1(*
2 * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *)
6
7theory More_Numeral_Type
8  imports "Word_Lib.WordSetup"
9begin
10
11(* This theory provides additional setup for numeral types, which should probably go into
12   Numeral_Type in the distribution at some point. *)
13
14text \<open>
15  The function package uses @{const size} for guessing termination measures.
16  Using @{const size} also provides a convenient cast to natural numbers.
17\<close>
18
19instantiation num1 :: size
20begin
21  definition size_num1 where [simp, code]: "size (n::num1) = 0"
22  instance ..
23end
24
25instantiation bit0 and bit1 :: (finite) size
26begin
27  definition size_bit0 where [code]: "size n = nat (Rep_bit0 n)"
28  definition size_bit1 where [code]: "size n = nat (Rep_bit1 n)"
29  instance ..
30end
31
32(* As in the parent theory Numeral_Type, we first prove everything abstractly to avoid duplication,
33   and then instantiate bit0 and bit1. *)
34locale mod_size_order = mod_ring n Rep Abs
35  for n :: int
36  and Rep :: "'a::{comm_ring_1,size,linorder} \<Rightarrow> int"
37  and Abs :: "int \<Rightarrow> 'a::{comm_ring_1,size,linorder}" +
38  assumes size_def: "size x = nat (Rep x)"
39  assumes less_def: "(a < b) = (Rep a < Rep b)"
40  assumes less_eq_def: "(a \<le> b) = (Rep a \<le> Rep b)"
41begin
42
43text \<open>
44  Automatic simplification of concrete @{term "(<)"} and @{term "(<=)"} goals on numeral types.
45\<close>
46lemmas order_numeral[simp] =
47  less_def[of "numeral a" "numeral b" for a b]
48  less_eq_def[of "numeral a" "numeral b" for a b]
49  less_def[of "0" "numeral b" for b]
50  less_def[of "1" "numeral b" for b]
51  less_eq_def[of "0" "numeral b" for b]
52  less_eq_def[of "1" "numeral b" for b]
53  less_def[of "numeral a" "0" for a]
54  less_def[of "numeral a" "1" for a]
55  less_eq_def[of "numeral a" "0" for a]
56  less_eq_def[of "numeral a" "1" for a]
57
58text \<open> Simplifying size numerals. \<close>
59lemmas [simp] = Rep_numeral
60lemmas size_numerals[simp] = size_def[of "numeral m" for m]
61
62text \<open> Simplifying representatives of 0 and 1 \<close>
63lemmas [simp] = Rep_0 Rep_1
64
65lemmas definitions = definitions less_def less_eq_def size_def
66
67lemmas Rep = type_definition.Rep[OF type]
68lemmas Abs_cases = type_definition.Abs_cases[OF type]
69
70lemma of_nat_size[simp]:
71  "of_nat (size x) = (x::'a)"
72  by (cases x rule: Abs_cases) (clarsimp simp: Abs_inverse of_int_eq size_def)
73
74lemma size_of_nat[simp]:
75  "size (of_nat x :: 'a) = x mod n"
76  by (simp add: Rep_Abs_mod of_nat_eq size0 size_def)
77
78lemma zero_less_eq[simp]:
79  "0 \<le> (x :: 'a)"
80  using Rep by (simp add: less_eq_def)
81
82lemma zero_less_one[simp,intro!]:
83  "0 < (1::'a)"
84  by (simp add: less_def)
85
86lemma zero_least[simp,intro]:
87  "(x::'a) < y \<Longrightarrow> 0 < y"
88  by (simp add: le_less_trans)
89
90lemma not_less_zero_bit0[simp]:
91  "\<not> (x::'a) < 0"
92  by (simp add: not_less)
93
94lemmas not_less_zeroE[elim!] = notE[OF not_less_zero]
95
96lemma one_leq[simp]:
97  "(1 \<le> x) = (0 < (x::'a))"
