1(*  Title:      HOL/Tools/BNF/bnf_gfp.ML
2    Author:     Dmitriy Traytel, TU Muenchen
3    Author:     Andrei Popescu, TU Muenchen
4    Author:     Jasmin Blanchette, TU Muenchen
5    Copyright   2012
6
7Codatatype construction.
8*)
9
10signature BNF_GFP =
11sig
12  val construct_gfp: mixfix list -> binding list -> binding list -> binding list ->
13    binding list list -> binding list -> (string * sort) list -> typ list * typ list list ->
14    BNF_Def.bnf list -> BNF_Comp.absT_info list -> local_theory ->
15    BNF_FP_Util.fp_result * local_theory
16end;
17
18structure BNF_GFP : BNF_GFP =
19struct
20
21open BNF_Def
22open BNF_Util
23open BNF_Tactics
24open BNF_Comp
25open BNF_FP_Util
26open BNF_FP_Def_Sugar
27open BNF_GFP_Util
28open BNF_GFP_Tactics
29
30datatype wit_tree = Wit_Leaf of int | Wit_Node of (int * int * int list) * wit_tree list;
31
32fun mk_tree_args (I, T) (I', Ts) = (sort_distinct int_ord (I @ I'), T :: Ts);
33
34fun finish Iss m seen i (nwit, I) =
35  let
36    val treess = map (fn j =>
37        if j < m orelse member (op =) seen j then [([j], Wit_Leaf j)]
38        else
39          map_index (finish Iss m (insert (op =) j seen) j) (nth Iss (j - m))
40          |> flat
41          |> minimize_wits)
42      I;
43  in
44    map (fn (I, t) => (I, Wit_Node ((i - m, nwit, filter (fn i => i < m) I), t)))
45      (fold_rev (map_product mk_tree_args) treess [([], [])])
46    |> minimize_wits
47  end;
48
49fun tree_to_ctor_wit vars _ _ (Wit_Leaf j) = ([j], nth vars j)
50  | tree_to_ctor_wit vars ctors witss (Wit_Node ((i, nwit, I), subtrees)) =
51     (I, nth ctors i $ (Term.list_comb (snd (nth (nth witss i) nwit),
52       map (snd o tree_to_ctor_wit vars ctors witss) subtrees)));
53
54fun tree_to_coind_wits _ (Wit_Leaf _) = []
55  | tree_to_coind_wits lwitss (Wit_Node ((i, nwit, I), subtrees)) =
56     ((i, I), nth (nth lwitss i) nwit) :: maps (tree_to_coind_wits lwitss) subtrees;
57
58(*all BNFs have the same lives*)
59fun construct_gfp mixfixes map_bs rel_bs pred_bs set_bss0 bs resBs (resDs, Dss) bnfs absT_infos
60    lthy =
61  let
62    val time = time lthy;
63    val timer = time (Timer.startRealTimer ());
64
65    val live = live_of_bnf (hd bnfs);
66    val n = length bnfs; (*active*)
67    val ks = 1 upto n;
68    val m = live - n; (*passive, if 0 don't generate a new BNF*)
69    val ls = 1 upto m;
70
71    val internals = Config.get lthy bnf_internals;
72    val b_names = map Binding.name_of bs;
73    val b_name = mk_common_name b_names;
74    val b = Binding.name b_name;
75
76    fun mk_internal_of_b name =
77      Binding.prefix_name (name ^ "_") #> Binding.prefix true b_name #> Binding.concealed;
78    fun mk_internal_b name = mk_internal_of_b name b;
79    fun mk_internal_bs name = map (mk_internal_of_b name) bs;
80    val external_bs = map2 (Binding.prefix false) b_names bs
81      |> not internals ? map Binding.concealed;
82
83    val deads = fold (union (op =)) Dss resDs;
84    val names_lthy = fold Variable.declare_typ deads lthy;
85    val passives = map fst (subtract (op = o apsnd TFree) deads resBs);
86
87    (* tvars *)
88    val ((((((passiveAs, activeAs), passiveBs), activeBs), passiveCs), activeCs), idxT) = names_lthy
89      |> variant_tfrees passives
90      ||>> mk_TFrees n
91      ||>> variant_tfrees passives
92      ||>> mk_TFrees n
93      ||>> mk_TFrees m
94      ||>> mk_TFrees n
95      ||> fst o mk_TFrees 1
96      ||> the_single;
97
98    val allAs = passiveAs @ activeAs;
99    val allBs' = passiveBs @ activeBs;
100    val Ass = replicate n allAs;
101    val allBs = passiveAs @ activeBs;
102    val Bss = replicate n allBs;
103    val allCs = passiveAs @ activeCs;
104    val allCs' = passiveBs @ activeCs;
105    val Css' = replicate n allCs';
106
107    (* types *)
108    val dead_poss =
109      map (fn x => if member (op =) deads (TFree x) then SOME (TFree x) else NONE) resBs;
110    fun mk_param NONE passive = (hd passive, tl passive)
111      | mk_param (SOME a) passive = (a, passive);
112    val mk_params = fold_map mk_param dead_poss #> fst;
113
114    fun mk_FTs Ts = map2 (fn Ds => mk_T_of_bnf Ds Ts) Dss bnfs;
115    val (params, params') = `(map Term.dest_TFree) (mk_params passiveAs);
116    val FTsAs = mk_FTs allAs;
117    val FTsBs = mk_FTs allBs;
118    val FTsCs = mk_FTs allCs;
119    val ATs = map HOLogic.mk_setT passiveAs;
120    val BTs = map HOLogic.mk_setT activeAs;
121    val B'Ts = map HOLogic.mk_setT activeBs;
122    val B''Ts = map HOLogic.mk_setT activeCs;
123    val sTs = map2 (fn T => fn U => T --> U) activeAs FTsAs;
124    val s'Ts = map2 (fn T => fn U => T --> U) activeBs FTsBs;
125    val s''Ts = map2 (fn T => fn U => T --> U) activeCs FTsCs;
126    val fTs = map2 (fn T => fn U => T --> U) activeAs activeBs;
127    val self_fTs = map (fn T => T --> T) activeAs;
128    val gTs = map2 (fn T => fn U => T --> U) activeBs activeCs;
129    val all_gTs = map2 (fn T => fn U => T --> U) allBs allCs';
130    val RTs = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeAs activeBs;
131    val sRTs = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeAs activeAs;
132    val R'Ts = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeBs activeCs;
133    val setsRTs = map HOLogic.mk_setT sRTs;
134    val setRTs = map HOLogic.mk_setT RTs;
135    val all_sbisT = HOLogic.mk_tupleT setsRTs;
136    val setR'Ts = map HOLogic.mk_setT R'Ts;
137    val FRTs = mk_FTs (passiveAs @ RTs);
138
139    (* terms *)
140    val mapsAsAs = @{map 4} mk_map_of_bnf Dss Ass Ass bnfs;
141    val mapsAsBs = @{map 4} mk_map_of_bnf Dss Ass Bss bnfs;
142    val mapsBsCs' = @{map 4} mk_map_of_bnf Dss Bss Css' bnfs;
143    val mapsAsCs' = @{map 4} mk_map_of_bnf Dss Ass Css' bnfs;
144    val map_fsts = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Ass bnfs;
145    val map_snds = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Bss bnfs;
146    fun mk_setss Ts = @{map 3} mk_sets_of_bnf (map (replicate live) Dss)
147      (map (replicate live) (replicate n Ts)) bnfs;
148    val setssAs = mk_setss allAs;
149    val setssAs' = transpose setssAs;
150    val bis_setss = mk_setss (passiveAs @ RTs);
151    val relsAsBs = @{map 4} mk_rel_of_bnf Dss Ass Bss bnfs;
152    val bds = @{map 3} mk_bd_of_bnf Dss Ass bnfs;
153    val sum_bd = Library.foldr1 (uncurry mk_csum) bds;
154    val sum_bdT = fst (dest_relT (fastype_of sum_bd));
155    val (sum_bdT_params, sum_bdT_params') = `(map TFree) (Term.add_tfreesT sum_bdT []);
156
157    val ((((((((((zs, zs'), Bs), ss), fs), self_fs), all_gs), xFs), yFs), yFs_copy), _) =
158      lthy
159      |> mk_Frees' "b" activeAs
160      ||>> mk_Frees "B" BTs
161      ||>> mk_Frees "s" sTs
162      ||>> mk_Frees "f" fTs
163      ||>> mk_Frees "f" self_fTs
164      ||>> mk_Frees "g" all_gTs
165      ||>> mk_Frees "x" FTsAs
166      ||>> mk_Frees "y" FTsBs
167      ||>> mk_Frees "y" FTsBs;
168
169    val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
170    val passive_eqs = map HOLogic.eq_const passiveAs;
171    val active_UNIVs = map HOLogic.mk_UNIV activeAs;
172    val passive_ids = map HOLogic.id_const passiveAs;
173    val active_ids = map HOLogic.id_const activeAs;
174    val fsts = map fst_const RTs;
175    val snds = map snd_const RTs;
176
177    (* thms *)
178    val bd_card_orders = map bd_card_order_of_bnf bnfs;
179    val bd_card_order = hd bd_card_orders
180    val bd_Card_orders = map bd_Card_order_of_bnf bnfs;
181    val bd_Card_order = hd bd_Card_orders;
182    val bd_Cinfinites = map bd_Cinfinite_of_bnf bnfs;
183    val bd_Cinfinite = hd bd_Cinfinites;
184    val in_monos = map in_mono_of_bnf bnfs;
185    val map_comp0s = map map_comp0_of_bnf bnfs;
186    val sym_map_comps = map mk_sym map_comp0s;
187    val map_comps = map map_comp_of_bnf bnfs;
188    val map_cong0s = map map_cong0_of_bnf bnfs;
189    val map_id0s = map map_id0_of_bnf bnfs;
190    val map_ids = map map_id_of_bnf bnfs;
191    val set_bdss = map set_bd_of_bnf bnfs;
192    val set_mapss = map set_map_of_bnf bnfs;
193    val rel_congs = map rel_cong0_of_bnf bnfs;
194    val rel_converseps = map rel_conversep_of_bnf bnfs;
195    val rel_Grps = map rel_Grp_of_bnf bnfs;
196    val le_rel_OOs = map le_rel_OO_of_bnf bnfs;
197    val in_rels = map in_rel_of_bnf bnfs;
198
199    val timer = time (timer "Extracted terms & thms");
200
201    (* derived thms *)
202
203    (*map g1 ... gm g(m+1) ... g(m+n) (map id ... id f(m+1) ... f(m+n) x) =
204      map g1 ... gm (g(m+1) o f(m+1)) ... (g(m+n) o f(m+n)) x*)
205    fun mk_map_comp_id x mapAsBs mapBsCs mapAsCs map_comp0 =
206      let
207        val lhs = Term.list_comb (mapBsCs, all_gs) $
208          (Term.list_comb (mapAsBs, passive_ids @ fs) $ x);
209        val rhs =
210          Term.list_comb (mapAsCs, take m all_gs @ map HOLogic.mk_comp (drop m all_gs ~~ fs)) $ x;
211        val goal = mk_Trueprop_eq (lhs, rhs);
212        val vars = Variable.add_free_names lthy goal [];
213      in
214        Goal.prove_sorry lthy vars [] goal
215          (fn {context = ctxt, prems = _} => mk_map_comp_id_tac ctxt map_comp0)
216        |> Thm.close_derivation \<^here>
217      end;
218
219    val map_comp_id_thms = @{map 5} mk_map_comp_id xFs mapsAsBs mapsBsCs' mapsAsCs' map_comps;
220
221    (*forall a : set(m+1) x. f(m+1) a = a; ...; forall a : set(m+n) x. f(m+n) a = a ==>
222      map id ... id f(m+1) ... f(m+n) x = x*)
223    fun mk_map_cong0L x mapAsAs sets map_cong0 map_id =
224      let
225        fun mk_prem set f z z' =
226          HOLogic.mk_Trueprop
227            (mk_Ball (set $ x) (Term.absfree z' (HOLogic.mk_eq (f $ z, z))));
228        val prems = @{map 4} mk_prem (drop m sets) self_fs zs zs';
229        val goal = mk_Trueprop_eq (Term.list_comb (mapAsAs, passive_ids @ self_fs) $ x, x);
230        val vars = Variable.add_free_names lthy goal [];
231      in
232        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
233          (fn {context = ctxt, prems = _} => mk_map_cong0L_tac ctxt m map_cong0 map_id)
234        |> Thm.close_derivation \<^here>
235      end;
236
237    val map_cong0L_thms = @{map 5} mk_map_cong0L xFs mapsAsAs setssAs map_cong0s map_ids;
238    val in_mono'_thms = map (fn thm =>
239      (thm OF (replicate m subset_refl)) RS @{thm set_mp}) in_monos;
240
241    val map_arg_cong_thms =
242      let
243        val prems = map2 (curry mk_Trueprop_eq) yFs yFs_copy;
244        val maps = map (fn mapx => Term.list_comb (mapx, all_gs)) mapsBsCs';
245        val concls =
246          @{map 3} (fn x => fn y => fn mapx => mk_Trueprop_eq (mapx $ x, mapx $ y))
247            yFs yFs_copy maps;
248        val goals = map2 (fn prem => fn concl => Logic.mk_implies (prem, concl)) prems concls;
249      in
250        map (fn goal =>
251          Variable.add_free_names lthy goal []
252          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
253            (hyp_subst_tac ctxt THEN' rtac ctxt refl) 1))
254          |> Thm.close_derivation \<^here>)
255        goals
256      end;
257
258    val timer = time (timer "Derived simple theorems");
259
260    (* coalgebra *)
261
262    val coalg_bind = mk_internal_b (coN ^ algN) ;
263    val coalg_def_bind = (Thm.def_binding coalg_bind, []);
264
265    (*forall i = 1 ... n: (\<forall>x \<in> Bi. si \<in> Fi_in UNIV .. UNIV B1 ... Bn)*)
266    val coalg_spec =
267      let
268        val ins = @{map 3} mk_in (replicate n (passive_UNIVs @ Bs)) setssAs FTsAs;
269        fun mk_coalg_conjunct B s X z z' =
270          mk_Ball B (Term.absfree z' (HOLogic.mk_mem (s $ z, X)));
271
272        val rhs = Library.foldr1 HOLogic.mk_conj (@{map 5} mk_coalg_conjunct Bs ss ins zs zs')
273      in
274        fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss) rhs
275      end;
276
277    val ((coalg_free, (_, coalg_def_free)), (lthy, lthy_old)) =
278      lthy
279      |> Local_Theory.open_target |> snd
280      |> Local_Theory.define ((coalg_bind, NoSyn), (coalg_def_bind, coalg_spec))
281      ||> `Local_Theory.close_target;
282
283    val phi = Proof_Context.export_morphism lthy_old lthy;
284    val coalg = fst (Term.dest_Const (Morphism.term phi coalg_free));
285    val coalg_def = mk_unabs_def (2 * n) (HOLogic.mk_obj_eq (Morphism.thm phi coalg_def_free));
286
287    fun mk_coalg Bs ss =
288      let
289        val args = Bs @ ss;
290        val Ts = map fastype_of args;
291        val coalgT = Library.foldr (op -->) (Ts, HOLogic.boolT);
292      in
293        Term.list_comb (Const (coalg, coalgT), args)
294      end;
295
296    val((((((zs, zs'), Bs), B's), ss), s's), _) =
297      lthy
298      |> mk_Frees' "b" activeAs
299      ||>> mk_Frees "B" BTs
300      ||>> mk_Frees "B'" B'Ts
301      ||>> mk_Frees "s" sTs
302      ||>> mk_Frees "s'" s'Ts;
303
304    val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
305
306    val coalg_in_thms = map (fn i =>
307      coalg_def RS iffD1 RS mk_conjunctN n i RS bspec) ks
308
309    val coalg_set_thmss =
310      let
311        val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
312        fun mk_prem x B = mk_Trueprop_mem (x, B);
313        fun mk_concl s x B set = HOLogic.mk_Trueprop (mk_leq (set $ (s $ x)) B);
314        val prems = map2 mk_prem zs Bs;
315        val conclss = @{map 3} (fn s => fn x => fn sets => map2 (mk_concl s x) Bs (drop m sets))
316          ss zs setssAs;
317        val goalss = map2 (fn prem => fn concls => map (fn concl =>
318          Logic.list_implies (coalg_prem :: [prem], concl)) concls) prems conclss;
319      in
320        map (fn goals => map (fn goal =>
321          Variable.add_free_names lthy goal []
322          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
323            mk_coalg_set_tac ctxt coalg_def))
324          |> Thm.close_derivation \<^here>)
325        goals) goalss
326      end;
327
328    fun mk_tcoalg BTs = mk_coalg (map HOLogic.mk_UNIV BTs);
329
330    val tcoalg_thm =
331      let
332        val goal = HOLogic.mk_Trueprop (mk_tcoalg activeAs ss);
333        val vars = Variable.add_free_names lthy goal [];
334      in
335        Goal.prove_sorry lthy vars [] goal
336          (fn {context = ctxt, prems = _} => (rtac ctxt (coalg_def RS iffD2) 1 THEN CONJ_WRAP
337            (K (EVERY' [rtac ctxt ballI, rtac ctxt CollectI,
338              CONJ_WRAP' (K (EVERY' [rtac ctxt @{thm subset_UNIV}])) allAs] 1)) ss))
339        |> Thm.close_derivation \<^here>
340      end;
341
342    val timer = time (timer "Coalgebra definition & thms");
343
344    (* morphism *)
345
346    val mor_bind = mk_internal_b morN;
347    val mor_def_bind = (Thm.def_binding mor_bind, []);
348
349    (*fbetw) forall i = 1 ... n: (\<forall>x \<in> Bi. fi x \<in> B'i)*)
350    (*mor) forall i = 1 ... n: (\<forall>x \<in> Bi.
