1#include <fenv.h>
2#include "libm.h"
3
4#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
5/* exact add, assumes exponent_x >= exponent_y */
6static void add(long double *hi, long double *lo, long double x, long double y)
7{
8	long double r;
9
10	r = x + y;
11	*hi = r;
12	r -= x;
13	*lo = y - r;
14}
15
16/* exact mul, assumes no over/underflow */
17static void mul(long double *hi, long double *lo, long double x, long double y)
18{
19	static const long double c = 1.0 + 0x1p32L;
20	long double cx, xh, xl, cy, yh, yl;
21
22	cx = c*x;
23	xh = (x - cx) + cx;
24	xl = x - xh;
25	cy = c*y;
26	yh = (y - cy) + cy;
27	yl = y - yh;
28	*hi = x*y;
29	*lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
30}
31
32/*
33assume (long double)(hi+lo) == hi
34return an adjusted hi so that rounding it to double (or less) precision is correct
35*/
36static long double adjust(long double hi, long double lo)
37{
38	union ldshape uhi, ulo;
39
40	if (lo == 0)
41		return hi;
42	uhi.f = hi;
43	if (uhi.i.m & 0x3ff)
44		return hi;
45	ulo.f = lo;
46	if ((uhi.i.se & 0x8000) == (ulo.i.se & 0x8000))
47		uhi.i.m++;
48	else {
49		/* handle underflow and take care of ld80 implicit msb */
50		if (uhi.i.m << 1 == 0) {
51			uhi.i.m = 0;
52			uhi.i.se--;
53		}
54		uhi.i.m--;
55	}
56	return uhi.f;
57}
58
59/* adjusted add so the result is correct when rounded to double (or less) precision */
60static long double dadd(long double x, long double y)
61{
62	add(&x, &y, x, y);
63	return adjust(x, y);
64}
65
66/* adjusted mul so the result is correct when rounded to double (or less) precision */
67static long double dmul(long double x, long double y)
68{
69	mul(&x, &y, x, y);
70	return adjust(x, y);
71}
72
73static int getexp(long double x)
74{
75	union ldshape u;
76	u.f = x;
77	return u.i.se & 0x7fff;
78}
79
80double fma(double x, double y, double z)
81{
82	#pragma STDC FENV_ACCESS ON
83	long double hi, lo1, lo2, xy;
84	int round, ez, exy;
85
86	/* handle +-inf,nan */
87	if (!isfinite(x) || !isfinite(y))
88		return x*y + z;
89	if (!isfinite(z))
90		return z;
91	/* handle +-0 */
92	if (x == 0.0 || y == 0.0)
93		return x*y + z;
94	round = fegetround();
95	if (z == 0.0) {
96		if (round == FE_TONEAREST)
97			return dmul(x, y);
98		return x*y;
99	}
100
101	/* exact mul and add require nearest rounding */
102	/* spurious inexact exceptions may be raised */
103	fesetround(FE_TONEAREST);
104	mul(&xy, &lo1, x, y);
105	exy = getexp(xy);
106	ez = getexp(z);
107	if (ez > exy) {
108		add(&hi, &lo2, z, xy);
109	} else if (ez > exy - 12) {
110		add(&hi, &lo2, xy, z);
111		if (hi == 0) {
112			/*
113			xy + z is 0, but it should be calculated with the
114			original rounding mode so the sign is correct, if the
115			compiler does not support FENV_ACCESS ON it does not
116			know about the changed rounding mode and eliminates
117			the xy + z below without the volatile memory access
118			*/
119			volatile double z_;
120			fesetround(round);
121			z_ = z;
122			return (xy + z_) + lo1;
123		}
124	} else {
125		/*
126		ez <= exy - 12
127		the 12 extra bits (1guard, 11round+sticky) are needed so with
128			lo = dadd(lo1, lo2)
129		elo <= ehi - 11, and we use the last 10 bits in adjust so
130			dadd(hi, lo)
131		gives correct result when rounded to double
132		*/
133		hi = xy;
134		lo2 = z;
135	}
136	/*
137	the result is stored before return for correct precision and exceptions
138
139	one corner case is when the underflow flag should be raised because
140	the precise result is an inexact subnormal double, but the calculated
141	long double result is an exact subnormal double
142	(so rounding to double does not raise exceptions)
143
144	in nearest rounding mode dadd takes care of this: the last bit of the
145	result is adjusted so rounding sees an inexact value when it should
146
147	in non-nearest rounding mode fenv is used for the workaround
148	*/
149	fesetround(round);
150	if (round == FE_TONEAREST)
151		z = dadd(hi, dadd(lo1, lo2));
152	else {
153#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
154		int e = fetestexcept(FE_INEXACT);
155		feclearexcept(FE_INEXACT);
156#endif
157		z = hi + (lo1 + lo2);
158#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
159		if (getexp(z) < 0x3fff-1022 && fetestexcept(FE_INEXACT))
160			feraiseexcept(FE_UNDERFLOW);
161		else if (e)
162			feraiseexcept(FE_INEXACT);
163#endif
164	}
165	return z;
166}
167#else
168/* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
169/*-
170 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
171 * All rights reserved.