98  using less_def less_eq_def by auto
99
100lemma less_eq_0[simp]:
101  "(x \<le> 0) = (x = (0::'a))"
102  by (simp add: antisym)
103
104lemma size_less[simp]:
105  "(size (x::'a) < size y) = (x < y)"
106  by (cases x rule: Abs_cases, cases y rule: Abs_cases) (auto simp: Abs_inverse definitions)
107
108lemma size_inj[simp]:
109  "(size (x::'a) = size y) = (x = y)"
110  by (metis of_nat_size)
111
112lemma size_less_eq[simp]:
113  "(size (x::'a) \<le> size y) = (x \<le> y)"
114  by (auto simp: le_eq_less_or_eq)
115
116lemma size_0[simp]:
117  "size (0::'a) = 0"
118  by (simp add: size_def)
119
120lemma size_1[simp]:
121  "size (1::'a) = 1"
122  by (simp add: size_def)
123
124lemma size_eq_0[simp]:
125  "(size x = 0) = ((x::'a) = 0)"
126  using size_inj by fastforce
127
128lemma minus_less:
129  "\<lbrakk> y \<le> x; 0 < y \<rbrakk> \<Longrightarrow> x - y < (x::'a)"
130  unfolding definitions
131  by (cases x rule: Abs_cases, cases y rule: Abs_cases) (simp add: Abs_inverse)
132
133lemma pred[simp,intro!]:
134  "0 < (x::'a) \<Longrightarrow> x - 1 < x"
135  by (auto intro!: minus_less)
136
137lemma minus1_leq:
138  "\<lbrakk> x - 1 \<le> y; y < x \<rbrakk> \<Longrightarrow> (y::'a) = x-1"
139  by (smt Rep_1 Rep_Abs_mod Rep_less_n less_def diff_def int_mod_ge le_neq_trans)
140
141lemma max_bound_leq[simp,intro!]:
142  "(x::'a) \<le> -1"
143  by (smt Rep_1 Rep_Abs_mod Rep_less_n less_eq_def int_mod_ge' minus_def)
144
145lemma leq_minus1_less:
146  "0 < y \<Longrightarrow> (x \<le> y - 1) = (x < (y::'a))"
147  by (metis le_less less_trans minus1_leq not_less pred)
148
149lemma max_bound_neq_conv[simp]:
150  "(x \<noteq> -1) = ((x::'a) < -1)"
151  using le_neq_trans by auto
152
153lemma max_bound_leq_conv[simp]:
154  "(- 1 \<le> (x::'a)) = (x = - 1)"
155  by (simp add: eq_iff)
156
157lemma max_bound_not_less[simp]:
158  "\<not> -1 < (x::'a)"
159  using minus1_leq by fastforce
160
161lemma minus_1_eq:
162  "(-1::'a) = of_nat (nat n - 1)"
163  unfolding definitions using Rep_Abs_1 of_nat_eq size1 by auto
164
165lemma n_not_less_Rep[simp]:
166  "\<not> n < Rep x"
167  using Rep[of x] by (simp add: not_less)
168
169lemma size_plus:
170  "(x::'a) < x + y \<Longrightarrow> size (x + y) = size x + size y"
171  unfolding definitions Rep_Abs_mod
172  using Rep size0
173  by (simp flip: nat_add_distrib add: eq_nat_nat_iff pos_mod_sign mod_add_if_z split: if_split_asm)
174
175lemma Suc_size[simp]:
176  "(x::'a) < x + 1 \<Longrightarrow> size (x + 1) = Suc (size x)"
177  by (simp add: size_plus)
178
179lemma no_overflow_eq_max_bound:
180  "((x::'a) < x + 1) = (x < -1)"
181  unfolding definitions
182  by (smt Rep_Abs_mod Rep_Abs_1 Rep_less_n int_mod_ge int_mod_ge' size0)
183
184lemma plus_one_leq:
185  "x < y \<Longrightarrow> x + 1 \<le> (y::'a)"
186  by (metis add_diff_cancel_right' leq_minus1_less not_le zero_least)
187
188lemma less_uminus:
189  "\<lbrakk> - x < y; x \<noteq> 0 \<rbrakk> \<Longrightarrow> - y < (x::'a)"
190  unfolding definitions
191  by (smt Rep_inverse Rep_mod Rep_Abs_mod size0 zmod_zminus1_eq_if)
192