351       Fi_map id ... id f1 ... fn (si x) = si' (fi x)*)
352    val mor_spec =
353      let
354        fun mk_fbetw f B1 B2 z z' =
355          mk_Ball B1 (Term.absfree z' (HOLogic.mk_mem (f $ z, B2)));
356        fun mk_mor B mapAsBs f s s' z z' =
357          mk_Ball B (Term.absfree z' (HOLogic.mk_eq
358            (Term.list_comb (mapAsBs, passive_ids @ fs @ [s $ z]), s' $ (f $ z))));
359        val rhs = HOLogic.mk_conj
360          (Library.foldr1 HOLogic.mk_conj (@{map 5} mk_fbetw fs Bs B's zs zs'),
361           Library.foldr1 HOLogic.mk_conj (@{map 7} mk_mor Bs mapsAsBs fs ss s's zs zs'))
362      in
363        fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss @ B's @ s's @ fs) rhs
364      end;
365
366    val ((mor_free, (_, mor_def_free)), (lthy, lthy_old)) =
367      lthy
368      |> Local_Theory.open_target |> snd
369      |> Local_Theory.define ((mor_bind, NoSyn), (mor_def_bind, mor_spec))
370      ||> `Local_Theory.close_target;
371
372    val phi = Proof_Context.export_morphism lthy_old lthy;
373    val mor = fst (Term.dest_Const (Morphism.term phi mor_free));
374    val mor_def = mk_unabs_def (5 * n) (HOLogic.mk_obj_eq (Morphism.thm phi mor_def_free));
375
376    fun mk_mor Bs1 ss1 Bs2 ss2 fs =
377      let
378        val args = Bs1 @ ss1 @ Bs2 @ ss2 @ fs;
379        val Ts = map fastype_of (Bs1 @ ss1 @ Bs2 @ ss2 @ fs);
380        val morT = Library.foldr (op -->) (Ts, HOLogic.boolT);
381      in
382        Term.list_comb (Const (mor, morT), args)
383      end;
384
385    val ((((((((((((((zs, z's), Bs), Bs_copy), B's), B''s), ss), s's), s''s), fs), fs_copy), gs),
386        RFs), Rs), _) =
387      lthy
388      |> mk_Frees "b" activeAs
389      ||>> mk_Frees "b" activeBs
390      ||>> mk_Frees "B" BTs
391      ||>> mk_Frees "B" BTs
392      ||>> mk_Frees "B'" B'Ts
393      ||>> mk_Frees "B''" B''Ts
394      ||>> mk_Frees "s" sTs
395      ||>> mk_Frees "s'" s'Ts
396      ||>> mk_Frees "s''" s''Ts
397      ||>> mk_Frees "f" fTs
398      ||>> mk_Frees "f" fTs
399      ||>> mk_Frees "g" gTs
400      ||>> mk_Frees "x" FRTs
401      ||>> mk_Frees "R" setRTs;
402
403    val mor_prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
404
405    val (mor_image_thms, morE_thms) =
406      let
407        val prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
408        fun mk_image_goal f B1 B2 =
409          Logic.mk_implies (prem, HOLogic.mk_Trueprop (mk_leq (mk_image f $ B1) B2));
410        val image_goals = @{map 3} mk_image_goal fs Bs B's;
411        fun mk_elim_goal B mapAsBs f s s' x =
412          Logic.list_implies ([prem, mk_Trueprop_mem (x, B)],
413            mk_Trueprop_eq (Term.list_comb (mapAsBs, passive_ids @ fs @ [s $ x]), s' $ (f $ x)));
414        val elim_goals = @{map 6} mk_elim_goal Bs mapsAsBs fs ss s's zs;
415        fun prove goal =
416          Variable.add_free_names lthy goal []
417          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
418            mk_mor_elim_tac ctxt mor_def))
419          |> Thm.close_derivation \<^here>;
420      in
421        (map prove image_goals, map prove elim_goals)
422      end;
423
424    val mor_image'_thms = map (fn thm => @{thm set_mp} OF [thm, imageI]) mor_image_thms;
425
426    val mor_incl_thm =
427      let
428        val prems = map2 (HOLogic.mk_Trueprop oo mk_leq) Bs Bs_copy;
429        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss Bs_copy ss active_ids);
430        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
431      in
432        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
433          (fn {context = ctxt, prems = _} => mk_mor_incl_tac ctxt mor_def map_ids)
434        |> Thm.close_derivation \<^here>
435      end;
436
437    val mor_id_thm = mor_incl_thm OF (replicate n subset_refl);
438
439    val mor_comp_thm =
440      let
441        val prems =
442          [HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs),
443           HOLogic.mk_Trueprop (mk_mor B's s's B''s s''s gs)];
444        val concl =
445          HOLogic.mk_Trueprop (mk_mor Bs ss B''s s''s (map2 (curry HOLogic.mk_comp) gs fs));
446        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
447      in
448        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
449          (fn {context = ctxt, prems = _} =>
450            mk_mor_comp_tac ctxt mor_def mor_image'_thms morE_thms map_comp_id_thms)
451        |> Thm.close_derivation \<^here>
452      end;
453
454    val mor_cong_thm =
455      let
456        val prems = map HOLogic.mk_Trueprop
457         (map2 (curry HOLogic.mk_eq) fs_copy fs @ [mk_mor Bs ss B's s's fs])
458        val concl = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs_copy);
459        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
460      in
461        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
462          (fn {context = ctxt, prems = _} => (hyp_subst_tac ctxt THEN' assume_tac ctxt) 1)
463        |> Thm.close_derivation \<^here>
464      end;
465
466    val mor_UNIV_thm =
467      let
468        fun mk_conjunct mapAsBs f s s' = HOLogic.mk_eq
469            (HOLogic.mk_comp (Term.list_comb (mapAsBs, passive_ids @ fs), s),
470            HOLogic.mk_comp (s', f));
471        val lhs = mk_mor active_UNIVs ss (map HOLogic.mk_UNIV activeBs) s's fs;
472        val rhs = Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct mapsAsBs fs ss s's);
473        val vars = fold (Variable.add_free_names lthy) [lhs, rhs] [];
474      in
475        Goal.prove_sorry lthy vars [] (mk_Trueprop_eq (lhs, rhs))
476          (fn {context = ctxt, prems = _} => mk_mor_UNIV_tac ctxt morE_thms mor_def)
477        |> Thm.close_derivation \<^here>
478      end;
479
480    val mor_str_thm =
481      let
482        val maps = map2 (fn Ds => fn bnf => Term.list_comb
483          (mk_map_of_bnf Ds allAs (passiveAs @ FTsAs) bnf, passive_ids @ ss)) Dss bnfs;
484        val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss (map HOLogic.mk_UNIV FTsAs) maps ss);
485        val vars = Variable.add_free_names lthy goal [];
486      in
487        Goal.prove_sorry lthy vars [] goal
488          (fn {context = ctxt, prems = _} => mk_mor_str_tac ctxt ks mor_UNIV_thm)
489        |> Thm.close_derivation \<^here>
490      end;
491
492    val timer = time (timer "Morphism definition & thms");
493
494    (* bisimulation *)
495
496    val bis_bind = mk_internal_b bisN;
497    val bis_def_bind = (Thm.def_binding bis_bind, []);
498
499    fun mk_bis_le_conjunct R B1 B2 = mk_leq R (mk_Times (B1, B2));
500    val bis_le = Library.foldr1 HOLogic.mk_conj (@{map 3} mk_bis_le_conjunct Rs Bs B's)
501
502    val bis_spec =
503      let
504        val fst_args = passive_ids @ fsts;
505        val snd_args = passive_ids @ snds;
506        fun mk_bis R s s' b1 b2 RF map1 map2 sets =
507          list_all_free [b1, b2] (HOLogic.mk_imp
508            (HOLogic.mk_mem (HOLogic.mk_prod (b1, b2), R),
509            mk_Bex (mk_in (passive_UNIVs @ Rs) sets (snd (dest_Free RF)))
510              (Term.absfree (dest_Free RF) (HOLogic.mk_conj
511                (HOLogic.mk_eq (Term.list_comb (map1, fst_args) $ RF, s $ b1),
512                HOLogic.mk_eq (Term.list_comb (map2, snd_args) $ RF, s' $ b2))))));
513
514        val rhs = HOLogic.mk_conj
515          (bis_le, Library.foldr1 HOLogic.mk_conj
516            (@{map 9} mk_bis Rs ss s's zs z's RFs map_fsts map_snds bis_setss))
517      in
518        fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss @ B's @ s's @ Rs) rhs
519      end;
520
521    val ((bis_free, (_, bis_def_free)), (lthy, lthy_old)) =
522      lthy
523      |> Local_Theory.open_target |> snd
524      |> Local_Theory.define ((bis_bind, NoSyn), (bis_def_bind, bis_spec))
525      ||> `Local_Theory.close_target;
526
527    val phi = Proof_Context.export_morphism lthy_old lthy;
528    val bis = fst (Term.dest_Const (Morphism.term phi bis_free));
529    val bis_def = mk_unabs_def (5 * n) (HOLogic.mk_obj_eq (Morphism.thm phi bis_def_free));
530
531    fun mk_bis Bs1 ss1 Bs2 ss2 Rs =
532      let
533        val args = Bs1 @ ss1 @ Bs2 @ ss2 @ Rs;
534        val Ts = map fastype_of args;
535        val bisT = Library.foldr (op -->) (Ts, HOLogic.boolT);
536      in
537        Term.list_comb (Const (bis, bisT), args)
538      end;
539
540    val (((((((((((((((((zs, z's), Bs), B's), B''s), ss), s's), s''s), fs), (Rtuple, Rtuple')), Rs),
541        Rs_copy), R's), sRs), (idx, idx')), Idx), Ris), _) =
542      lthy
543      |> mk_Frees "b" activeAs
544      ||>> mk_Frees "b" activeBs
545      ||>> mk_Frees "B" BTs
546      ||>> mk_Frees "B'" B'Ts
547      ||>> mk_Frees "B''" B''Ts
548      ||>> mk_Frees "s" sTs
549      ||>> mk_Frees "s'" s'Ts
550      ||>> mk_Frees "s''" s''Ts
551      ||>> mk_Frees "f" fTs
552      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Rtuple") all_sbisT
553      ||>> mk_Frees "R" setRTs
554      ||>> mk_Frees "R" setRTs
555      ||>> mk_Frees "R'" setR'Ts
556      ||>> mk_Frees "R" setsRTs
557      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") idxT
558      ||>> yield_singleton (mk_Frees "I") (HOLogic.mk_setT idxT)
559      ||>> mk_Frees "Ri" (map (fn T => idxT --> T) setRTs);
560
561    val bis_cong_thm =
562      let
563        val prems = map HOLogic.mk_Trueprop
564         (mk_bis Bs ss B's s's Rs :: map2 (curry HOLogic.mk_eq) Rs_copy Rs)
565        val concl = HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs_copy);
566        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
567      in
568        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
569          (fn {context = ctxt, prems = _} => (hyp_subst_tac ctxt THEN' assume_tac ctxt) 1)
570        |> Thm.close_derivation \<^here>
571      end;
572
573    val bis_rel_thm =
574      let
575        fun mk_conjunct R s s' b1 b2 rel =
576          list_all_free [b1, b2] (HOLogic.mk_imp
577            (HOLogic.mk_mem (HOLogic.mk_prod (b1, b2), R),
578            Term.list_comb (rel, passive_eqs @ map mk_in_rel Rs) $ (s $ b1) $ (s' $ b2)));
579
580        val rhs = HOLogic.mk_conj
581          (bis_le, Library.foldr1 HOLogic.mk_conj
582            (@{map 6} mk_conjunct Rs ss s's zs z's relsAsBs))
583        val goal = mk_Trueprop_eq (mk_bis Bs ss B's s's Rs, rhs);
584        val vars = Variable.add_free_names lthy goal [];
585      in
586        Goal.prove_sorry lthy vars [] goal
587          (fn {context = ctxt, prems = _} => mk_bis_rel_tac ctxt m bis_def in_rels map_comps
588            map_cong0s set_mapss)
589        |> Thm.close_derivation \<^here>
590      end;
591
592    val bis_converse_thm =
593      let
594        val goal = Logic.mk_implies (HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs),
595          HOLogic.mk_Trueprop (mk_bis B's s's Bs ss (map mk_converse Rs)));
596        val vars = Variable.add_free_names lthy goal [];
597      in
598        Goal.prove_sorry lthy vars [] goal
599          (fn {context = ctxt, prems = _} => mk_bis_converse_tac ctxt m bis_rel_thm rel_congs
600            rel_converseps)
601        |> Thm.close_derivation \<^here>
602      end;
603
604    val bis_O_thm =
605      let
606        val prems =
607          [HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs),
608           HOLogic.mk_Trueprop (mk_bis B's s's B''s s''s R's)];
609        val concl =
610          HOLogic.mk_Trueprop (mk_bis Bs ss B''s s''s (map2 (curry mk_rel_comp) Rs R's));
611        val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
612      in
613        Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
614          (fn {context = ctxt, prems = _} => mk_bis_O_tac ctxt m bis_rel_thm rel_congs le_rel_OOs)
615        |> Thm.close_derivation \<^here>
616      end;
617
618    val bis_Gr_thm =
619      let
620        val concl = HOLogic.mk_Trueprop (mk_bis Bs ss B's s's (map2 mk_Gr Bs fs));
621        val vars = fold (Variable.add_free_names lthy) ([coalg_prem, mor_prem, concl]) [];
622      in
623        Goal.prove_sorry lthy vars [] (Logic.list_implies ([coalg_prem, mor_prem], concl))
624          (fn {context = ctxt, prems = _} => mk_bis_Gr_tac ctxt bis_rel_thm rel_Grps mor_image_thms
625            morE_thms coalg_in_thms)
626        |> Thm.close_derivation \<^here>
627      end;
628
629    val bis_image2_thm = bis_cong_thm OF
630      ((bis_O_thm OF [bis_Gr_thm RS bis_converse_thm, bis_Gr_thm]) ::
631      replicate n @{thm image2_Gr});
632
633    val bis_Id_on_thm = bis_cong_thm OF ((mor_id_thm RSN (2, bis_Gr_thm)) ::
634      replicate n @{thm Id_on_Gr});
635
636    val bis_Union_thm =
637      let
638        val prem =
639          HOLogic.mk_Trueprop (mk_Ball Idx
640            (Term.absfree idx' (mk_bis Bs ss B's s's (map (fn R => R $ idx) Ris))));
641        val concl =
642          HOLogic.mk_Trueprop (mk_bis Bs ss B's s's (map (mk_UNION Idx) Ris));
643        val vars = fold (Variable.add_free_names lthy) [prem, concl] [];
644      in
645        Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, concl))
646          (fn {context = ctxt, prems = _} => mk_bis_Union_tac ctxt bis_def in_mono'_thms)
647        |> Thm.close_derivation \<^here>
648      end;
649
650    (* self-bisimulation *)
651
652    fun mk_sbis Bs ss Rs = mk_bis Bs ss Bs ss Rs;
653
654    (* largest self-bisimulation *)
655
656    val lsbis_binds = mk_internal_bs lsbisN;
657    fun lsbis_bind i = nth lsbis_binds (i - 1);
658    val lsbis_def_bind = rpair [] o Thm.def_binding o lsbis_bind;
659
660    val all_sbis = HOLogic.mk_Collect (fst Rtuple', snd Rtuple', list_exists_free sRs
661      (HOLogic.mk_conj (HOLogic.mk_eq (Rtuple, HOLogic.mk_tuple sRs), mk_sbis Bs ss sRs)));
662
663    fun lsbis_spec i =
664      fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss)
665        (mk_UNION all_sbis (Term.absfree Rtuple' (mk_nthN n Rtuple i)));
666
667    val ((lsbis_frees, (_, lsbis_def_frees)), (lthy, lthy_old)) =
668      lthy
669      |> Local_Theory.open_target |> snd
670      |> fold_map (fn i => Local_Theory.define
671        ((lsbis_bind i, NoSyn), (lsbis_def_bind i, lsbis_spec i))) ks
672      |>> apsnd split_list o split_list
673      ||> `Local_Theory.close_target;
674
675    val phi = Proof_Context.export_morphism lthy_old lthy;
676
677    val lsbis_defs = map (fn def =>
678      mk_unabs_def (2 * n) (HOLogic.mk_obj_eq (Morphism.thm phi def))) lsbis_def_frees;
679    val lsbiss = map (fst o Term.dest_Const o Morphism.term phi) lsbis_frees;
680
681    fun mk_lsbis Bs ss i =
682      let
683        val args = Bs @ ss;
684        val Ts = map fastype_of args;
685        val RT = mk_relT (`I (HOLogic.dest_setT (fastype_of (nth Bs (i - 1)))));
686        val lsbisT = Library.foldr (op -->) (Ts, RT);
687      in
688        Term.list_comb (Const (nth lsbiss (i - 1), lsbisT), args)
689      end;
690
691    val (((((zs, zs'), Bs), ss), sRs), _) =
692      lthy
693      |> mk_Frees' "b" activeAs
694      ||>> mk_Frees "B" BTs
695      ||>> mk_Frees "s" sTs
696      ||>> mk_Frees "R" setsRTs;
697
698    val sbis_prem = HOLogic.mk_Trueprop (mk_sbis Bs ss sRs);
699    val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
700
701    val sbis_lsbis_thm =
702      let
703        val goal = HOLogic.mk_Trueprop (mk_sbis Bs ss (map (mk_lsbis Bs ss) ks));
704        val vars = Variable.add_free_names lthy goal [];
705      in
706        Goal.prove_sorry lthy vars [] goal
707          (fn {context = ctxt, prems = _} =>
708            mk_sbis_lsbis_tac ctxt lsbis_defs bis_Union_thm bis_cong_thm)