172 *
173 * Redistribution and use in source and binary forms, with or without
174 * modification, are permitted provided that the following conditions
175 * are met:
176 * 1. Redistributions of source code must retain the above copyright
177 *    notice, this list of conditions and the following disclaimer.
178 * 2. Redistributions in binary form must reproduce the above copyright
179 *    notice, this list of conditions and the following disclaimer in the
180 *    documentation and/or other materials provided with the distribution.
181 *
182 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
183 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
184 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
185 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
186 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
187 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
188 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
189 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
190 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
191 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
192 * SUCH DAMAGE.
193 */
194
195/*
196 * A struct dd represents a floating-point number with twice the precision
197 * of a double.  We maintain the invariant that "hi" stores the 53 high-order
198 * bits of the result.
199 */
200struct dd {
201	double hi;
202	double lo;
203};
204
205/*
206 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
207 * that both a and b are finite, but make no assumptions about their relative
208 * magnitudes.
209 */
210static inline struct dd dd_add(double a, double b)
211{
212	struct dd ret;
213	double s;
214
215	ret.hi = a + b;
216	s = ret.hi - a;
217	ret.lo = (a - (ret.hi - s)) + (b - s);
218	return (ret);
219}
220
221/*
222 * Compute a+b, with a small tweak:  The least significant bit of the
223 * result is adjusted into a sticky bit summarizing all the bits that
224 * were lost to rounding.  This adjustment negates the effects of double
225 * rounding when the result is added to another number with a higher
226 * exponent.  For an explanation of round and sticky bits, see any reference
227 * on FPU design, e.g.,
228 *
229 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
230 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
231 */
232static inline double add_adjusted(double a, double b)
233{
234	struct dd sum;
235	union {double f; uint64_t i;} uhi, ulo;
236
237	sum = dd_add(a, b);
238	if (sum.lo != 0) {
239		uhi.f = sum.hi;
240		if ((uhi.i & 1) == 0) {
241			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
242			ulo.f = sum.lo;
243			uhi.i += 1 - ((uhi.i ^ ulo.i) >> 62);
244			sum.hi = uhi.f;
245		}
246	}
247	return (sum.hi);
248}
249
250/*
251 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
252 * that the result will be subnormal, and care is taken to ensure that
253 * double rounding does not occur.
254 */
255static inline double add_and_denormalize(double a, double b, int scale)
256{
257	struct dd sum;
258	union {double f; uint64_t i;} uhi, ulo;
259	int bits_lost;
260
261	sum = dd_add(a, b);
262
263	/*
264	 * If we are losing at least two bits of accuracy to denormalization,
265	 * then the first lost bit becomes a round bit, and we adjust the
266	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
267	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
268	 * break any ties in the correct direction.
269	 *
270	 * If we are losing only one bit to denormalization, however, we must
271	 * break the ties manually.
272	 */
273	if (sum.lo != 0) {
274		uhi.f = sum.hi;
275		bits_lost = -((int)(uhi.i >> 52) & 0x7ff) - scale + 1;
276		if ((bits_lost != 1) ^ (int)(uhi.i & 1)) {
277			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
278			ulo.f = sum.lo;
279			uhi.i += 1 - (((uhi.i ^ ulo.i) >> 62) & 2);
280			sum.hi = uhi.f;
281		}
282	}
283	return scalbn(sum.hi, scale);
284}
285
286/*
287 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
288 * that both a and b are normalized, so no underflow or overflow will occur.
289 * The current rounding mode must be round-to-nearest.
290 */
291static inline struct dd dd_mul(double a, double b)
292{
293	static const double split = 0x1p27 + 1.0;
294	struct dd ret;
295	double ha, hb, la, lb, p, q;
296
297	p = a * split;
298	ha = a - p;
299	ha += p;
300	la = a - ha;
301
302	p = b * split;
303	hb = b - p;
304	hb += p;
305	lb = b - hb;
306
307	p = ha * hb;
308	q = ha * lb + la * hb;
309
310	ret.hi = p + q;
311	ret.lo = p - ret.hi + q + la * lb;
312	return (ret);
313}
314
315/*
316 * Fused multiply-add: Compute x * y + z with a single rounding error.