193lemma of_nat_cases[case_names of_nat]:
194  "(\<And>m. \<lbrakk> (x::'a) = of_nat m; m < nat n \<rbrakk> \<Longrightarrow> P) \<Longrightarrow> P"
195  by (metis mod_type.Rep_less_n mod_type_axioms nat_mono_iff of_nat_size size0 size_def)
196
197lemma minus_induct[case_names 0 minus]:
198  assumes "P (0::'a)"
199  assumes suc: "\<And>x. \<lbrakk> P (x - 1); 0 < x \<rbrakk> \<Longrightarrow> P x"
200  shows "P x"
201proof (cases x rule: of_nat_cases)
202  case (of_nat m)
203  have "P (of_nat m)"
204  proof (induct m)
205    case 0
206    then show ?case using `P 0` by simp
207  next
208    case (Suc m)
209    show ?case
210    proof (cases "1 + of_nat m = (0::'a)")
211      case True
212      then show ?thesis using `P 0` by simp
213    next
214      case False
215      with Suc suc show ?thesis by (metis add_diff_cancel_left' less_eq_0 not_less of_nat_Suc)
216    qed
217  qed
218  with of_nat show ?thesis by simp
219qed
220
221lemma plus_induct[case_names 0 plus]:
222  assumes "P (0::'a)"
223  assumes suc: "\<And>x. \<lbrakk> P x; x < x + 1 \<rbrakk> \<Longrightarrow> P (x + 1)"
224  shows "P x"
225proof (cases x rule: of_nat_cases)
226  case (of_nat m)
227  have "P (of_nat m)"
228  proof (induct m)
229    case 0
230    then show ?case using `P 0` by simp
231  next
232    case (Suc m)
233    with `P 0` suc show ?case by (metis diff_add_cancel minus_induct pred)
234  qed
235  with of_nat show ?thesis by simp
236qed
237
238lemma from_top_induct[case_names top step]:
239  assumes top: "\<And>x. y \<le> x \<Longrightarrow> P (x::'a)"
240  assumes step: "\<And>x. \<lbrakk>P x; 0 < x; x \<le> y\<rbrakk> \<Longrightarrow> P (x - 1)"
241  shows "P x"
242proof -
243  obtain z where x: "x = y - z"
244    by (metis diff_eq_diff_eq diff_right_commute)
245  moreover
246  have "P (y - z)"
247  proof (induct z rule: plus_induct)
248    case 0
249    then show ?case by (simp add: top)
250  next
251    case (plus x)
252    then have [simp]: "y - (x + 1) = (y - x) - 1" by simp
253    show ?case
254    proof (cases "x < y")
255      case True
256      with plus show ?thesis
257       by simp (metis diff_add_cancel eq_iff_diff_eq_0 le_neq_trans step plus_one_leq not_le
258                      top zero_less_eq)
259    next
260      case False
261      with plus show ?thesis
262       by (smt top Rep_Abs_mod Rep_le_n less_def less_eq_def diff_def int_mod_ge' size0)
263    qed
264  qed
265  ultimately show ?thesis by simp
266qed
267
268lemma tranclp_greater: "(>)\<^sup>+\<^sup>+ = ((>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool)"
269  by(auto simp add: fun_eq_iff intro: less_trans elim: tranclp.induct)
270
271lemma card_n:
272  "CARD('a) = nat n"
273  using type by (simp add: type_definition.card)
274
275lemma finite_UNIV[intro!,simp]:
276  "finite (UNIV::'a set)"
277  by (rule card_ge_0_finite) (simp add: card_n size0)
278
279lemma finite_greater[simp]:
280  "finite {(x, y). y < (x::'a)}"
281  by (rule finite_subset[of _ "UNIV \<times> UNIV"], simp)
282     (rule finite_cartesian_product; rule finite_UNIV)
283
284lemma wf_greater[intro!,simp]:
285  "wf {(x,y). x > (y::'a)}"
286  by (auto simp: trancl_def tranclp_greater intro!: finite_acyclic_wf acyclicI)
287
288(* less_induct already instantiated in class well_order *)
289lemma greater_induct[case_names greater]:
290  "(\<And>x. (\<And>z. x < z \<Longrightarrow> P z) \<Longrightarrow> P x) \<Longrightarrow> P (x::'a)"
291  by (rule wf_induct_rule, rule wf_greater) fastforce
292
293lemma from_top_full_induct[case_names top step]:
294  assumes top: "\<And>x. y \<le> x \<Longrightarrow> P (x::'a)"
295  assumes step: "\<And>x. \<lbrakk>\<forall>z > x. P z; x < y\<rbrakk> \<Longrightarrow> P x"
296  shows "P x"
297proof (induct x rule: greater_induct)
298  case (greater x)
299  show ?case
300  proof (cases "x < y")
301    case True
302    then show ?thesis by (blast intro: step greater)
303  next
304    case False
305    then show ?thesis by (auto simp: not_less intro: top)
306  qed
307qed
308
309interpretation greater_wellorder: wellorder "(\<ge>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "(>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool"
310  by unfold_locales (auto intro: greater_induct)
311
312lemma greater_least_fold[simp]: "greater_wellorder.Least = Greatest"
313  by (auto simp: greater_wellorder.Least_def Greatest_def)
314
315lemmas GreatestI = greater_wellorder.LeastI[simplified greater_least_fold]
316lemmas Greatest_le = greater_wellorder.Least_le[simplified greater_least_fold]
317lemmas exists_greatest_iff = greater_wellorder.exists_least_iff
318lemmas GreatestI2_wellorder = greater_wellorder.LeastI2_wellorder[simplified greater_least_fold]
319
320lemma neq_0_conv:
321  "((x::'a) \<noteq> 0) = (0 < x)"
322  by (meson neqE not_less_zero_bit0)
323
324lemma minus_leq_less: "\<lbrakk> (x::'a) \<le> y; 0 < z; z \<le> x \<rbrakk> \<Longrightarrow> x - z < y"
325  by (metis le_less less_trans minus_less)
326
327lemma minus_one_leq_less: "\<lbrakk> (x::'a) \<le> y; 0 < x \<rbrakk> \<Longrightarrow> x - 1 < y"
328  using pred by fastforce
329
330lemma size_minus:
331  "y \<le> (x::'a) \<Longrightarrow> size (x - y) = size x - size y"
332  unfolding definitions Rep_Abs_mod
333  using Rep size0
334  by (simp flip: nat_diff_distrib add: eq_nat_nat_iff pos_mod_sign mod_sub_if_z split: if_split_asm)
335
336lemma size_minus_one:
337  "0 < (x::'a) \<Longrightarrow> size (x - 1) = size x - Suc 0"
338  by (simp add: size_minus)
339
340end
341
342interpretation bit0:
343  mod_size_order "int CARD('a::finite bit0)"
344                 "Rep_bit0 :: 'a::finite bit0 \<Rightarrow> int"
345                 "Abs_bit0 :: int \<Rightarrow> 'a::finite bit0"
346  by unfold_locales (auto simp: size_bit0_def less_bit0_def less_eq_bit0_def)
347
348interpretation bit1:
349  mod_size_order "int CARD('a::finite bit1)"
350                 "Rep_bit1 :: 'a::finite bit1 \<Rightarrow> int"
351                 "Abs_bit1 :: int \<Rightarrow> 'a::finite bit1"
352  by unfold_locales (auto simp: size_bit1_def less_bit1_def less_eq_bit1_def)
353
354declare bit0.minus_induct[induct type]
355declare bit1.minus_induct[induct type]