709        |> Thm.close_derivation \<^here>
710      end;
711
712    val lsbis_incl_thms = map (fn i => sbis_lsbis_thm RS
713      (bis_def RS iffD1 RS conjunct1 RS mk_conjunctN n i)) ks;
714    val lsbisE_thms = map (fn i => (mk_specN 2 (sbis_lsbis_thm RS
715      (bis_def RS iffD1 RS conjunct2 RS mk_conjunctN n i))) RS mp) ks;
716
717    val incl_lsbis_thms =
718      let
719        fun mk_concl i R = HOLogic.mk_Trueprop (mk_leq R (mk_lsbis Bs ss i));
720        val goals = map2 (fn i => fn R => Logic.mk_implies (sbis_prem, mk_concl i R)) ks sRs;
721      in
722        @{map 3} (fn goal => fn i => fn def =>
723          Variable.add_free_names lthy goal []
724          |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
725            mk_incl_lsbis_tac ctxt n i def))
726          |> Thm.close_derivation \<^here>)
727        goals ks lsbis_defs
728      end;
729
730    val equiv_lsbis_thms =
731      let
732        fun mk_concl i B = HOLogic.mk_Trueprop (mk_equiv B (mk_lsbis Bs ss i));
733        val goals = map2 (fn i => fn B => Logic.mk_implies (coalg_prem, mk_concl i B)) ks Bs;
734      in
735        @{map 3} (fn goal => fn l_incl => fn incl_l =>
736          Variable.add_free_names lthy goal []
737          |> (fn vars => Goal.prove_sorry lthy vars [] goal
738            (fn {context = ctxt, prems = _} => mk_equiv_lsbis_tac ctxt sbis_lsbis_thm l_incl incl_l
739              bis_Id_on_thm bis_converse_thm bis_O_thm)
740          |> Thm.close_derivation \<^here>))
741        goals lsbis_incl_thms incl_lsbis_thms
742      end;
743
744    val timer = time (timer "Bisimulations");
745
746    (* bounds *)
747
748    val (lthy, sbd, sbdT,
749      sbd_card_order, sbd_Cinfinite, sbd_Card_order, set_sbdss) =
750      if n = 1
751      then (lthy, sum_bd, sum_bdT, bd_card_order, bd_Cinfinite, bd_Card_order, set_bdss)
752      else
753        let
754          val sbdT_bind = mk_internal_b sum_bdTN;
755
756          val ((sbdT_name, (sbdT_glob_info, sbdT_loc_info)), lthy) =
757            typedef (sbdT_bind, sum_bdT_params', NoSyn)
758              (HOLogic.mk_UNIV sum_bdT) NONE (fn ctxt =>
759                EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
760
761          val sbdT = Type (sbdT_name, sum_bdT_params);
762          val Abs_sbdT = Const (#Abs_name sbdT_glob_info, sum_bdT --> sbdT);
763
764          val sbd_bind = mk_internal_b sum_bdN;
765          val sbd_def_bind = (Thm.def_binding sbd_bind, []);
766
767          val sbd_spec = mk_dir_image sum_bd Abs_sbdT;
768
769          val ((sbd_free, (_, sbd_def_free)), (lthy, lthy_old)) =
770            lthy
771            |> Local_Theory.open_target |> snd
772            |> Local_Theory.define ((sbd_bind, NoSyn), (sbd_def_bind, sbd_spec))
773            ||> `Local_Theory.close_target;
774
775          val phi = Proof_Context.export_morphism lthy_old lthy;
776
777          val sbd_def = HOLogic.mk_obj_eq (Morphism.thm phi sbd_def_free);
778          val sbd = Const (fst (Term.dest_Const (Morphism.term phi sbd_free)), mk_relT (`I sbdT));
779
780          val Abs_sbdT_inj = mk_Abs_inj_thm (#Abs_inject sbdT_loc_info);
781          val Abs_sbdT_bij = mk_Abs_bij_thm lthy Abs_sbdT_inj (#Abs_cases sbdT_loc_info);
782
783          val sum_Cinfinite = mk_sum_Cinfinite bd_Cinfinites;
784          val sum_Card_order = sum_Cinfinite RS conjunct2;
785          val sum_card_order = mk_sum_card_order bd_card_orders;
786
787          val sbd_ordIso = @{thm ssubst_Pair_rhs} OF
788            [@{thm dir_image} OF [Abs_sbdT_inj, sum_Card_order], sbd_def];
789          val sbd_card_order = @{thm iffD2[OF arg_cong[of _ _ card_order]]} OF
790            [sbd_def, @{thm card_order_dir_image} OF [Abs_sbdT_bij, sum_card_order]];
791          val sbd_Cinfinite = @{thm Cinfinite_cong} OF [sbd_ordIso, sum_Cinfinite];
792          val sbd_Card_order = sbd_Cinfinite RS conjunct2;
793
794          fun mk_set_sbd i bd_Card_order bds =
795            map (fn thm => @{thm ordLeq_ordIso_trans} OF
796              [bd_Card_order RS mk_ordLeq_csum n i thm, sbd_ordIso]) bds;
797          val set_sbdss = @{map 3} mk_set_sbd ks bd_Card_orders set_bdss;
798       in
799         (lthy, sbd, sbdT, sbd_card_order, sbd_Cinfinite, sbd_Card_order, set_sbdss)
800       end;
801
802    val sbdTs = replicate n sbdT;
803    val sum_sbdT = mk_sumTN sbdTs;
804    val sum_sbd_listT = HOLogic.listT sum_sbdT;
805    val sum_sbd_list_setT = HOLogic.mk_setT sum_sbd_listT;
806    val bdTs = passiveAs @ replicate n sbdT;
807    val to_sbd_maps = @{map 4} mk_map_of_bnf Dss Ass (replicate n bdTs) bnfs;
808    val bdFTs = mk_FTs bdTs;
809    val sbdFT = mk_sumTN bdFTs;
810    val treeT = HOLogic.mk_prodT (sum_sbd_list_setT, sum_sbd_listT --> sbdFT);
811    val treeQT = HOLogic.mk_setT treeT;
812    val treeTs = passiveAs @ replicate n treeT;
813    val treeQTs = passiveAs @ replicate n treeQT;
814    val treeFTs = mk_FTs treeTs;
815    val tree_maps = @{map 4} mk_map_of_bnf Dss (replicate n bdTs) (replicate n treeTs) bnfs;
816    val final_maps = @{map 4} mk_map_of_bnf Dss (replicate n treeTs) (replicate n treeQTs) bnfs;
817    val isNode_setss = mk_setss (passiveAs @ replicate n sbdT);
818
819    val root = HOLogic.mk_set sum_sbd_listT [HOLogic.mk_list sum_sbdT []];
820    val Zero = HOLogic.mk_tuple (map (fn U => absdummy U root) activeAs);
821    val Lev_recT = fastype_of Zero;
822
823    val Nil = HOLogic.mk_tuple (@{map 3} (fn i => fn z => fn z'=>
824      Term.absfree z' (mk_InN activeAs z i)) ks zs zs');
825    val rv_recT = fastype_of Nil;
826
827    val (((((((((((((((zs, zs'), zs_copy), ss), (nat, nat')),
828        (sumx, sumx')), (kks, kks')), (kl, kl')), (kl_copy, kl'_copy)), (Kl, Kl')), (lab, lab')),
829        (Kl_lab, Kl_lab')), xs), (Lev_rec, Lev_rec')), (rv_rec, rv_rec')), _) =
830      lthy
831      |> mk_Frees' "b" activeAs
832      ||>> mk_Frees "b" activeAs
833      ||>> mk_Frees "s" sTs
834      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
835      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "sumx") sum_sbdT
836      ||>> mk_Frees' "k" sbdTs
837      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT
838      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT
839      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Kl") sum_sbd_list_setT
840      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "lab") (sum_sbd_listT --> sbdFT)
841      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Kl_lab") treeT
842      ||>> mk_Frees "x" bdFTs
843      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "rec") Lev_recT
844      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "rec") rv_recT;
845
846    val (k, k') = (hd kks, hd kks')
847
848    val timer = time (timer "Bounds");
849
850    (* tree coalgebra *)
851
852    val isNode_binds = mk_internal_bs isNodeN;
853    fun isNode_bind i = nth isNode_binds (i - 1);
854    val isNode_def_bind = rpair [] o Thm.def_binding o isNode_bind;
855
856    val isNodeT =
857      Library.foldr (op -->) (map fastype_of [Kl, lab, kl], HOLogic.boolT);
858
859    val Succs = @{map 3} (fn i => fn k => fn k' =>
860      HOLogic.mk_Collect (fst k', snd k', HOLogic.mk_mem (mk_InN sbdTs k i, mk_Succ Kl kl)))
861      ks kks kks';
862
863    fun isNode_spec sets x i =
864      let
865        val active_sets = drop m (map (fn set => set $ x) sets);
866        val rhs = list_exists_free [x]
867          (Library.foldr1 HOLogic.mk_conj (HOLogic.mk_eq (lab $ kl, mk_InN bdFTs x i) ::
868          map2 (curry HOLogic.mk_eq) active_sets Succs));
869      in
870        fold_rev (Term.absfree o Term.dest_Free) [Kl, lab, kl] rhs
871      end;
872
873    val ((isNode_frees, (_, isNode_def_frees)), (lthy, lthy_old)) =
874      lthy
875      |> Local_Theory.open_target |> snd
876      |> @{fold_map 3} (fn i => fn x => fn sets => Local_Theory.define
877        ((isNode_bind i, NoSyn), (isNode_def_bind i, isNode_spec sets x i)))
878        ks xs isNode_setss
879      |>> apsnd split_list o split_list
880      ||> `Local_Theory.close_target;
881
882    val phi = Proof_Context.export_morphism lthy_old lthy;
883
884    val isNode_defs = map (fn def =>
885      mk_unabs_def 3 (HOLogic.mk_obj_eq (Morphism.thm phi def))) isNode_def_frees;
886    val isNodes = map (fst o Term.dest_Const o Morphism.term phi) isNode_frees;
887
888    fun mk_isNode kl i =
889      Term.list_comb (Const (nth isNodes (i - 1), isNodeT), [Kl, lab, kl]);
890
891    val isTree =
892      let
893        val empty = HOLogic.mk_mem (HOLogic.mk_list sum_sbdT [], Kl);
894
895        val tree = mk_Ball Kl (Term.absfree kl'
896          (Library.foldr1 HOLogic.mk_conj (@{map 4} (fn Succ => fn i => fn k => fn k' =>
897            mk_Ball Succ (Term.absfree k' (mk_isNode
898              (mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i])) i)))
899          Succs ks kks kks')));
900      in
901        HOLogic.mk_conj (empty, tree)
902      end;
903
904    val carT_binds = mk_internal_bs carTN;
905    fun carT_bind i = nth carT_binds (i - 1);
906    val carT_def_bind = rpair [] o Thm.def_binding o carT_bind;
907
908    fun carT_spec i =
909      HOLogic.mk_Collect (fst Kl_lab', snd Kl_lab', list_exists_free [Kl, lab]
910        (HOLogic.mk_conj (HOLogic.mk_eq (Kl_lab, HOLogic.mk_prod (Kl, lab)),
911          HOLogic.mk_conj (isTree, mk_isNode (HOLogic.mk_list sum_sbdT []) i))));
912
913    val ((carT_frees, (_, carT_def_frees)), (lthy, lthy_old)) =
914      lthy
915      |> Local_Theory.open_target |> snd
916      |> fold_map (fn i =>
917        Local_Theory.define ((carT_bind i, NoSyn), (carT_def_bind i, carT_spec i))) ks
918      |>> apsnd split_list o split_list
919      ||> `Local_Theory.close_target;
920
921    val phi = Proof_Context.export_morphism lthy_old lthy;
922
923    val carT_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) carT_def_frees;
924    val carTs = map (fst o Term.dest_Const o Morphism.term phi) carT_frees;
925
926    fun mk_carT i = Const (nth carTs (i - 1), HOLogic.mk_setT treeT);
927
928    val strT_binds = mk_internal_bs strTN;
929    fun strT_bind i = nth strT_binds (i - 1);
930    val strT_def_bind = rpair [] o Thm.def_binding o strT_bind;
931
932    fun strT_spec mapFT FT i =
933      let
934        fun mk_f i k k' =
935          let val in_k = mk_InN sbdTs k i;
936          in Term.absfree k' (HOLogic.mk_prod (mk_Shift Kl in_k, mk_shift lab in_k)) end;
937
938        val f = Term.list_comb (mapFT, passive_ids @ @{map 3} mk_f ks kks kks');
939        val (fTs1, fTs2) = apsnd tl (chop (i - 1) (map (fn T => T --> FT) bdFTs));
940        val fs = map mk_undefined fTs1 @ (f :: map mk_undefined fTs2);
941      in
942        HOLogic.mk_case_prod (Term.absfree Kl' (Term.absfree lab'
943          (mk_case_sumN fs $ (lab $ HOLogic.mk_list sum_sbdT []))))
944      end;
945
946    val ((strT_frees, (_, strT_def_frees)), (lthy, lthy_old)) =
947      lthy
948      |> Local_Theory.open_target |> snd
949      |> @{fold_map 3} (fn i => fn mapFT => fn FT => Local_Theory.define
950        ((strT_bind i, NoSyn), (strT_def_bind i, strT_spec mapFT FT i)))
951        ks tree_maps treeFTs
952      |>> apsnd split_list o split_list
953      ||> `Local_Theory.close_target;
954
955    val phi = Proof_Context.export_morphism lthy_old lthy;
956
957    val strT_defs = map (fn def =>
958        trans OF [HOLogic.mk_obj_eq (Morphism.thm phi def) RS fun_cong, @{thm prod.case}])
959      strT_def_frees;
960    val strTs = map (fst o Term.dest_Const o Morphism.term phi) strT_frees;
961
962    fun mk_strT FT i = Const (nth strTs (i - 1), treeT --> FT);
963
964    val carTAs = map mk_carT ks;
965    val strTAs = map2 mk_strT treeFTs ks;
966
967    val coalgT_thm =
968      Goal.prove_sorry lthy [] [] (HOLogic.mk_Trueprop (mk_coalg carTAs strTAs))
969        (fn {context = ctxt, prems = _} => mk_coalgT_tac ctxt m
970          (coalg_def :: isNode_defs @ carT_defs) strT_defs set_mapss)
971      |> Thm.close_derivation \<^here>;
972
973    val timer = time (timer "Tree coalgebra");
974
975    fun mk_to_sbd s x i i' =
976      mk_toCard (nth (nth setssAs (i - 1)) (m + i' - 1) $ (s $ x)) sbd;
977    fun mk_from_sbd s x i i' =
978      mk_fromCard (nth (nth setssAs (i - 1)) (m + i' - 1) $ (s $ x)) sbd;
979
980    fun mk_to_sbd_thmss thm = map (map (fn set_sbd =>
981      thm OF [set_sbd, sbd_Card_order]) o drop m) set_sbdss;
982
983    val to_sbd_inj_thmss = mk_to_sbd_thmss @{thm toCard_inj};
984    val from_to_sbd_thmss = mk_to_sbd_thmss @{thm fromCard_toCard};
985
986    val Lev_bind = mk_internal_b LevN;
987    val Lev_def_bind = rpair [] (Thm.def_binding Lev_bind);
988
989    val Lev_spec =
990      let
991        fun mk_Suc i s setsAs a a' =
992          let
993            val sets = drop m setsAs;
994            fun mk_set i' set b =
995              let
996                val Cons = HOLogic.mk_eq (kl_copy,
997                  mk_Cons (mk_InN sbdTs (mk_to_sbd s a i i' $ b) i') kl)
998                val b_set = HOLogic.mk_mem (b, set $ (s $ a));
999                val kl_rec = HOLogic.mk_mem (kl, mk_nthN n Lev_rec i' $ b);
1000              in
1001                HOLogic.mk_Collect (fst kl'_copy, snd kl'_copy, list_exists_free [b, kl]
1002                  (HOLogic.mk_conj (Cons, HOLogic.mk_conj (b_set, kl_rec))))
1003              end;
1004          in
1005            Term.absfree a' (Library.foldl1 mk_union (@{map 3} mk_set ks sets zs_copy))
1006          end;
1007
1008        val Suc = Term.absdummy HOLogic.natT (Term.absfree Lev_rec'
1009          (HOLogic.mk_tuple (@{map 5} mk_Suc ks ss setssAs zs zs')));
1010
1011        val rhs = mk_rec_nat Zero Suc;
1012      in
1013        fold_rev (Term.absfree o Term.dest_Free) ss rhs
1014      end;
1015
1016    val ((Lev_free, (_, Lev_def_free)), (lthy, lthy_old)) =
1017      lthy
1018      |> Local_Theory.open_target |> snd
1019      |> Local_Theory.define ((Lev_bind, NoSyn), (Lev_def_bind, Lev_spec))
1020      ||> `Local_Theory.close_target;
1021
1022    val phi = Proof_Context.export_morphism lthy_old lthy;
1023
1024    val Lev_def = mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi Lev_def_free));
1025    val Lev = fst (Term.dest_Const (Morphism.term phi Lev_free));
1026
1027    fun mk_Lev ss nat i =
1028      let
1029        val Ts = map fastype_of ss;
1030        val LevT = Library.foldr (op -->) (Ts, HOLogic.natT -->
1031          HOLogic.mk_tupleT (map (fn U => domain_type U --> sum_sbd_list_setT) Ts));
1032      in
1033        mk_nthN n (Term.list_comb (Const (Lev, LevT), ss) $ nat) i
1034      end;
1035
1036    val Lev_0s = flat (mk_rec_simps n @{thm rec_nat_0_imp} [Lev_def]);
1037    val Lev_Sucs = flat (mk_rec_simps n @{thm rec_nat_Suc_imp} [Lev_def]);
1038
1039    val rv_bind = mk_internal_b rvN;
1040    val rv_def_bind = rpair [] (Thm.def_binding rv_bind);
1041
1042    val rv_spec =
1043      let
1044        fun mk_Cons i s b b' =
1045          let
1046            fun mk_case i' =
1047              Term.absfree k' (mk_nthN n rv_rec i' $ (mk_from_sbd s b i i' $ k));
1048          in
1049            Term.absfree b' (mk_case_sumN (map mk_case ks) $ sumx)
1050          end;
1051
1052        val Cons = Term.absfree sumx' (Term.absdummy sum_sbd_listT (Term.absfree rv_rec'
1053          (HOLogic.mk_tuple (@{map 4} mk_Cons ks ss zs zs'))));
1054
1055        val rhs = mk_rec_list Nil Cons;
1056      in
1057        fold_rev (Term.absfree o Term.dest_Free) ss rhs
1058      end;