317 *
318 * We use scaling to avoid overflow/underflow, along with the
319 * canonical precision-doubling technique adapted from:
320 *
321 *      Dekker, T.  A Floating-Point Technique for Extending the
322 *      Available Precision.  Numer. Math. 18, 224-242 (1971).
323 *
324 * This algorithm is sensitive to the rounding precision.  FPUs such
325 * as the i387 must be set in double-precision mode if variables are
326 * to be stored in FP registers in order to avoid incorrect results.
327 * This is the default on FreeBSD, but not on many other systems.
328 *
329 * Hardware instructions should be used on architectures that support it,
330 * since this implementation will likely be several times slower.
331 */
332double fma(double x, double y, double z)
333{
334	#pragma STDC FENV_ACCESS ON
335	double xs, ys, zs, adj;
336	struct dd xy, r;
337	int oround;
338	int ex, ey, ez;
339	int spread;
340
341	/*
342	 * Handle special cases. The order of operations and the particular
343	 * return values here are crucial in handling special cases involving
344	 * infinities, NaNs, overflows, and signed zeroes correctly.
345	 */
346	if (!isfinite(x) || !isfinite(y))
347		return (x * y + z);
348	if (!isfinite(z))
349		return (z);
350	if (x == 0.0 || y == 0.0)
351		return (x * y + z);
352	if (z == 0.0)
353		return (x * y);
354
355	xs = frexp(x, &ex);
356	ys = frexp(y, &ey);
357	zs = frexp(z, &ez);
358	oround = fegetround();
359	spread = ex + ey - ez;
360
361	/*
362	 * If x * y and z are many orders of magnitude apart, the scaling
363	 * will overflow, so we handle these cases specially.  Rounding
364	 * modes other than FE_TONEAREST are painful.
365	 */
366	if (spread < -DBL_MANT_DIG) {
367#ifdef FE_INEXACT
368		feraiseexcept(FE_INEXACT);
369#endif
370#ifdef FE_UNDERFLOW
371		if (!isnormal(z))
372			feraiseexcept(FE_UNDERFLOW);
373#endif
374		switch (oround) {
375		default: /* FE_TONEAREST */
376			return (z);
377#ifdef FE_TOWARDZERO
378		case FE_TOWARDZERO:
379			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
380				return (z);
381			else
382				return (nextafter(z, 0));
383#endif
384#ifdef FE_DOWNWARD
385		case FE_DOWNWARD:
386			if (x > 0.0 ^ y < 0.0)
387				return (z);
388			else
389				return (nextafter(z, -INFINITY));
390#endif
391#ifdef FE_UPWARD
392		case FE_UPWARD:
393			if (x > 0.0 ^ y < 0.0)
394				return (nextafter(z, INFINITY));
395			else
396				return (z);
397#endif
398		}
399	}
400	if (spread <= DBL_MANT_DIG * 2)
401		zs = scalbn(zs, -spread);
402	else
403		zs = copysign(DBL_MIN, zs);
404
405	fesetround(FE_TONEAREST);
406
407	/*
408	 * Basic approach for round-to-nearest:
409	 *
410	 *     (xy.hi, xy.lo) = x * y           (exact)
411	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
412	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
413	 *     result = r.hi + adj              (correctly rounded)
414	 */
415	xy = dd_mul(xs, ys);
416	r = dd_add(xy.hi, zs);
417
418	spread = ex + ey;
419
420	if (r.hi == 0.0) {
421		/*
422		 * When the addends cancel to 0, ensure that the result has
423		 * the correct sign.
424		 */
425		fesetround(oround);
426		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
427		return xy.hi + vzs + scalbn(xy.lo, spread);
428	}
429
430	if (oround != FE_TONEAREST) {
431		/*
432		 * There is no need to worry about double rounding in directed
433		 * rounding modes.
434		 * But underflow may not be raised properly, example in downward rounding:
435		 * fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
436		 */
437		double ret;
438#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
439		int e = fetestexcept(FE_INEXACT);
440		feclearexcept(FE_INEXACT);
441#endif
442		fesetround(oround);
443		adj = r.lo + xy.lo;
444		ret = scalbn(r.hi + adj, spread);
445#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
446		if (ilogb(ret) < -1022 && fetestexcept(FE_INEXACT))
447			feraiseexcept(FE_UNDERFLOW);
448		else if (e)
449			feraiseexcept(FE_INEXACT);
450#endif
451		return ret;
452	}
453
454	adj = add_adjusted(r.lo, xy.lo);
455	if (spread + ilogb(r.hi) > -1023)
456		return scalbn(r.hi + adj, spread);
457	else
458		return add_and_denormalize(r.hi, adj, spread);
459}
460#endif
461