356
357section \<open>Further enumeration instances.\<close>
358
359instantiation bit0 and bit1 :: (finite) enumeration_both
360begin
361
362definition enum_alt_bit0 where "enum_alt \<equiv> alt_from_ord (enum :: 'a :: finite bit0 list)"
363definition enum_alt_bit1  where "enum_alt \<equiv> alt_from_ord (enum :: 'a :: finite bit1 list)"
364
365instance by intro_classes (auto simp: enum_alt_bit0_def enum_alt_bit1_def)
366
367end
368
369subsection \<open>Relating @{const enum} and @{const size}\<close>
370
371lemma fromEnum_size_bit0[simp]:
372  "fromEnum (x::'a::finite bit0) = size x"
373proof -
374  have "enum ! the_index enum x = x" by (auto intro: nth_the_index)
375  moreover
376  have "the_index enum x < length (enum::'a bit0 list)" by (auto intro: the_index_bounded)
377  moreover
378  { fix y
379    assume "Abs_bit0' (int y) = x"
380    moreover
381    assume "y < 2 * CARD('a)"
382    ultimately
383    have "y = nat (Rep_bit0 x)"
384      by (smt Abs_bit0'_code card_bit0 mod_pos_pos_trivial nat_int of_nat_less_0_iff
385              zless_nat_eq_int_zless)
386  }
387  ultimately
388  show ?thesis by (simp  add: fromEnum_def enum_bit0_def size_bit0_def)
389qed
390
391lemma fromEnum_size_bitq[simp]:
392  "fromEnum (x::'a::finite bit1) = size x"
393proof -
394  have "enum ! the_index enum x = x" by (auto intro: nth_the_index)
395  moreover
396  have "the_index enum x < length (enum::'a bit1 list)" by (auto intro: the_index_bounded)
397  moreover
398  { fix y
399    assume "Abs_bit1' (int y) = x"
400    moreover
401    assume "y < Suc (2 * CARD('a))"
402    ultimately
403    have "y = nat (Rep_bit1 x)"
404      by (smt Abs_bit1'_code card_bit1 mod_pos_pos_trivial nat_int of_nat_less_0_iff
405              zless_nat_eq_int_zless)
406  }
407  ultimately
408  show ?thesis by (simp add: fromEnum_def enum_bit1_def size_bit1_def del: upt_Suc)
409qed
410
411lemma minBound_size_bit0[simp]:
412  "(minBound::'a::finite bit0) = 0"
413  by (simp add: minBound_def hd_map enum_bit0_def Abs_bit0'_def zero_bit0_def)
414
415lemma minBound_size_bit1[simp]:
416  "(minBound::'a::finite bit1) = 0"
417  by (simp add: minBound_def hd_map enum_bit1_def Abs_bit1'_def zero_bit1_def)
418
419lemma maxBound_size_bit0:
420  "(maxBound::'a::finite bit0) = of_nat (2 * CARD('a) - 1)"
421  by (simp add: maxBound_def enum_bit0_def last_map Abs_bit0'_def bit0.of_nat_eq)
422
423lemma maxBound_size_bit1:
424  "(maxBound::'a::finite bit1) = of_nat (2 * CARD('a))"
425  by (simp add: maxBound_def enum_bit1_def last_map Abs_bit1'_def bit1.of_nat_eq)
426
427lemma maxBound_minus_one_bit0:
428  "maxBound = (-1 ::'a::finite bit0)"
429  by (simp add: bit0.definitions bit0.of_nat_eq bit0.Rep_Abs_1 maxBound_size_bit0)
430
431lemma maxBound_minus_one_bit1:
432  "maxBound = (-1 ::'a::finite bit1)"
433  by (simp add: bit1.definitions bit1.of_nat_eq bit1.Rep_Abs_1 zmod_minus1 maxBound_size_bit1)
434
435lemmas maxBound_size_bit = maxBound_size_bit0 maxBound_size_bit1
436lemmas maxBound_minus_one_bit[simp] = maxBound_minus_one_bit1 maxBound_minus_one_bit0
437
438end