1059
1060    val ((rv_free, (_, rv_def_free)), (lthy, lthy_old)) =
1061      lthy
1062      |> Local_Theory.open_target |> snd
1063      |> Local_Theory.define ((rv_bind, NoSyn), (rv_def_bind, rv_spec))
1064      ||> `Local_Theory.close_target;
1065
1066    val phi = Proof_Context.export_morphism lthy_old lthy;
1067
1068    val rv_def = mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi rv_def_free));
1069    val rv = fst (Term.dest_Const (Morphism.term phi rv_free));
1070
1071    fun mk_rv ss kl i =
1072      let
1073        val Ts = map fastype_of ss;
1074        val As = map domain_type Ts;
1075        val rvT = Library.foldr (op -->) (Ts, fastype_of kl -->
1076          HOLogic.mk_tupleT (map (fn U => U --> mk_sumTN As) As));
1077      in
1078        mk_nthN n (Term.list_comb (Const (rv, rvT), ss) $ kl) i
1079      end;
1080
1081    val rv_Nils = flat (mk_rec_simps n @{thm rec_list_Nil_imp} [rv_def]);
1082    val rv_Conss = flat (mk_rec_simps n @{thm rec_list_Cons_imp} [rv_def]);
1083
1084    val beh_binds = mk_internal_bs behN;
1085    fun beh_bind i = nth beh_binds (i - 1);
1086    val beh_def_bind = rpair [] o Thm.def_binding o beh_bind;
1087
1088    fun beh_spec i z =
1089      let
1090        fun mk_case i to_sbd_map s k k' =
1091          Term.absfree k' (mk_InN bdFTs
1092            (Term.list_comb (to_sbd_map, passive_ids @ map (mk_to_sbd s k i) ks) $ (s $ k)) i);
1093
1094        val Lab = Term.absfree kl'
1095          (mk_case_sumN (@{map 5} mk_case ks to_sbd_maps ss zs zs') $ (mk_rv ss kl i $ z));
1096
1097        val rhs = HOLogic.mk_prod (mk_UNION (HOLogic.mk_UNIV HOLogic.natT)
1098          (Term.absfree nat' (mk_Lev ss nat i $ z)), Lab);
1099      in
1100        fold_rev (Term.absfree o Term.dest_Free) (ss @ [z]) rhs
1101      end;
1102
1103    val ((beh_frees, (_, beh_def_frees)), (lthy, lthy_old)) =
1104      lthy
1105      |> Local_Theory.open_target |> snd
1106      |> @{fold_map 2} (fn i => fn z =>
1107        Local_Theory.define ((beh_bind i, NoSyn), (beh_def_bind i, beh_spec i z))) ks zs
1108      |>> apsnd split_list o split_list
1109      ||> `Local_Theory.close_target;
1110
1111    val phi = Proof_Context.export_morphism lthy_old lthy;
1112
1113    val beh_defs = map (fn def =>
1114      mk_unabs_def (n + 1) (HOLogic.mk_obj_eq (Morphism.thm phi def))) beh_def_frees;
1115    val behs = map (fst o Term.dest_Const o Morphism.term phi) beh_frees;
1116
1117    fun mk_beh ss i =
1118      let
1119        val Ts = map fastype_of ss;
1120        val behT = Library.foldr (op -->) (Ts, nth activeAs (i - 1) --> treeT);
1121      in
1122        Term.list_comb (Const (nth behs (i - 1), behT), ss)
1123      end;
1124
1125    val ((((((zs, zs_copy), zs_copy2), ss), (nat, nat')), (kl, kl')), _) =
1126      lthy
1127      |> mk_Frees "b" activeAs
1128      ||>> mk_Frees "b" activeAs
1129      ||>> mk_Frees "b" activeAs
1130      ||>> mk_Frees "s" sTs
1131      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
1132      ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT;
1133
1134    val (length_Lev_thms, length_Lev'_thms) =
1135      let
1136        fun mk_conjunct i z = HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
1137          HOLogic.mk_eq (mk_size kl, nat));
1138        val goal = list_all_free (kl :: zs)
1139          (Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
1140        val vars = Variable.add_free_names lthy goal [];
1141
1142        val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
1143
1144        val length_Lev =
1145          Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
1146            (fn {context = ctxt, prems = _} => mk_length_Lev_tac ctxt cts Lev_0s Lev_Sucs)
1147          |> Thm.close_derivation \<^here>;
1148
1149        val length_Lev' = mk_specN (n + 1) length_Lev;
1150        val length_Levs = map (fn i => length_Lev' RS mk_conjunctN n i RS mp) ks;
1151
1152        fun mk_goal i z = Logic.mk_implies
1153            (mk_Trueprop_mem (kl, mk_Lev ss nat i $ z),
1154            mk_Trueprop_mem (kl, mk_Lev ss (mk_size kl) i $ z));
1155        val goals = map2 mk_goal ks zs;
1156
1157        val length_Levs' =
1158          map2 (fn goal => fn length_Lev =>
1159            Variable.add_free_names lthy goal []
1160            |> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
1161              mk_length_Lev'_tac ctxt length_Lev))
1162            |> Thm.close_derivation \<^here>)
1163          goals length_Levs;
1164      in
1165        (length_Levs, length_Levs')
1166      end;
1167
1168    val rv_last_thmss =
1169      let
1170        fun mk_conjunct i z i' z_copy = list_exists_free [z_copy]
1171          (HOLogic.mk_eq
1172            (mk_rv ss (mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i'])) i $ z,
1173            mk_InN activeAs z_copy i'));
1174        val goal = list_all_free (k :: zs)
1175          (Library.foldr1 HOLogic.mk_conj (map2 (fn i => fn z =>
1176            Library.foldr1 HOLogic.mk_conj
1177              (map2 (mk_conjunct i z) ks zs_copy)) ks zs));
1178        val vars = Variable.add_free_names lthy goal [];
1179
1180        val cTs = [SOME (Thm.ctyp_of lthy sum_sbdT)];
1181        val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree kl' goal, kl];
1182
1183        val rv_last =
1184          Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
1185            (fn {context = ctxt, prems = _} => mk_rv_last_tac ctxt cTs cts rv_Nils rv_Conss)
1186          |> Thm.close_derivation \<^here>;
1187
1188        val rv_last' = mk_specN (n + 1) rv_last;
1189      in
1190        map (fn i => map (fn i' => rv_last' RS mk_conjunctN n i RS mk_conjunctN n i') ks) ks
1191      end;
1192
1193    val set_Lev_thmsss =
1194      let
1195        fun mk_conjunct i z =
1196          let
1197            fun mk_conjunct' i' sets s z' =
1198              let
1199                fun mk_conjunct'' i'' set z'' = HOLogic.mk_imp
1200                  (HOLogic.mk_mem (z'', set $ (s $ z')),
1201                    HOLogic.mk_mem (mk_append (kl,
1202                      HOLogic.mk_list sum_sbdT [mk_InN sbdTs (mk_to_sbd s z' i' i'' $ z'') i'']),
1203                      mk_Lev ss (HOLogic.mk_Suc nat) i $ z));
1204              in
1205                HOLogic.mk_imp (HOLogic.mk_eq (mk_rv ss kl i $ z, mk_InN activeAs z' i'),
1206                  (Library.foldr1 HOLogic.mk_conj
1207                    (@{map 3} mk_conjunct'' ks (drop m sets) zs_copy2)))
1208              end;
1209          in
1210            HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
1211              Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct' ks setssAs ss zs_copy))
1212          end;
1213
1214        val goal = list_all_free (kl :: zs @ zs_copy @ zs_copy2)
1215          (Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
1216        val vars = Variable.add_free_names lthy goal [];
1217
1218        val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
1219
1220        val set_Lev =
1221          Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
1222            (fn {context = ctxt, prems = _} =>
1223              mk_set_Lev_tac ctxt cts Lev_0s Lev_Sucs rv_Nils rv_Conss from_to_sbd_thmss)
1224          |> Thm.close_derivation \<^here>;
1225
1226        val set_Lev' = mk_specN (3 * n + 1) set_Lev;
1227      in
1228        map (fn i => map (fn i' => map (fn i'' => set_Lev' RS
1229          mk_conjunctN n i RS mp RS
1230          mk_conjunctN n i' RS mp RS
1231          mk_conjunctN n i'' RS mp) ks) ks) ks
1232      end;
1233
1234    val set_image_Lev_thmsss =
1235      let
1236        fun mk_conjunct i z =
1237          let
1238            fun mk_conjunct' i' sets =
1239              let
1240                fun mk_conjunct'' i'' set s z'' = HOLogic.mk_imp
1241                  (HOLogic.mk_eq (mk_rv ss kl i $ z, mk_InN activeAs z'' i''),
1242                  HOLogic.mk_mem (k, mk_image (mk_to_sbd s z'' i'' i') $ (set $ (s $ z''))));
1243              in
1244                HOLogic.mk_imp (HOLogic.mk_mem
1245                  (mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i']),
1246                    mk_Lev ss (HOLogic.mk_Suc nat) i $ z),
1247                  (Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct'' ks sets ss zs_copy)))
1248              end;
1249          in
1250            HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
1251              Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct' ks (drop m setssAs')))
1252          end;
1253
1254        val goal = list_all_free (kl :: k :: zs @ zs_copy)
1255          (Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
1256        val vars = Variable.add_free_names lthy goal [];
1257
1258        val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
1259
1260        val set_image_Lev =
1261          Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
1262            (fn {context = ctxt, prems = _} =>
1263              mk_set_image_Lev_tac ctxt cts Lev_0s Lev_Sucs rv_Nils rv_Conss
1264                from_to_sbd_thmss to_sbd_inj_thmss)
1265          |> Thm.close_derivation \<^here>;
1266
1267        val set_image_Lev' = mk_specN (2 * n + 2) set_image_Lev;
1268      in
1269        map (fn i => map (fn i' => map (fn i'' => set_image_Lev' RS
1270          mk_conjunctN n i RS mp RS
1271          mk_conjunctN n i'' RS mp RS
1272          mk_conjunctN n i' RS mp) ks) ks) ks
1273      end;
1274
1275    val mor_beh_thm =
1276      let
1277        val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss carTAs strTAs (map (mk_beh ss) ks));
1278        val vars = Variable.add_free_names lthy goal [];
1279      in
1280        Goal.prove_sorry lthy vars [] goal
1281          (fn {context = ctxt, prems = _} => mk_mor_beh_tac ctxt m mor_def mor_cong_thm
1282            beh_defs carT_defs strT_defs isNode_defs
1283            to_sbd_inj_thmss from_to_sbd_thmss Lev_0s Lev_Sucs rv_Nils rv_Conss
1284            length_Lev_thms length_Lev'_thms rv_last_thmss set_Lev_thmsss
1285            set_image_Lev_thmsss set_mapss map_comp_id_thms map_cong0s)
1286        |> Thm.close_derivation \<^here>
1287      end;
1288
1289    val timer = time (timer "Behavioral morphism");
1290
1291    val lsbisAs = map (mk_lsbis carTAs strTAs) ks;
1292
1293    fun mk_str_final i =
1294      mk_univ (HOLogic.mk_comp (Term.list_comb (nth final_maps (i - 1),
1295        passive_ids @ map mk_proj lsbisAs), nth strTAs (i - 1)));
1296
1297    val car_finals = map2 mk_quotient carTAs lsbisAs;
1298    val str_finals = map mk_str_final ks;
1299
1300    val coalgT_set_thmss = map (map (fn thm => coalgT_thm RS thm)) coalg_set_thmss;
1301    val equiv_LSBIS_thms = map (fn thm => coalgT_thm RS thm) equiv_lsbis_thms;
1302
1303    val congruent_str_final_thms =
1304      let
1305        fun mk_goal R final_map strT =
1306          HOLogic.mk_Trueprop (mk_congruent R (HOLogic.mk_comp
1307            (Term.list_comb (final_map, passive_ids @ map mk_proj lsbisAs), strT)));
1308
1309        val goals = @{map 3} mk_goal lsbisAs final_maps strTAs;
1310      in
1311        @{map 4} (fn goal => fn lsbisE => fn map_comp_id => fn map_cong0 =>
1312          Goal.prove_sorry lthy [] [] goal
1313            (fn {context = ctxt, prems = _} => mk_congruent_str_final_tac ctxt m lsbisE map_comp_id
1314              map_cong0 equiv_LSBIS_thms)
1315          |> Thm.close_derivation \<^here>)
1316        goals lsbisE_thms map_comp_id_thms map_cong0s
1317      end;
1318
1319    val coalg_final_thm = Goal.prove_sorry lthy [] []
1320      (HOLogic.mk_Trueprop (mk_coalg car_finals str_finals))
1321      (fn {context = ctxt, prems = _} => mk_coalg_final_tac ctxt m coalg_def
1322        congruent_str_final_thms equiv_LSBIS_thms set_mapss coalgT_set_thmss)
1323      |> Thm.close_derivation \<^here>;
1324
1325    val mor_T_final_thm = Goal.prove_sorry lthy [] []
1326      (HOLogic.mk_Trueprop (mk_mor carTAs strTAs car_finals str_finals (map mk_proj lsbisAs)))
1327      (fn {context = ctxt, prems = _} => mk_mor_T_final_tac ctxt mor_def congruent_str_final_thms
1328        equiv_LSBIS_thms)
1329      |> Thm.close_derivation \<^here>;
1330
1331    val mor_final_thm = mor_comp_thm OF [mor_beh_thm, mor_T_final_thm];
1332    val in_car_final_thms = map (fn thm => thm OF [mor_final_thm, UNIV_I]) mor_image'_thms;
1333
1334    val timer = time (timer "Final coalgebra");
1335
1336    val ((T_names, (T_glob_infos, T_loc_infos)), lthy) =
1337      lthy
1338      |> @{fold_map 4} (fn b => fn mx => fn car_final => fn in_car_final =>
1339          typedef (b, params, mx) car_final NONE
1340            (fn ctxt => EVERY' [rtac ctxt exI, rtac ctxt in_car_final] 1))
1341        bs mixfixes car_finals in_car_final_thms
1342      |>> apsnd split_list o split_list;
1343
1344    val Ts = map (fn name => Type (name, params')) T_names;
1345    fun mk_Ts passive = map (Term.typ_subst_atomic (passiveAs ~~ passive)) Ts;
1346    val Ts' = mk_Ts passiveBs;
1347    val Rep_Ts = map2 (fn info => fn T => Const (#Rep_name info, T --> treeQT)) T_glob_infos Ts;
1348    val Abs_Ts = map2 (fn info => fn T => Const (#Abs_name info, treeQT --> T)) T_glob_infos Ts;
1349
1350    val Reps = map #Rep T_loc_infos;
1351    val Rep_injects = map #Rep_inject T_loc_infos;
1352    val Abs_inverses = map #Abs_inverse T_loc_infos;
1353
1354    val timer = time (timer "THE TYPEDEFs & Rep/Abs thms");
1355
1356    val UNIVs = map HOLogic.mk_UNIV Ts;
1357    val FTs = mk_FTs (passiveAs @ Ts);
1358    val FTs_setss = mk_setss (passiveAs @ Ts);
1359    val map_FTs = map2 (fn Ds => mk_map_of_bnf Ds treeQTs (passiveAs @ Ts)) Dss bnfs;
1360    val unfold_fTs = map2 (curry op -->) activeAs Ts;
1361
1362    val emptys = map (fn T => HOLogic.mk_set T []) passiveAs;
1363    val Zeros = map (fn empty =>
1364     HOLogic.mk_tuple (map (fn U => absdummy U empty) Ts)) emptys;
1365    val hrecTs = map fastype_of Zeros;
1366
1367    val (((zs, ss), (Jzs, Jzs')), _) =
1368      lthy
1369      |> mk_Frees "b" activeAs
1370      ||>> mk_Frees "s" sTs
1371      ||>> mk_Frees' "z" Ts;
1372
1373    fun dtor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtorN ^ "_");
1374    val dtor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o dtor_bind;
1375
1376    fun dtor_spec rep str map_FT Jz Jz' =
1377      Term.absfree Jz'
1378        (Term.list_comb (map_FT, map HOLogic.id_const passiveAs @ Abs_Ts) $ (str $ (rep $ Jz)));
1379
1380    val ((dtor_frees, (_, dtor_def_frees)), (lthy, lthy_old)) =
1381      lthy
1382      |> Local_Theory.open_target |> snd
1383      |> @{fold_map 6} (fn i => fn rep => fn str => fn mapx => fn Jz => fn Jz' =>
1384        Local_Theory.define ((dtor_bind i, NoSyn),
1385          (dtor_def_bind i, dtor_spec rep str mapx Jz Jz')))
1386        ks Rep_Ts str_finals map_FTs Jzs Jzs'
1387      |>> apsnd split_list o split_list
1388      ||> `Local_Theory.close_target;
1389
1390    val phi = Proof_Context.export_morphism lthy_old lthy;
1391    fun mk_dtors passive =
1392      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ (mk_params passive)) o
1393        Morphism.term phi) dtor_frees;
1394    val dtors = mk_dtors passiveAs;
1395    val dtor's = mk_dtors passiveBs;
1396    val dtor_defs =
1397      map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def) RS fun_cong) dtor_def_frees;
1398
1399    val coalg_final_set_thmss = map (map (fn thm => coalg_final_thm RS thm)) coalg_set_thmss;
1400    val (mor_Rep_thm, mor_Abs_thm) =
