_clk_div pre_div;
402	struct bcm_clk_trig trig;
403	struct bcm_clk_div div;
404	struct bcm_clk_sel sel;
405	const char *clocks[];	/* must be last; use CLOCKS() to declare */
406};
407#define CLOCKS(...)	{ __VA_ARGS__, NULL, }
408#define NO_CLOCKS	{ NULL, }	/* Must use of no parent clocks */
409
410struct refclk {
411	struct clk clk;
412};
413
414struct peri_clock {
415	struct clk clk;
416	struct peri_clk_data *data;
417};
418
419struct ccu_clock {
420	struct clk clk;
421
422	int num_policy_masks;
423	unsigned long policy_freq_offset;
424	int freq_bit_shift;	/* 8 for most CCUs */
425	unsigned long policy_ctl_offset;
426	unsigned long policy0_mask_offset;
427	unsigned long policy1_mask_offset;
428	unsigned long policy2_mask_offset;
429	unsigned long policy3_mask_offset;
430	unsigned long policy0_mask2_offset;
431	unsigned long policy1_mask2_offset;
432	unsigned long policy2_mask2_offset;
433	unsigned long policy3_mask2_offset;
434	unsigned long lvm_en_offset;
435
436	int freq_id;
437	unsigned long *freq_tbl;
438};
439
440struct bus_clock {
441	struct clk clk;
442	struct bus_clk_data *data;
443	unsigned long *freq_tbl;
444};
445
446struct ref_clock {
447	struct clk clk;
448};
449
450static inline int is_same_clock(struct clk *a, struct clk *b)
451{
452	return a == b;
453}
454
455#define to_clk(p) (&((p)->clk))
456#define name_to_clk(name) (&((name##_clk).clk))
457/* declare a struct clk_lookup */
458#define CLK_LK(name) \
459{.con_id = __stringify(name##_clk), .clk = name_to_clk(name),}
460
461static inline struct refclk *to_refclk(struct clk *clock)
462{
463	return container_of(clock, struct refclk, clk);
464}
465
466static inline struct peri_clock *to_peri_clk(struct clk *clock)
467{
468	return container_of(clock, struct peri_clock, clk);
469}
470
471static inline struct ccu_clock *to_ccu_clk(struct clk *clock)
472{
473	return container_of(clock, struct ccu_clock, clk);
474}
475
476static inline struct bus_clock *to_bus_clk(struct clk *clock)
477{
478	return container_of(clock, struct bus_clock, clk);
479}
480
481static inline struct ref_clock *to_ref_clk(struct clk *clock)
482{
483	return container_of(clock, struct ref_clock, clk);
484}
485
486extern struct clk_ops peri_clk_ops;
487extern struct clk_ops ccu_clk_ops;
488extern struct clk_ops bus_clk_ops;
489extern struct clk_ops ref_clk_ops;
490
491int clk_get_and_enable(char *clkstr);
492