1401      let
1402        val mor_Rep =
1403          Goal.prove_sorry lthy [] []
1404            (HOLogic.mk_Trueprop (mk_mor UNIVs dtors car_finals str_finals Rep_Ts))
1405            (fn {context = ctxt, prems = _} => mk_mor_Rep_tac ctxt (mor_def :: dtor_defs) Reps
1406              Abs_inverses coalg_final_set_thmss map_comp_id_thms map_cong0L_thms)
1407          |> Thm.close_derivation \<^here>;
1408
1409        val mor_Abs =
1410          Goal.prove_sorry lthy [] []
1411            (HOLogic.mk_Trueprop (mk_mor car_finals str_finals UNIVs dtors Abs_Ts))
1412            (fn {context = ctxt, prems = _} => mk_mor_Abs_tac ctxt (mor_def :: dtor_defs)
1413              Abs_inverses)
1414          |> Thm.close_derivation \<^here>;
1415      in
1416        (mor_Rep, mor_Abs)
1417      end;
1418
1419    val timer = time (timer "dtor definitions & thms");
1420
1421    fun unfold_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtor_unfoldN ^ "_");
1422    val unfold_def_bind = rpair [] o Binding.concealed o Thm.def_binding o unfold_bind;
1423
1424    fun unfold_spec abs f z = fold_rev (Term.absfree o Term.dest_Free) (ss @ [z]) (abs $ (f $ z));
1425
1426    val ((unfold_frees, (_, unfold_def_frees)), (lthy, lthy_old)) =
1427      lthy
1428      |> Local_Theory.open_target |> snd
1429      |> @{fold_map 4} (fn i => fn abs => fn f => fn z =>
1430        Local_Theory.define ((unfold_bind i, NoSyn), (unfold_def_bind i, unfold_spec abs f z)))
1431          ks Abs_Ts (map (fn i => HOLogic.mk_comp
1432            (mk_proj (nth lsbisAs (i - 1)), mk_beh ss i)) ks) zs
1433      |>> apsnd split_list o split_list
1434      ||> `Local_Theory.close_target;
1435
1436    val phi = Proof_Context.export_morphism lthy_old lthy;
1437    val unfolds = map (Morphism.term phi) unfold_frees;
1438    val unfold_names = map (fst o dest_Const) unfolds;
1439    fun mk_unfolds passives actives =
1440      @{map 3} (fn name => fn T => fn active =>
1441        Const (name, Library.foldr (op -->)
1442          (map2 (curry op -->) actives (mk_FTs (passives @ actives)), active --> T)))
1443      unfold_names (mk_Ts passives) actives;
1444    fun mk_unfold Ts ss i = Term.list_comb (Const (nth unfold_names (i - 1), Library.foldr (op -->)
1445      (map fastype_of ss, domain_type (fastype_of (nth ss (i - 1))) --> nth Ts (i - 1))), ss);
1446    val unfold_defs = map (fn def =>
1447      mk_unabs_def (n + 1) (HOLogic.mk_obj_eq (Morphism.thm phi def))) unfold_def_frees;
1448
1449    val (((ss, TRs), unfold_fs), _) =
1450      lthy
1451      |> mk_Frees "s" sTs
1452      ||>> mk_Frees "r" (map (mk_relT o `I) Ts)
1453      ||>> mk_Frees "f" unfold_fTs;
1454
1455    val mor_unfold_thm =
1456      let
1457        val Abs_inverses' = map2 (curry op RS) in_car_final_thms Abs_inverses;
1458        val morEs' = map (fn thm => (thm OF [mor_final_thm, UNIV_I]) RS sym) morE_thms;
1459        val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss UNIVs dtors (map (mk_unfold Ts ss) ks));
1460        val vars = Variable.add_free_names lthy goal [];
1461      in
1462        Goal.prove_sorry lthy vars [] goal
1463          (fn {context = ctxt, prems = _} => mk_mor_unfold_tac ctxt m mor_UNIV_thm dtor_defs
1464            unfold_defs Abs_inverses' morEs' map_comp_id_thms map_cong0s)
1465        |> Thm.close_derivation \<^here>
1466      end;
1467    val dtor_unfold_thms = map (fn thm => (thm OF [mor_unfold_thm, UNIV_I]) RS sym) morE_thms;
1468
1469    val (raw_coind_thms, raw_coind_thm) =
1470      let
1471        val prem = HOLogic.mk_Trueprop (mk_sbis UNIVs dtors TRs);
1472        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1473          (map2 (fn R => fn T => mk_leq R (Id_const T)) TRs Ts));
1474        val vars = fold (Variable.add_free_names lthy) [prem, concl] [];
1475      in
1476        `split_conj_thm (Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, concl))
1477          (fn {context = ctxt, prems = _} => mk_raw_coind_tac ctxt bis_def bis_cong_thm bis_O_thm
1478            bis_converse_thm bis_Gr_thm tcoalg_thm coalgT_thm mor_T_final_thm sbis_lsbis_thm
1479            lsbis_incl_thms incl_lsbis_thms equiv_LSBIS_thms mor_Rep_thm Rep_injects)
1480          |> Thm.close_derivation \<^here>)
1481      end;
1482
1483    val (unfold_unique_mor_thms, unfold_unique_mor_thm) =
1484      let
1485        val prem = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss UNIVs dtors unfold_fs);
1486        fun mk_fun_eq f i = HOLogic.mk_eq (f, mk_unfold Ts ss i);
1487        val unique = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1488          (map2 mk_fun_eq unfold_fs ks));
1489        val vars = fold (Variable.add_free_names lthy) [prem, unique] [];
1490
1491        val bis_thm = tcoalg_thm RSN (2, tcoalg_thm RS bis_image2_thm);
1492        val mor_thm = mor_comp_thm OF [mor_final_thm, mor_Abs_thm];
1493
1494        val unique_mor = Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, unique))
1495          (fn {context = ctxt, prems = _} => mk_unfold_unique_mor_tac ctxt raw_coind_thms
1496            bis_thm mor_thm unfold_defs)
1497          |> Thm.close_derivation \<^here>;
1498      in
1499        `split_conj_thm unique_mor
1500      end;
1501
1502    val (dtor_unfold_unique_thms, dtor_unfold_unique_thm) = `split_conj_thm (split_conj_prems n
1503      (mor_UNIV_thm RS iffD2 RS unfold_unique_mor_thm));
1504
1505    val unfold_dtor_thms = map (fn thm => mor_id_thm RS thm RS sym) unfold_unique_mor_thms;
1506
1507    val unfold_o_dtor_thms =
1508      let
1509        val mor = mor_comp_thm OF [mor_str_thm, mor_unfold_thm];
1510      in
1511        map2 (fn unique => fn unfold_ctor =>
1512          trans OF [mor RS unique, unfold_ctor]) unfold_unique_mor_thms unfold_dtor_thms
1513      end;
1514
1515    val timer = time (timer "unfold definitions & thms");
1516
1517    val map_dtors = map2 (fn Ds => fn bnf =>
1518      Term.list_comb (mk_map_of_bnf Ds (passiveAs @ Ts) (passiveAs @ FTs) bnf,
1519        map HOLogic.id_const passiveAs @ dtors)) Dss bnfs;
1520
1521    fun ctor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctorN ^ "_");
1522    val ctor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o ctor_bind;
1523
1524    fun ctor_spec i = mk_unfold Ts map_dtors i;
1525
1526    val ((ctor_frees, (_, ctor_def_frees)), (lthy, lthy_old)) =
1527      lthy
1528      |> Local_Theory.open_target |> snd
1529      |> fold_map (fn i =>
1530        Local_Theory.define ((ctor_bind i, NoSyn), (ctor_def_bind i, ctor_spec i))) ks
1531      |>> apsnd split_list o split_list
1532      ||> `Local_Theory.close_target;
1533
1534    val phi = Proof_Context.export_morphism lthy_old lthy;
1535    fun mk_ctors params =
1536      map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ params) o Morphism.term phi)
1537        ctor_frees;
1538    val ctors = mk_ctors params';
1539    val ctor_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) ctor_def_frees;
1540
1541    val ctor_o_dtor_thms = map2 (Local_Defs.fold lthy o single) ctor_defs unfold_o_dtor_thms;
1542
1543    val dtor_o_ctor_thms =
1544      let
1545        fun mk_goal dtor ctor FT =
1546         mk_Trueprop_eq (HOLogic.mk_comp (dtor, ctor), HOLogic.id_const FT);
1547        val goals = @{map 3} mk_goal dtors ctors FTs;
1548      in
1549        @{map 5} (fn goal => fn ctor_def => fn unfold => fn map_comp_id => fn map_cong0L =>
1550          Goal.prove_sorry lthy [] [] goal
1551            (fn {context = ctxt, prems = _} => mk_dtor_o_ctor_tac ctxt ctor_def unfold map_comp_id
1552              map_cong0L unfold_o_dtor_thms)
1553          |> Thm.close_derivation \<^here>)
1554          goals ctor_defs dtor_unfold_thms map_comp_id_thms map_cong0L_thms
1555      end;
1556
1557    val dtor_ctor_thms = map (fn thm => thm RS @{thm pointfree_idE}) dtor_o_ctor_thms;
1558    val ctor_dtor_thms = map (fn thm => thm RS @{thm pointfree_idE}) ctor_o_dtor_thms;
1559
1560    val bij_dtor_thms =
1561      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) ctor_o_dtor_thms dtor_o_ctor_thms;
1562    val inj_dtor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_dtor_thms;
1563    val surj_dtor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_dtor_thms;
1564    val dtor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_dtor_thms;
1565    val dtor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_dtor_thms;
1566    val dtor_exhaust_thms = map (fn thm => thm RS exE) dtor_nchotomy_thms;
1567
1568    val bij_ctor_thms =
1569      map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) dtor_o_ctor_thms ctor_o_dtor_thms;
1570    val inj_ctor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_ctor_thms;
1571    val surj_ctor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_ctor_thms;
1572    val ctor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_ctor_thms;
1573    val ctor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_ctor_thms;
1574    val ctor_exhaust_thms = map (fn thm => thm RS exE) ctor_nchotomy_thms;
1575
1576    val timer = time (timer "ctor definitions & thms");
1577
1578    val (((((Jzs, Jzs_copy), Jzs1), Jzs2), phis), _) =
1579      lthy
1580      |> mk_Frees "z" Ts
1581      ||>> mk_Frees "z'" Ts
1582      ||>> mk_Frees "z1" Ts
1583      ||>> mk_Frees "z2" Ts
1584      ||>> mk_Frees "P" (map2 mk_pred2T Ts Ts);
1585
1586    val (coinduct_params, dtor_coinduct_thm) =
1587      let
1588        val rels = map (Term.subst_atomic_types ((activeAs ~~ Ts) @ (activeBs ~~ Ts))) relsAsBs;
1589
1590        fun mk_concl phi z1 z2 = HOLogic.mk_imp (phi $ z1 $ z2, HOLogic.mk_eq (z1, z2));
1591        val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1592          (@{map 3} mk_concl phis Jzs1 Jzs2));
1593
1594        fun mk_rel_prem phi dtor rel Jz Jz_copy =
1595          let
1596            val concl = Term.list_comb (rel, passive_eqs @ phis) $
1597              (dtor $ Jz) $ (dtor $ Jz_copy);
1598          in
1599            HOLogic.mk_Trueprop
1600              (list_all_free [Jz, Jz_copy] (HOLogic.mk_imp (phi $ Jz $ Jz_copy, concl)))
1601          end;
1602
1603        val rel_prems = @{map 5} mk_rel_prem phis dtors rels Jzs Jzs_copy;
1604        val dtor_coinduct_goal = Logic.list_implies (rel_prems, concl);
1605
1606        val dtor_coinduct =
1607          Variable.add_free_names lthy dtor_coinduct_goal []
1608          |> (fn vars => Goal.prove_sorry lthy vars [] dtor_coinduct_goal
1609            (fn {context = ctxt, prems = _} => mk_dtor_coinduct_tac ctxt m raw_coind_thm bis_rel_thm
1610              rel_congs))
1611          |> Thm.close_derivation \<^here>;
1612      in
1613        (rev (Term.add_tfrees dtor_coinduct_goal []), dtor_coinduct)
1614      end;
1615
1616    val timer = time (timer "coinduction");
1617
1618    fun mk_dtor_map_DEADID_thm dtor_inject map_id0 =
1619      trans OF [iffD2 OF [dtor_inject, id_apply], map_id0 RS sym];
1620
1621    fun mk_dtor_map_unique_DEADID_thm () =
1622      let
1623        val (funs, algs) =
1624          HOLogic.conjuncts (HOLogic.dest_Trueprop (Thm.concl_of dtor_unfold_unique_thm))
1625          |> map_split HOLogic.dest_eq
1626          ||>  snd o strip_comb o hd
1627          |> @{apply 2} (map (fst o dest_Var));
1628        fun mk_fun_insts T ix = Thm.cterm_of lthy (Var (ix, T --> T));
1629        val theta =
1630          (funs ~~ @{map 2} mk_fun_insts Ts funs) @ (algs ~~ map (Thm.cterm_of lthy) dtors);
1631        val dtor_unfold_dtors = (dtor_unfold_unique_thm OF
1632          map (fn thm => mk_trans (thm RS @{thm arg_cong2[of _ _ _ _ "(\<circ>)", OF _ refl]})
1633            @{thm trans[OF id_o o_id[symmetric]]}) map_id0s)
1634          |> split_conj_thm |> map mk_sym;
1635      in
1636        infer_instantiate lthy theta dtor_unfold_unique_thm
1637        |> Morphism.thm (Local_Theory.target_morphism lthy)
1638        |> unfold_thms lthy dtor_unfold_dtors
1639        |> (fn thm => thm OF replicate n sym)
1640      end;
1641(*
1642thm trans[OF x.dtor_unfold_unique x.dtor_unfold_unique[symmetric,
1643  OF trans[OF arg_cong2[of _ _ _ _ "(o)", OF pre_x.map_id0 refl] trans[OF id_o o_id[symmetric]]]],
1644  OF sym]
1645*)
1646
1647    fun mk_dtor_Jrel_DEADID_thm dtor_inject bnf =
1648      trans OF [rel_eq_of_bnf bnf RS @{thm predicate2_eqD}, dtor_inject] RS sym;
1649
1650    val JphiTs = map2 mk_pred2T passiveAs passiveBs;
1651    val Jpsi1Ts = map2 mk_pred2T passiveAs passiveCs;
1652    val Jpsi2Ts = map2 mk_pred2T passiveCs passiveBs;
1653    val prodTsTs' = map2 (curry HOLogic.mk_prodT) Ts Ts';
1654    val fstsTsTs' = map fst_const prodTsTs';
1655    val sndsTsTs' = map snd_const prodTsTs';
1656    val activephiTs = map2 mk_pred2T activeAs activeBs;
1657    val activeJphiTs = map2 mk_pred2T Ts Ts';
1658
1659    val rels = map2 (fn Ds => mk_rel_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
1660
1661    val ((((Jzs, Jz's), Jphis), activeJphis), _) =
1662      lthy
1663      |> mk_Frees "z" Ts
1664      ||>> mk_Frees "y" Ts'
1665      ||>> mk_Frees "R" JphiTs
1666      ||>> mk_Frees "JR" activeJphiTs;
1667
1668    fun mk_Jrel_DEADID_coinduct_thm () =
1669      mk_xtor_rel_co_induct_thm Greatest_FP rels activeJphis (map HOLogic.eq_const Ts) Jphis
1670        Jzs Jz's dtors dtor's (fn {context = ctxt, prems} =>
1671          (unfold_thms_tac ctxt @{thms le_fun_def le_bool_def all_simps(1,2)[symmetric]} THEN
1672          REPEAT_DETERM (rtac ctxt allI 1) THEN rtac ctxt (dtor_coinduct_thm OF prems) 1)) lthy;
1673
1674    (*register new codatatypes as BNFs*)
1675    val (timer, Jbnfs, (dtor_Jmap_o_thms, dtor_Jmap_thms), dtor_Jmap_unique_thm, dtor_Jset_thmss',
1676      dtor_Jrel_thms, Jrel_coinduct_thm, Jbnf_notes, dtor_Jset_induct_thms, lthy) =
1677      if m = 0 then
1678        (timer, replicate n DEADID_bnf,
1679        map_split (`(mk_pointfree2 lthy)) (map2 mk_dtor_map_DEADID_thm dtor_inject_thms map_ids),
1680        mk_dtor_map_unique_DEADID_thm (),
1681        replicate n [],
1682        map2 mk_dtor_Jrel_DEADID_thm dtor_inject_thms bnfs,
1683        mk_Jrel_DEADID_coinduct_thm (), [], [], lthy)
1684      else let
1685        val fTs = map2 (curry op -->) passiveAs passiveBs;
1686        val gTs = map2 (curry op -->) passiveBs passiveCs;
1687        val uTs = map2 (curry op -->) Ts Ts';
1688        val (((((nat, nat'), (Jzs, Jzs')), (hrecs, hrecs')), (fs, fs')), _) =
1689          lthy
1690          |> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
1691          ||>> mk_Frees' "z" Ts
1692          ||>> mk_Frees' "rec" hrecTs
1693          ||>> mk_Frees' "f" fTs;
1694
1695        val map_FTFT's = map2 (fn Ds =>
1696          mk_map_of_bnf Ds (passiveAs @ Ts) (passiveBs @ Ts')) Dss bnfs;
1697
1698        fun mk_maps ATs BTs Ts mk_T =
1699          map2 (fn Ds => mk_map_of_bnf Ds (ATs @ Ts) (BTs @ map mk_T Ts)) Dss bnfs;
1700        fun mk_Fmap mk_const fs Ts Fmap = Term.list_comb (Fmap, fs @ map mk_const Ts);
1701        fun mk_map mk_const mk_T Ts fs Ts' dtors mk_maps =
1702          mk_unfold Ts' (map2 (fn dtor => fn Fmap =>
1703            HOLogic.mk_comp (mk_Fmap mk_const fs Ts Fmap, dtor)) dtors (mk_maps Ts mk_T));
1704        val mk_map_id = mk_map HOLogic.id_const I;
1705        val mk_mapsAB = mk_maps passiveAs passiveBs;
1706        val fs_maps = map (mk_map_id Ts fs Ts' dtors mk_mapsAB) ks;
1707
1708        val set_bss =
1709          map (flat o map2 (fn B => fn b =>
1710            if member (op =) resDs (TFree B) then [] else [b]) resBs) set_bss0;
1711
1712        fun col_bind j = mk_internal_b (colN ^ (if m = 1 then "" else string_of_int j));
1713        val col_def_bind = rpair [] o Thm.def_binding o col_bind;
1714
1715        fun col_spec j Zero hrec hrec' =
1716          let
1717            fun mk_Suc dtor sets z z' =
1718              let
1719                val (set, sets) = apfst (fn xs => nth xs (j - 1)) (chop m sets);
1720                fun mk_UN set k = mk_UNION (set $ (dtor $ z)) (mk_nthN n hrec k);
1721              in
1722                Term.absfree z'
1723                  (mk_union (set $ (dtor $ z), Library.foldl1 mk_union (map2 mk_UN sets ks)))
1724              end;
1725
1726            val Suc = Term.absdummy HOLogic.natT (Term.absfree hrec'
1727              (HOLogic.mk_tuple (@{map 4} mk_Suc dtors FTs_setss Jzs Jzs')));
1728          in
1729            mk_rec_nat Zero Suc
1730          end;
1731
1732        val ((col_frees, (_, col_def_frees)), (lthy, lthy_old)) =
1733          lthy
1734          |> Local_Theory.open_target |> snd
1735          |> @{fold_map 4} (fn j => fn Zero => fn hrec => fn hrec' => Local_Theory.define
1736            ((col_bind j, NoSyn), (col_def_bind j, col_spec j Zero hrec hrec')))
1737            ls Zeros hrecs hrecs'
1738          |>> apsnd split_list o split_list
1739          ||> `Local_Theory.close_target;
1740
1741        val phi = Proof_Context.export_morphism lthy_old lthy;
1742
1743        val col_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) col_def_frees;
1744        val cols = map (fst o Term.dest_Const o Morphism.term phi) col_frees;
1745
1746        fun mk_col Ts nat i j T =
1747          let
1748            val hrecT = HOLogic.mk_tupleT (map (fn U => U --> HOLogic.mk_setT T) Ts)
1749            val colT = HOLogic.natT --> hrecT;
1750          in
1751            mk_nthN n (Term.list_comb (Const (nth cols (j - 1), colT), [nat])) i
1752          end;
1753
1754        val col_0ss = mk_rec_simps n @{thm rec_nat_0_imp} col_defs;
1755        val col_Sucss = mk_rec_simps n @{thm rec_nat_Suc_imp} col_defs;
1756        val col_0ss' = transpose col_0ss;
1757        val col_Sucss' = transpose col_Sucss;
1758
1759        fun mk_set Ts i j T =
1760          Abs (Name.uu, nth Ts (i - 1), mk_UNION (HOLogic.mk_UNIV HOLogic.natT)
1761            (Term.absfree nat' (mk_col Ts nat i j T $ Bound 1)));
1762
1763        val setss = map (fn i => map2 (mk_set Ts i) ls passiveAs) ks;
1764
1765        val (Jbnf_consts, lthy) =
1766          @{fold_map 8} (fn b => fn map_b => fn rel_b => fn pred_b => fn set_bs => fn mapx =>
1767              fn sets => fn T => fn lthy =>
1768            define_bnf_consts Hardly_Inline (user_policy Note_Some lthy) false (SOME deads)
1769              map_b rel_b pred_b set_bs
1770              (((((((b, T), fold_rev Term.absfree fs' mapx), sets), sbd),
1771                [Const (\<^const_name>\<open>undefined\<close>, T)]), NONE), NONE) lthy)
1772          bs map_bs rel_bs pred_bs set_bss fs_maps setss Ts lthy;
1773
1774        val (_, Jconsts, Jconst_defs, mk_Jconsts) = @{split_list 4} Jbnf_consts;
1775        val (_, Jsetss, Jbds_Ds, _, _, _) = @{split_list 6} Jconsts;
1776        val (Jmap_defs, Jset_defss, Jbd_defs, _, Jrel_defs, Jpred_defs) =
1777          @{split_list 6} Jconst_defs;
1778        val (mk_Jmaps_Ds, mk_Jt_Ds, _, mk_Jrels_Ds, mk_Jpreds_Ds, _, _) =
1779          @{split_list 7} mk_Jconsts;
1780
1781        val Jrel_unabs_defs = map (fn def => mk_unabs_def m (HOLogic.mk_obj_eq def)) Jrel_defs;
1782        val Jpred_unabs_defs = map (fn def => mk_unabs_def m (HOLogic.mk_obj_eq def)) Jpred_defs;
1783        val Jset_defs = flat Jset_defss;
1784
1785        fun mk_Jmaps As Bs = map (fn mk => mk deads As Bs) mk_Jmaps_Ds;
1786        fun mk_Jsetss As = map2 (fn mk => fn Jsets => map (mk deads As) Jsets) mk_Jt_Ds Jsetss;
1787        val Jbds = map2 (fn mk => mk deads passiveAs) mk_Jt_Ds Jbds_Ds;
1788        fun mk_Jrels As Bs = map (fn mk => mk deads As Bs) mk_Jrels_Ds;
1789        fun mk_Jpreds As = map (fn mk => mk deads As) mk_Jpreds_Ds;
1790
1791        val Jmaps = mk_Jmaps passiveAs passiveBs;
1792        val (Jsetss_by_range, Jsetss_by_bnf) = `transpose (mk_Jsetss passiveAs);
1793
1794        val timer = time (timer "bnf constants for the new datatypes");
1795
1796        val ((((((((((((((((((((ys, ys'), (nat, nat')), (Jzs, Jzs')), Jz's), Jzs_copy), Jz's_copy),
1797            dtor_set_induct_phiss), Jphis), Jpsi1s), Jpsi2s), activeJphis), fs), fs_copy), gs), us),
1798            (Jys, Jys')), (Jys_copy, Jys'_copy)), (ys_copy, ys'_copy)), Kss), names_lthy) =
1799          lthy
1800          |> mk_Frees' "y" passiveAs
1801          ||>> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
1802          ||>> mk_Frees' "z" Ts
1803          ||>> mk_Frees "y" Ts'
1804          ||>> mk_Frees "z'" Ts
1805          ||>> mk_Frees "y'" Ts'
1806          ||>> mk_Freess "P" (map (fn A => map (mk_pred2T A) Ts) passiveAs)
1807          ||>> mk_Frees "R" JphiTs
1808          ||>> mk_Frees "R" Jpsi1Ts
1809          ||>> mk_Frees "Q" Jpsi2Ts
1810          ||>> mk_Frees "JR" activeJphiTs
1811          ||>> mk_Frees "f" fTs
1812          ||>> mk_Frees "f" fTs
1813          ||>> mk_Frees "g" gTs
1814          ||>> mk_Frees "u" uTs
1815          ||>> mk_Frees' "b" Ts'
1816          ||>> mk_Frees' "b" Ts'
1817          ||>> mk_Frees' "y" passiveAs
1818          ||>> mk_Freess "K" (map (fn AT => map (fn T => T --> AT) Ts) ATs);
1819
1820        val fs_Jmaps = map (fn m => Term.list_comb (m, fs)) Jmaps;
1821        val fs_copy_Jmaps = map (fn m => Term.list_comb (m, fs_copy)) Jmaps;
1822        val gs_Jmaps = map (fn m => Term.list_comb (m, gs)) (mk_Jmaps passiveBs passiveCs);
1823        val fgs_Jmaps = map (fn m => Term.list_comb (m, map2 (curry HOLogic.mk_comp) gs fs))
1824          (mk_Jmaps passiveAs passiveCs);
1825
1826        val (dtor_Jmap_thms, Jmap_thms) =
1827          let
1828            fun mk_goal fs_Jmap map dtor dtor' = mk_Trueprop_eq (HOLogic.mk_comp (dtor', fs_Jmap),
1829              HOLogic.mk_comp (Term.list_comb (map, fs @ fs_Jmaps), dtor));
1830            val goals = @{map 4} mk_goal fs_Jmaps map_FTFT's dtors dtor's;
1831            val maps =
1832              @{map 5} (fn goal => fn unfold => fn map_comp => fn map_cong0 => fn map_arg_cong =>
1833                Variable.add_free_names lthy goal []
1834                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1835                  (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jmap_defs THEN
1836                     mk_map_tac ctxt m n map_arg_cong unfold map_comp map_cong0))
1837                |> Thm.close_derivation \<^here>)
1838              goals dtor_unfold_thms map_comps map_cong0s map_arg_cong_thms;
1839          in
1840            map_split (fn thm => (thm RS @{thm comp_eq_dest}, thm)) maps
1841          end;
1842
1843        val (dtor_Jmap_unique_thms, dtor_Jmap_unique_thm) =
1844          let
1845            fun mk_prem u map dtor dtor' =
1846              mk_Trueprop_eq (HOLogic.mk_comp (dtor', u),
1847                HOLogic.mk_comp (Term.list_comb (map, fs @ us), dtor));
1848            val prems = @{map 4} mk_prem us map_FTFT's dtors dtor's;
1849            val goal =
1850              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1851                (map2 (curry HOLogic.mk_eq) us fs_Jmaps));
1852            val vars = fold (Variable.add_free_names lthy) (goal :: prems) [];
1853          in
1854            `split_conj_thm (Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
1855              (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jmap_defs THEN
1856                mk_dtor_map_unique_tac ctxt dtor_unfold_unique_thm sym_map_comps)
1857            |> Thm.close_derivation \<^here>)
1858          end;
1859
1860        val Jmap_comp0_thms =
1861          let
1862            val goal = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
1863              (@{map 3} (fn fmap => fn gmap => fn fgmap =>
1864                 HOLogic.mk_eq (HOLogic.mk_comp (gmap, fmap), fgmap))
1865              fs_Jmaps gs_Jmaps fgs_Jmaps))
1866            val vars = Variable.add_free_names lthy goal [];
1867          in
1868            split_conj_thm (Goal.prove_sorry lthy vars [] goal
1869              (fn {context = ctxt, prems = _} =>
1870                mk_map_comp0_tac ctxt Jmap_thms map_comp0s dtor_Jmap_unique_thm)
1871              |> Thm.close_derivation \<^here>)
1872          end;
1873
1874        val timer = time (timer "map functions for the new codatatypes");
1875
1876        val Jset_minimal_thms =
1877          let
1878            fun mk_passive_prem set dtor x K =
1879              Logic.all x (HOLogic.mk_Trueprop (mk_leq (set $ (dtor $ x)) (K $ x)));
1880
1881            fun mk_active_prem dtor x1 K1 set x2 K2 =
1882              fold_rev Logic.all [x1, x2]
1883                (Logic.mk_implies (mk_Trueprop_mem (x2, set $ (dtor $ x1)),
1884                  HOLogic.mk_Trueprop (mk_leq (K2 $ x2) (K1 $ x1))));
1885
1886            val premss = map2 (fn j => fn Ks =>
1887              @{map 4} mk_passive_prem (map (fn xs => nth xs (j - 1)) FTs_setss) dtors Jzs Ks @
1888                flat (@{map 4} (fn sets => fn s => fn x1 => fn K1 =>
1889                  @{map 3} (mk_active_prem s x1 K1) (drop m sets) Jzs_copy Ks) FTs_setss dtors Jzs Ks))
1890              ls Kss;
1891
1892            val col_minimal_thms =
1893              let
1894                fun mk_conjunct j T i K x = mk_leq (mk_col Ts nat i j T $ x) (K $ x);
1895                fun mk_concl j T Ks = list_all_free Jzs
1896                  (Library.foldr1 HOLogic.mk_conj (@{map 3} (mk_conjunct j T) ks Ks Jzs));
1897                val concls = @{map 3} mk_concl ls passiveAs Kss;
1898
1899                val goals = map2 (fn prems => fn concl =>
1900                  Logic.list_implies (prems, HOLogic.mk_Trueprop concl)) premss concls
1901
1902                val ctss =
1903                  map (fn phi => map (SOME o Thm.cterm_of lthy) [Term.absfree nat' phi, nat]) concls;
1904              in
1905                @{map 4} (fn goal => fn cts => fn col_0s => fn col_Sucs =>
1906                  Variable.add_free_names lthy goal []
1907                  |> (fn vars => Goal.prove_sorry lthy vars [] goal
1908                    (fn {context = ctxt, prems = _} => mk_col_minimal_tac ctxt m cts col_0s
1909                      col_Sucs))
1910                  |> Thm.close_derivation \<^here>)
1911                goals ctss col_0ss' col_Sucss'
1912              end;
1913
1914            fun mk_conjunct set K x = mk_leq (set $ x) (K $ x);
1915            fun mk_concl sets Ks = Library.foldr1 HOLogic.mk_conj (@{map 3} mk_conjunct sets Ks Jzs);
1916            val concls = map2 mk_concl Jsetss_by_range Kss;
1917
1918            val goals = map2 (fn prems => fn concl =>
1919              Logic.list_implies (prems, HOLogic.mk_Trueprop concl)) premss concls;
1920          in
1921            map2 (fn goal => fn col_minimal =>
1922                Variable.add_free_names lthy goal []
1923                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1924                (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jset_defs THEN
1925                  mk_Jset_minimal_tac ctxt n col_minimal))
1926              |> Thm.close_derivation \<^here>)
1927            goals col_minimal_thms
1928          end;
1929
1930        val (dtor_Jset_incl_thmss, dtor_set_Jset_incl_thmsss) =
1931          let
1932            fun mk_set_incl_Jset dtor x set Jset =
1933              HOLogic.mk_Trueprop (mk_leq (set $ (dtor $ x)) (Jset $ x));
1934
1935            fun mk_set_Jset_incl_Jset dtor x y set Jset1 Jset2 =
1936              Logic.mk_implies (mk_Trueprop_mem (x, set $ (dtor $ y)),
1937                HOLogic.mk_Trueprop (mk_leq (Jset1 $ x) (Jset2 $ y)));
1938
1939            val set_incl_Jset_goalss =
1940              @{map 4} (fn dtor => fn x => fn sets => fn Jsets =>
1941                map2 (mk_set_incl_Jset dtor x) (take m sets) Jsets)
1942              dtors Jzs FTs_setss Jsetss_by_bnf;
1943
1944            (*x(k) : F(i)set(m+k) (dtor(i) y(i)) ==> J(k)set(j) x(k) <= J(i)set(j) y(i)*)
1945            val set_Jset_incl_Jset_goalsss =
1946              @{map 4} (fn dtori => fn yi => fn sets => fn Jsetsi =>
1947                @{map 3} (fn xk => fn set => fn Jsetsk =>
1948                  map2 (mk_set_Jset_incl_Jset dtori xk yi set) Jsetsk Jsetsi)
1949                Jzs_copy (drop m sets) Jsetss_by_bnf)
1950              dtors Jzs FTs_setss Jsetss_by_bnf;
1951          in
1952            (map2 (fn goals => fn rec_Sucs =>
1953              map2 (fn goal => fn rec_Suc =>
1954                Variable.add_free_names lthy goal []
1955                |> (fn vars => Goal.prove_sorry lthy vars [] goal
1956                  (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jset_defs THEN
1957                    mk_set_incl_Jset_tac ctxt rec_Suc))
1958                |> Thm.close_derivation \<^here>)
1959              goals rec_Sucs)
1960            set_incl_Jset_goalss col_Sucss,
1961            map2 (fn goalss => fn rec_Sucs =>
1962              map2 (fn k => fn goals =>
1963                map2 (fn goal => fn rec_Suc =>
1964                  Variable.add_free_names lthy goal []
1965                  |> (fn vars => Goal.prove_sorry lthy vars [] goal
1966                    (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jset_defs THEN
1967                      mk_set_Jset_incl_Jset_tac ctxt n rec_Suc k))
1968                  |> Thm.close_derivation \<^here>)
1969                goals rec_Sucs)
1970              ks goalss)
1971            set_Jset_incl_Jset_goalsss col_Sucss)
1972          end;
1973
1974        val set_incl_Jset_thmss' = transpose dtor_Jset_incl_thmss;
1975        val set_Jset_incl_Jset_thmsss' = transpose (map transpose dtor_set_Jset_incl_thmsss);
1976        val set_Jset_thmss = map (map (fn thm => thm RS @{thm set_mp})) dtor_Jset_incl_thmss;
1977        val set_Jset_Jset_thmsss = map (map (map (fn thm => thm RS @{thm set_mp})))
1978          dtor_set_Jset_incl_thmsss;
1979        val set_Jset_thmss' = transpose set_Jset_thmss;
1980        val set_Jset_Jset_thmsss' = transpose (map transpose set_Jset_Jset_thmsss);
1981
1982        val dtor_Jset_induct_thms =
1983          let
1984            val incls =
1985              maps (map (fn thm => thm RS @{thm subset_Collect_iff})) dtor_Jset_incl_thmss @
1986                @{thms subset_Collect_iff[OF subset_refl]};
1987
1988            val cTs = map (SOME o Thm.ctyp_of lthy) params';
1989            fun mk_induct_tinst phis jsets y y' =
1990              @{map 4} (fn phi => fn jset => fn Jz => fn Jz' =>
1991                SOME (Thm.cterm_of lthy (Term.absfree Jz' (HOLogic.mk_Collect (fst y', snd y',
1992                  HOLogic.mk_conj (HOLogic.mk_mem (y, jset $ Jz), phi $ y $ Jz))))))
1993              phis jsets Jzs Jzs';
1994          in
1995            @{map 6} (fn set_minimal => fn set_set_inclss => fn jsets => fn y => fn y' => fn phis =>
1996              ((set_minimal
1997                |> Thm.instantiate' cTs (mk_induct_tinst phis jsets y y')
1998                |> unfold_thms lthy incls) OF
1999                (replicate n ballI @
2000                  maps (map (fn thm => thm RS @{thm subset_CollectI})) set_set_inclss))
2001              |> singleton (Proof_Context.export names_lthy lthy)
2002              |> rule_by_tactic lthy (ALLGOALS (TRY o etac lthy asm_rl)))
2003            Jset_minimal_thms set_Jset_incl_Jset_thmsss' Jsetss_by_range ys ys' dtor_set_induct_phiss
2004          end;
2005
2006        val (dtor_Jset_thmss', dtor_Jset_thmss) =
2007          let
2008            fun mk_simp_goal relate pas_set act_sets sets dtor z set =
2009              relate (set $ z, mk_union (pas_set $ (dtor $ z),
2010                 Library.foldl1 mk_union
2011                   (map2 (fn X => mk_UNION (X $ (dtor $ z))) act_sets sets)));
2012            fun mk_goals eq =
2013              map2 (fn i => fn sets =>
2014                @{map 4} (fn Fsets =>
2015                  mk_simp_goal eq (nth Fsets (i - 1)) (drop m Fsets) sets)
2016                FTs_setss dtors Jzs sets)
2017              ls Jsetss_by_range;
2018
2019            val le_goals = map (HOLogic.mk_Trueprop o Library.foldr1 HOLogic.mk_conj)
2020              (mk_goals (uncurry mk_leq));
2021            val set_le_thmss = map split_conj_thm
2022              (@{map 4} (fn goal => fn Jset_minimal => fn set_Jsets => fn set_Jset_Jsetss =>
2023                Variable.add_free_names lthy goal []
2024                |> (fn vars => Goal.prove_sorry lthy vars [] goal
2025                  (fn {context = ctxt, prems = _} =>
2026                    mk_set_le_tac ctxt n Jset_minimal set_Jsets set_Jset_Jsetss))
2027                |> Thm.close_derivation \<^here>)
2028              le_goals Jset_minimal_thms set_Jset_thmss' set_Jset_Jset_thmsss');
2029
2030            val ge_goalss = map (map HOLogic.mk_Trueprop) (mk_goals (uncurry mk_leq o swap));
2031            val set_ge_thmss =
2032              @{map 3} (@{map 3} (fn goal => fn set_incl_Jset => fn set_Jset_incl_Jsets =>
2033                Variable.add_free_names lthy goal []
2034                |> (fn vars => Goal.prove_sorry lthy vars [] goal
2035                  (fn {context = ctxt, prems = _} =>
2036                    mk_set_ge_tac ctxt n set_incl_Jset set_Jset_incl_Jsets))
2037                |> Thm.close_derivation \<^here>))
2038              ge_goalss set_incl_Jset_thmss' set_Jset_incl_Jset_thmsss'
2039          in
2040            map2 (map2 (fn le => fn ge => equalityI OF [le, ge])) set_le_thmss set_ge_thmss
2041            |> `transpose
2042          end;
2043
2044        val timer = time (timer "set functions for the new codatatypes");
2045
2046        val colss = map2 (fn j => fn T =>
2047          map (fn i => mk_col Ts nat i j T) ks) ls passiveAs;
2048        val colss' = map2 (fn j => fn T =>
2049          map (fn i => mk_col Ts' nat i j T) ks) ls passiveBs;
2050
2051        val col_natural_thmss =
2052          let
2053            fun mk_col_natural f map z col col' =
2054              HOLogic.mk_eq (mk_image f $ (col $ z), col' $ (map $ z));
2055
2056            fun mk_goal f cols cols' = list_all_free Jzs (Library.foldr1 HOLogic.mk_conj
2057              (@{map 4} (mk_col_natural f) fs_Jmaps Jzs cols cols'));
2058
2059            val goals = @{map 3} mk_goal fs colss colss';
2060
2061            val ctss =
2062              map (fn phi => map (SOME o Thm.cterm_of lthy) [Term.absfree nat' phi, nat]) goals;
2063
2064            val thms =
2065              @{map 4} (fn goal => fn cts => fn rec_0s => fn rec_Sucs =>
2066                Variable.add_free_names lthy goal []
2067                |> (fn vars => Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
2068                  (fn {context = ctxt, prems = _} => mk_col_natural_tac ctxt cts rec_0s rec_Sucs
2069                    dtor_Jmap_thms set_mapss))
2070                |> Thm.close_derivation \<^here>)
2071              goals ctss col_0ss' col_Sucss';
2072          in
2073            map (split_conj_thm o mk_specN n) thms
2074          end;
2075
2076        val col_bd_thmss =
2077          let
2078            fun mk_col_bd z col bd = mk_ordLeq (mk_card_of (col $ z)) bd;
2079
2080            fun mk_goal bds cols = list_all_free Jzs (Library.foldr1 HOLogic.mk_conj
2081              (@{map 3} mk_col_bd Jzs cols bds));
2082
2083            val goals = map (mk_goal Jbds) colss;
2084
2085            val ctss = map (fn phi => map (SOME o Thm.cterm_of lthy) [Term.absfree nat' phi, nat])
2086              (map (mk_goal (replicate n sbd)) colss);
2087
2088            val thms =
2089              @{map 5} (fn j => fn goal => fn cts => fn rec_0s => fn rec_Sucs =>
2090                Variable.add_free_names lthy goal []
2091                |> (fn vars => Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
2092                  (fn {context = ctxt, prems = _} => unfold_thms_tac ctxt Jbd_defs THEN
2093                    mk_col_bd_tac ctxt m j cts rec_0s rec_Sucs sbd_Card_order sbd_Cinfinite set_sbdss))
2094                |> Thm.close_derivation \<^here>)
2095              ls goals ctss col_0ss' col_Sucss';
2096          in
2097            map (split_conj_thm o mk_specN n) thms
2098          end;
2099
2100        val map_cong0_thms =
2101          let
2102            val cTs = map (SOME o Thm.ctyp_of lthy o
2103              Term.typ_subst_atomic (passiveAs ~~ passiveBs) o TFree) coinduct_params;
2104
2105            fun mk_prem z set f g y y' =
2106              mk_Ball (set $ z) (Term.absfree y' (HOLogic.mk_eq (f $ y, g $ y)));
2107
2108            fun mk_prems sets z =
2109              Library.foldr1 HOLogic.mk_conj (@{map 5} (mk_prem z) sets fs fs_copy ys ys')
2110
2111            fun mk_map_cong0 sets z fmap gmap =
2112              HOLogic.mk_imp (mk_prems sets z, HOLogic.mk_eq (fmap $ z, gmap $ z));
2113
2114            fun mk_coind_body sets (x, T) z fmap gmap y y_copy =
2115              HOLogic.mk_conj
2116                (HOLogic.mk_mem (z, HOLogic.mk_Collect (x, T, mk_prems sets z)),
2117                  HOLogic.mk_conj (HOLogic.mk_eq (y, fmap $ z),
2118                    HOLogic.mk_eq (y_copy, gmap $ z)))
2119
2120            fun mk_cphi sets (z' as (x, T)) z fmap gmap y' y y'_copy y_copy =
2121              HOLogic.mk_exists (x, T, mk_coind_body sets z' z fmap gmap y y_copy)
2122              |> Term.absfree y'_copy
2123              |> Term.absfree y'
2124              |> Thm.cterm_of lthy;
2125
2126            val cphis = @{map 9} mk_cphi
2127              Jsetss_by_bnf Jzs' Jzs fs_Jmaps fs_copy_Jmaps Jys' Jys Jys'_copy Jys_copy;
2128
2129            val coinduct = Thm.instantiate' cTs (map SOME cphis) dtor_coinduct_thm;
2130
2131            val goal =
2132              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
2133                (@{map 4} mk_map_cong0 Jsetss_by_bnf Jzs fs_Jmaps fs_copy_Jmaps));
2134            val vars = Variable.add_free_names lthy goal [];
2135
2136            val thm =
2137              Goal.prove_sorry lthy vars [] goal
2138                (fn {context = ctxt, prems = _} => mk_mcong_tac ctxt m (rtac ctxt coinduct) map_comps
2139                  dtor_Jmap_thms map_cong0s
2140                  set_mapss set_Jset_thmss set_Jset_Jset_thmsss in_rels)
2141              |> Thm.close_derivation \<^here>;
2142          in
2143            split_conj_thm thm
2144          end;
2145
2146        val in_Jrels = map (fn def => trans OF [def, @{thm OO_Grp_alt}] RS @{thm predicate2_eqD})
2147            Jrel_unabs_defs;
2148
2149        val Jrels = mk_Jrels passiveAs passiveBs;
2150        val Jpreds = mk_Jpreds passiveAs;
2151        val Jrelphis = map (fn rel => Term.list_comb (rel, Jphis)) Jrels;
2152        val relphis = map (fn rel => Term.list_comb (rel, Jphis @ Jrelphis)) rels;
2153        val Jrelpsi1s = map (fn rel => Term.list_comb (rel, Jpsi1s)) (mk_Jrels passiveAs passiveCs);
2154        val Jrelpsi2s = map (fn rel => Term.list_comb (rel, Jpsi2s)) (mk_Jrels passiveCs passiveBs);
2155        val Jrelpsi12s = map (fn rel =>
2156            Term.list_comb (rel, map2 (curry mk_rel_compp) Jpsi1s Jpsi2s)) Jrels;
2157
2158        val dtor_Jrel_thms =
2159          let
2160            fun mk_goal Jz Jz' dtor dtor' Jrelphi relphi =
2161              mk_Trueprop_eq (Jrelphi $ Jz $ Jz', relphi $ (dtor $ Jz) $ (dtor' $ Jz'));
2162            val goals = @{map 6} mk_goal Jzs Jz's dtors dtor's Jrelphis relphis;
2163          in
2164            @{map 12} (fn i => fn goal => fn in_rel => fn map_comp0 => fn map_cong0 =>
2165              fn dtor_map => fn dtor_sets => fn dtor_inject => fn dtor_ctor =>
2166              fn set_map0s => fn dtor_set_incls => fn dtor_set_set_inclss =>
2167              Variable.add_free_names lthy goal []
2168              |> (fn vars => Goal.prove_sorry lthy vars [] goal
2169                (fn {context = ctxt, prems = _} =>
2170                  mk_dtor_rel_tac ctxt in_Jrels i in_rel map_comp0 map_cong0 dtor_map dtor_sets
2171                    dtor_inject dtor_ctor set_map0s dtor_set_incls dtor_set_set_inclss))
2172              |> Thm.close_derivation \<^here>)
2173            ks goals in_rels map_comps map_cong0s dtor_Jmap_thms dtor_Jset_thmss'
2174              dtor_inject_thms dtor_ctor_thms set_mapss dtor_Jset_incl_thmss
2175              dtor_set_Jset_incl_thmsss
2176          end;
2177
2178      val passiveABs = map2 (curry HOLogic.mk_prodT) passiveAs passiveBs;
2179      val zip_ranTs = passiveABs @ prodTsTs';
2180      val allJphis = Jphis @ activeJphis;
2181      val zipFTs = mk_FTs zip_ranTs;
2182      val zipTs = @{map 3} (fn T => fn T' => fn FT => T --> T' --> FT) Ts Ts' zipFTs;
2183      val zip_zTs = mk_Ts passiveABs;
2184      val (((zips, (abs, abs')), (zip_zs, zip_zs')), _) =
2185        names_lthy
2186        |> mk_Frees "zip" zipTs
2187        ||>> mk_Frees' "ab" passiveABs
2188        ||>> mk_Frees' "z" zip_zTs;
2189
2190      val Iphi_sets =
2191        map2 (fn phi => fn T => HOLogic.Collect_const T $ HOLogic.mk_case_prod phi) allJphis zip_ranTs;
2192      val in_phis = map2 (mk_in Iphi_sets) (mk_setss zip_ranTs) zipFTs;
2193      val fstABs = map fst_const passiveABs;
2194      val all_fsts = fstABs @ fstsTsTs';
2195      val map_all_fsts = map2 (fn Ds => fn bnf =>
2196        Term.list_comb (mk_map_of_bnf Ds zip_ranTs (passiveAs @ Ts) bnf, all_fsts)) Dss bnfs;
2197      val Jmap_fsts = map2 (fn map => fn T => if m = 0 then HOLogic.id_const T
2198        else Term.list_comb (map, fstABs)) (mk_Jmaps passiveABs passiveAs) Ts;
2199
2200      val sndABs = map snd_const passiveABs;
2201      val all_snds = sndABs @ sndsTsTs';
2202      val map_all_snds = map2 (fn Ds => fn bnf =>
2203        Term.list_comb (mk_map_of_bnf Ds zip_ranTs (passiveBs @ Ts') bnf, all_snds)) Dss bnfs;
2204      val Jmap_snds = map2 (fn map => fn T => if m = 0 then HOLogic.id_const T
2205        else Term.list_comb (map, sndABs)) (mk_Jmaps passiveABs passiveBs) Ts;
2206      val zip_unfolds = map (mk_unfold zip_zTs (map HOLogic.mk_case_prod zips)) ks;
2207      val zip_setss = mk_Jsetss passiveABs |> transpose;
2208
2209      fun Jrel_coinduct_tac {context = ctxt, prems = CIHs} =
2210        let
2211          fun mk_helper_prem phi in_phi zip x y map map' dtor dtor' =
2212            let
2213              val zipxy = zip $ x $ y;
2214            in
2215              HOLogic.mk_Trueprop (list_all_free [x, y]
2216                (HOLogic.mk_imp (phi $ x $ y, HOLogic.mk_conj (HOLogic.mk_mem (zipxy, in_phi),
2217                  HOLogic.mk_conj (HOLogic.mk_eq (map $ zipxy, dtor $ x),
2218                    HOLogic.mk_eq (map' $ zipxy, dtor' $ y))))))
2219            end;
2220          val helper_prems = @{map 9} mk_helper_prem
2221            activeJphis in_phis zips Jzs Jz's map_all_fsts map_all_snds dtors dtor's;
2222          fun mk_helper_coind_phi fst phi x alt y map zip_unfold =
2223            list_exists_free [if fst then y else x] (HOLogic.mk_conj (phi $ x $ y,
2224              HOLogic.mk_eq (alt, map $ (zip_unfold $ HOLogic.mk_prod (x, y)))))
2225          val coind1_phis = @{map 6} (mk_helper_coind_phi true)
2226            activeJphis Jzs Jzs_copy Jz's Jmap_fsts zip_unfolds;
2227          val coind2_phis = @{map 6} (mk_helper_coind_phi false)
2228              activeJphis Jzs Jz's_copy Jz's Jmap_snds zip_unfolds;
2229          fun mk_cts zs z's phis =
2230            @{map 3} (fn z => fn z' => fn phi =>
2231              SOME (Thm.cterm_of lthy (fold_rev (Term.absfree o Term.dest_Free) [z', z] phi)))
2232            zs z's phis @
2233            map (SOME o Thm.cterm_of lthy) (splice z's zs);
2234          val cts1 = mk_cts Jzs Jzs_copy coind1_phis;
2235          val cts2 = mk_cts Jz's Jz's_copy coind2_phis;
2236
2237          fun mk_helper_coind_concl z alt coind_phi =
2238            HOLogic.mk_imp (coind_phi, HOLogic.mk_eq (alt, z));
2239          val helper_coind1_concl =
2240            HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
2241              (@{map 3} mk_helper_coind_concl Jzs Jzs_copy coind1_phis));
2242          val helper_coind2_concl =
2243            HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
2244              (@{map 3} mk_helper_coind_concl Jz's Jz's_copy coind2_phis));
2245
2246          fun mk_helper_coind_thms fst concl cts =
2247            let
2248              val vars = fold (Variable.add_free_names lthy) (concl :: helper_prems) [];
2249            in
2250              Goal.prove_sorry lthy vars [] (Logic.list_implies (helper_prems, concl))
2251                (fn {context = ctxt, prems = _} =>
2252                  mk_rel_coinduct_coind_tac ctxt fst m
2253                    (infer_instantiate' ctxt cts dtor_coinduct_thm) ks map_comps map_cong0s
2254                    map_arg_cong_thms set_mapss dtor_unfold_thms dtor_Jmap_thms in_rels)
2255              |> Thm.close_derivation \<^here>
2256              |> split_conj_thm
2257            end;
2258
2259          val helper_coind1_thms = mk_helper_coind_thms true helper_coind1_concl cts1;
2260          val helper_coind2_thms = mk_helper_coind_thms false helper_coind2_concl cts2;
2261
2262          fun mk_helper_ind_phi phi ab fst snd z active_phi x y zip_unfold =
2263            list_all_free [x, y] (HOLogic.mk_imp
2264              (HOLogic.mk_conj (active_phi $ x $ y,
2265                 HOLogic.mk_eq (z, zip_unfold $ HOLogic.mk_prod (x, y))),
2266              phi $ (fst $ ab) $ (snd $ ab)));
2267          val helper_ind_phiss =
2268            @{map 4} (fn Jphi => fn ab => fn fst => fn snd =>
2269              @{map 5} (mk_helper_ind_phi Jphi ab fst snd)
2270              zip_zs activeJphis Jzs Jz's zip_unfolds)
2271            Jphis abs fstABs sndABs;
2272          val ctss = map2 (fn ab' => fn phis =>
2273              map2 (fn z' => fn phi =>
2274                SOME (Thm.cterm_of lthy (Term.absfree ab' (Term.absfree z' phi))))
2275              zip_zs' phis @
2276              map (SOME o Thm.cterm_of lthy) zip_zs)
2277            abs' helper_ind_phiss;
2278          fun mk_helper_ind_concl ab' z ind_phi set =
2279            mk_Ball (set $ z) (Term.absfree ab' ind_phi);
2280
2281          val mk_helper_ind_concls =
2282            @{map 3} (fn ab' => fn ind_phis => fn zip_sets =>
2283              @{map 3} (mk_helper_ind_concl ab') zip_zs ind_phis zip_sets)
2284            abs' helper_ind_phiss zip_setss
2285            |> map (HOLogic.mk_Trueprop o Library.foldr1 HOLogic.mk_conj);
2286
2287          val helper_ind_thmss = if m = 0 then replicate n [] else
2288            @{map 4} (fn concl => fn j => fn set_induct => fn cts =>
2289              fold (Variable.add_free_names lthy) (concl :: helper_prems) []
2290              |> (fn vars => Goal.prove_sorry lthy vars [] (Logic.list_implies (helper_prems, concl))
2291                (fn {context = ctxt, prems = _} =>
2292                  mk_rel_coinduct_ind_tac ctxt m ks
2293                    dtor_unfold_thms set_mapss j (infer_instantiate' ctxt cts set_induct)))
2294              |> Thm.close_derivation \<^here>
2295              |> split_conj_thm)
2296            mk_helper_ind_concls ls dtor_Jset_induct_thms ctss
2297            |> transpose;
2298        in
2299          mk_rel_coinduct_tac ctxt CIHs in_rels in_Jrels
2300            helper_ind_thmss helper_coind1_thms helper_coind2_thms
2301        end;
2302
2303      val Jrel_coinduct_thm =
2304        mk_xtor_rel_co_induct_thm Greatest_FP rels activeJphis Jrels Jphis Jzs Jz's dtors dtor's
2305          Jrel_coinduct_tac lthy;
2306
2307        val le_Jrel_OO_thm =
2308          let
2309            fun mk_le_Jrel_OO Jrelpsi1 Jrelpsi2 Jrelpsi12 =
2310              mk_leq (mk_rel_compp (Jrelpsi1, Jrelpsi2)) Jrelpsi12;
2311            val goals = @{map 3} mk_le_Jrel_OO Jrelpsi1s Jrelpsi2s Jrelpsi12s;
2312
2313            val goal = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj goals);
2314            val vars = Variable.add_free_names lthy goal [];
2315          in
2316            Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
2317              mk_le_rel_OO_tac ctxt Jrel_coinduct_thm dtor_Jrel_thms le_rel_OOs)
2318            |> Thm.close_derivation \<^here>
2319          end;
2320
2321        val timer = time (timer "helpers for BNF properties");
2322
2323        fun close_wit I wit = (I, fold_rev Term.absfree (map (nth ys') I) wit);
2324
2325        val all_unitTs = replicate live HOLogic.unitT;
2326        val unitTs = replicate n HOLogic.unitT;
2327        val unit_funs = replicate n (Term.absdummy HOLogic.unitT HOLogic.unit);
2328        fun mk_map_args I =
2329          map (fn i =>
2330            if member (op =) I i then Term.absdummy HOLogic.unitT (nth ys i)
2331            else mk_undefined (HOLogic.unitT --> nth passiveAs i))
2332          (0 upto (m - 1));
2333
2334        fun mk_nat_wit Ds bnf (I, wit) () =
2335          let
2336            val passiveI = filter (fn i => i < m) I;
2337            val map_args = mk_map_args passiveI;
2338          in
2339            Term.absdummy HOLogic.unitT (Term.list_comb
2340              (mk_map_of_bnf Ds all_unitTs (passiveAs @ unitTs) bnf, map_args @ unit_funs) $ wit)
2341          end;
2342
2343        fun mk_dummy_wit Ds bnf I =
2344          let
2345            val map_args = mk_map_args I;
2346          in
2347            Term.absdummy HOLogic.unitT (Term.list_comb
2348              (mk_map_of_bnf Ds all_unitTs (passiveAs @ unitTs) bnf, map_args @ unit_funs) $
2349              mk_undefined (mk_T_of_bnf Ds all_unitTs bnf))
2350          end;
2351
2352        val nat_witss =
2353          map2 (fn Ds => fn bnf => mk_wits_of_bnf (replicate (nwits_of_bnf bnf) Ds)
2354            (replicate (nwits_of_bnf bnf) (replicate live HOLogic.unitT)) bnf
2355            |> map (fn (I, wit) =>
2356              (I, Lazy.lazy (mk_nat_wit Ds bnf (I, Term.list_comb (wit, map (K HOLogic.unit) I))))))
2357          Dss bnfs;
2358
2359        val nat_wit_thmss = map2 (curry op ~~) nat_witss (map wit_thmss_of_bnf bnfs)
2360
2361        val Iss = map (map fst) nat_witss;
2362
2363        fun filter_wits (I, wit) =
2364          let val J = filter (fn i => i < m) I;
2365          in (J, (length J < length I, wit)) end;
2366
2367        val wit_treess = map_index (fn (i, Is) =>
2368          map_index (finish Iss m [i+m] (i+m)) Is) Iss
2369          |> map (minimize_wits o map filter_wits o minimize_wits o flat);
2370
2371        val coind_wit_argsss =
2372          map (map (tree_to_coind_wits nat_wit_thmss o snd o snd) o filter (fst o snd)) wit_treess;
2373
2374        val nonredundant_coind_wit_argsss =
2375          fold (fn i => fn argsss =>
2376            nth_map (i - 1) (filter_out (fn xs =>
2377              exists (fn ys =>
2378                let
2379                  val xs' = (map (fst o fst) xs, snd (fst (hd xs)));
2380                  val ys' = (map (fst o fst) ys, snd (fst (hd ys)));
2381                in
2382                  eq_pair (subset (op =)) (eq_set (op =)) (xs', ys') andalso not (fst xs' = fst ys')
2383                end)
2384              (flat argsss)))
2385            argsss)
2386          ks coind_wit_argsss;
2387
2388        fun prepare_args args =
2389          let
2390            val I = snd (fst (hd args));
2391            val (dummys, args') =
2392              map_split (fn i =>
2393                (case find_first (fn arg => fst (fst arg) = i - 1) args of
2394                  SOME (_, ((_, wit), thms)) => (NONE, (Lazy.force wit, thms))
2395                | NONE =>
2396                  (SOME (i - 1), (mk_dummy_wit (nth Dss (i - 1)) (nth bnfs (i - 1)) I, []))))
2397              ks;
2398          in
2399            ((I, dummys), apsnd flat (split_list args'))
2400          end;
2401
2402        fun mk_coind_wits ((I, dummys), (args, thms)) =
2403          ((I, dummys), (map (fn i => mk_unfold Ts args i $ HOLogic.unit) ks, thms));
2404
2405        val coind_witss =
2406          maps (map (mk_coind_wits o prepare_args)) nonredundant_coind_wit_argsss;
2407
2408        val witss = map2 (fn Ds => fn bnf => mk_wits_of_bnf
2409          (replicate (nwits_of_bnf bnf) Ds)
2410          (replicate (nwits_of_bnf bnf) (passiveAs @ Ts)) bnf) Dss bnfs;
2411
2412        val ctor_witss =
2413          map (map (uncurry close_wit o tree_to_ctor_wit ys ctors witss o snd o snd) o
2414            filter_out (fst o snd)) wit_treess;
2415
2416        fun mk_coind_wit_thms ((I, dummys), (wits, wit_thms)) =
2417          let
2418            fun mk_goal sets y y_copy y'_copy j =
2419              let
2420                fun mk_conjunct set z dummy wit =
2421                  mk_Ball (set $ z) (Term.absfree y'_copy
2422                    (if dummy = NONE orelse member (op =) I (j - 1) then
2423                      HOLogic.mk_imp (HOLogic.mk_eq (z, wit),
2424                        if member (op =) I (j - 1) then HOLogic.mk_eq (y_copy, y)
2425                        else \<^term>\<open>False\<close>)
2426                    else \<^term>\<open>True\<close>));
2427              in
2428                HOLogic.mk_Trueprop
2429                  (Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct sets Jzs dummys wits))
2430              end;
2431            val goals = @{map 5} mk_goal Jsetss_by_range ys ys_copy ys'_copy ls;
2432          in
2433            map2 (fn goal => fn induct =>
2434              Variable.add_free_names lthy goal []
2435              |> (fn vars => Goal.prove_sorry lthy vars [] goal
2436                (fn {context = ctxt, prems = _} => mk_coind_wit_tac ctxt induct dtor_unfold_thms
2437                  (flat set_mapss) wit_thms))
2438              |> Thm.close_derivation \<^here>)
2439            goals dtor_Jset_induct_thms
2440            |> map split_conj_thm
2441            |> transpose
2442            |> map (map_filter (try (fn thm => thm RS bspec RS mp)))
2443            |> curry op ~~ (map_index Library.I (map (close_wit I) wits))
2444            |> filter (fn (_, thms) => length thms = m)
2445          end;
2446
2447        val coind_wit_thms = maps mk_coind_wit_thms coind_witss;
2448
2449        val (wit_thmss, all_witss) =
2450          fold (fn ((i, wit), thms) => fn witss =>
2451            nth_map i (fn (thms', wits) => (thms @ thms', wit :: wits)) witss)
2452          coind_wit_thms (map (pair []) ctor_witss)
2453          |> map (apsnd (map snd o minimize_wits))
2454          |> split_list;
2455
2456        val timer = time (timer "witnesses");
2457
2458        val map_id0_tacs =
2459          map2 (fn thm => fn thm' => fn ctxt =>
2460            mk_map_id0_tac ctxt Jmap_thms thm thm')
2461          dtor_unfold_unique_thms unfold_dtor_thms;
2462        val map_comp0_tacs = map (fn thm => fn ctxt => rtac ctxt (thm RS sym) 1) Jmap_comp0_thms;
2463        val map_cong0_tacs = map (fn thm => fn ctxt => mk_map_cong0_tac ctxt m thm) map_cong0_thms;
2464        val set_map0_tacss =
2465          map (map (fn col => fn ctxt =>
2466            unfold_thms_tac ctxt Jset_defs THEN mk_set_map0_tac ctxt col))
2467          (transpose col_natural_thmss);
2468
2469        val Jbd_card_orders = map (fn def => Local_Defs.fold lthy [def] sbd_card_order) Jbd_defs;
2470        val Jbd_Cinfinites = map (fn def => Local_Defs.fold lthy [def] sbd_Cinfinite) Jbd_defs;
2471
2472        val bd_co_tacs = map (fn thm => fn ctxt => rtac ctxt thm 1) Jbd_card_orders;
2473        val bd_cinf_tacs = map (fn thm => fn ctxt => rtac ctxt (thm RS conjunct1) 1) Jbd_Cinfinites;
2474
2475        val set_bd_tacss =
2476          map2 (fn Cinf => map (fn col => fn ctxt =>
2477            unfold_thms_tac ctxt Jset_defs THEN mk_set_bd_tac ctxt Cinf col))
2478          Jbd_Cinfinites (transpose col_bd_thmss);
2479
2480        val le_rel_OO_tacs = map (fn i => fn ctxt =>
2481          rtac ctxt (le_Jrel_OO_thm RS mk_conjunctN n i) 1) ks;
2482
2483        val rel_OO_Grp_tacs = map (fn def => fn ctxt => rtac ctxt def 1) Jrel_unabs_defs;
2484
2485        val pred_set_tacs = map (fn def => fn ctxt => rtac ctxt def 1) Jpred_unabs_defs;
2486
2487        val tacss = @{map 10} zip_axioms map_id0_tacs map_comp0_tacs map_cong0_tacs set_map0_tacss
2488          bd_co_tacs bd_cinf_tacs set_bd_tacss le_rel_OO_tacs rel_OO_Grp_tacs pred_set_tacs;
2489
2490        fun wit_tac thms ctxt =
2491          mk_wit_tac ctxt n dtor_ctor_thms (flat dtor_Jset_thmss) (maps wit_thms_of_bnf bnfs) thms;
2492
2493        val (Jbnfs, lthy) =
2494          @{fold_map 7} (fn tacs => fn map_b => fn rel_b => fn pred_b => fn set_bs => fn wit_thms =>
2495              fn consts =>
2496            bnf_def Hardly_Inline (user_policy Note_Some) false I tacs (wit_tac wit_thms)
2497              (SOME deads) map_b rel_b pred_b set_bs consts)
2498          tacss map_bs rel_bs pred_bs set_bss wit_thmss
2499          (((((((replicate n Binding.empty ~~ Ts) ~~ Jmaps) ~~ Jsetss_by_bnf) ~~ Jbds) ~~
2500            all_witss) ~~ map SOME Jrels) ~~ map SOME Jpreds)
2501          lthy;
2502
2503        val timer = time (timer "registered new codatatypes as BNFs");
2504
2505        val ls' = if m = 1 then [0] else ls;
2506
2507        val Jbnf_common_notes =
2508          map2 (fn i => fn thm => (mk_dtor_set_inductN i, [thm])) ls' dtor_Jset_induct_thms
2509          |> map (fn (thmN, thms) =>
2510            ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
2511
2512        val Jbnf_notes =
2513          [(dtor_mapN, map single dtor_Jmap_thms),
2514          (dtor_map_uniqueN, map single dtor_Jmap_unique_thms),
2515          (dtor_relN, map single dtor_Jrel_thms),
2516          (dtor_set_inclN, dtor_Jset_incl_thmss),
2517          (dtor_set_set_inclN, map flat dtor_set_Jset_incl_thmsss)] @
2518          map2 (fn i => fn thms => (mk_dtor_setN i, map single thms)) ls' dtor_Jset_thmss
2519          |> maps (fn (thmN, thmss) =>
2520            map2 (fn b => fn thms =>
2521              ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
2522            bs thmss)
2523      in
2524        (timer, Jbnfs, (Jmap_thms, dtor_Jmap_thms), dtor_Jmap_unique_thm, dtor_Jset_thmss',
2525          dtor_Jrel_thms, Jrel_coinduct_thm, Jbnf_common_notes @ Jbnf_notes, dtor_Jset_induct_thms,
2526          lthy)
2527      end;
2528
2529    val ((Jphis, activephis), _) =
2530      lthy
2531      |> mk_Frees "R" JphiTs
2532      ||>> mk_Frees "S" activephiTs;
2533
2534    val dtor_unfold_o_Jmap_thms = mk_xtor_co_iter_o_map_thms Greatest_FP false m
2535      dtor_unfold_unique_thm dtor_Jmap_o_thms (map (mk_pointfree2 lthy) dtor_unfold_thms)
2536      sym_map_comps map_cong0s;
2537
2538    val rels = map2 (fn Ds => mk_rel_of_bnf Ds allAs allBs') Dss bnfs;
2539    val Jrels = if m = 0 then map HOLogic.eq_const Ts
2540      else map (mk_rel_of_bnf deads passiveAs passiveBs) Jbnfs;
2541
2542    val dtor_unfold_transfer_thms =
2543      mk_xtor_co_iter_transfer_thms Greatest_FP rels activephis activephis Jrels Jphis
2544        (mk_unfolds passiveAs activeAs) (mk_unfolds passiveBs activeBs)
2545        (fn {context = ctxt, prems = _} => mk_unfold_transfer_tac ctxt m Jrel_coinduct_thm
2546          (map map_transfer_of_bnf bnfs) dtor_unfold_thms)
2547        lthy;
2548
2549    val timer = time (timer "relator coinduction");
2550
2551    fun mk_Ts As = map (typ_subst_atomic (passiveAs ~~ As)) Ts;
2552    val export = map (Morphism.term (Local_Theory.target_morphism lthy))
2553    val ((corecs, (dtor_corec_thms, dtor_corec_unique_thm, dtor_corec_o_Jmap_thms,
2554        dtor_corec_transfer_thms)), lthy) = lthy
2555      |> derive_xtor_co_recs Greatest_FP external_bs mk_Ts (Dss, resDs) bnfs
2556        (export dtors) (export unfolds)
2557        dtor_unfold_unique_thm dtor_unfold_thms dtor_unfold_transfer_thms
2558        dtor_Jmap_thms dtor_Jrel_thms (replicate n NONE);
2559
2560    val timer = time (timer "recursor");
2561
2562    val common_notes =
2563      [(dtor_coinductN, [dtor_coinduct_thm]),
2564      (dtor_rel_coinductN, [Jrel_coinduct_thm])]
2565      |> map (fn (thmN, thms) =>
2566        ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]));
2567
2568    val notes =
2569      [(ctor_dtorN, ctor_dtor_thms),
2570      (ctor_exhaustN, ctor_exhaust_thms),
2571      (ctor_injectN, ctor_inject_thms),
2572      (dtor_ctorN, dtor_ctor_thms),
2573      (dtor_exhaustN, dtor_exhaust_thms),
2574      (dtor_injectN, dtor_inject_thms),
2575      (dtor_unfoldN, dtor_unfold_thms),
2576      (dtor_unfold_o_mapN, dtor_unfold_o_Jmap_thms),
2577      (dtor_unfold_transferN, dtor_unfold_transfer_thms),
2578      (dtor_unfold_uniqueN, dtor_unfold_unique_thms)]
2579      |> map (apsnd (map single))
2580      |> maps (fn (thmN, thmss) =>
2581        map2 (fn b => fn thms =>
2582          ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), []), [(thms, [])]))
2583        bs thmss);
2584
2585    val lthy' = lthy |> internals ? snd o Local_Theory.notes (common_notes @ notes @ Jbnf_notes);
2586
2587    val fp_res =
2588      {Ts = Ts, bnfs = Jbnfs, pre_bnfs = bnfs, absT_infos = absT_infos,
2589       ctors = ctors, dtors = dtors, xtor_un_folds = unfolds, xtor_co_recs = export corecs,
2590       xtor_co_induct = dtor_coinduct_thm, dtor_ctors = dtor_ctor_thms, ctor_dtors = ctor_dtor_thms,
2591       ctor_injects = ctor_inject_thms, dtor_injects = dtor_inject_thms, xtor_maps = dtor_Jmap_thms,
2592       xtor_map_unique = dtor_Jmap_unique_thm, xtor_setss = dtor_Jset_thmss',
2593       xtor_rels = dtor_Jrel_thms, xtor_un_fold_thms = dtor_unfold_thms,
2594       xtor_co_rec_thms = dtor_corec_thms, xtor_un_fold_unique = dtor_unfold_unique_thm,
2595       xtor_co_rec_unique = dtor_corec_unique_thm,
2596       xtor_un_fold_o_maps = dtor_unfold_o_Jmap_thms,
2597       xtor_co_rec_o_maps = dtor_corec_o_Jmap_thms,
2598       xtor_un_fold_transfers = dtor_unfold_transfer_thms,
2599       xtor_co_rec_transfers = dtor_corec_transfer_thms, xtor_rel_co_induct = Jrel_coinduct_thm,
2600       dtor_set_inducts = dtor_Jset_induct_thms};
2601  in
2602    timer; (fp_res, lthy')
2603  end;
2604
2605val _ =
2606  Outer_Syntax.local_theory \<^command_keyword>\<open>codatatype\<close> "define coinductive datatypes"
2607    (parse_co_datatype_cmd Greatest_FP construct_gfp);
2608
2609end;
2610