1(*  Title:      HOL/Nonstandard_Analysis/StarDef.thy
2    Author:     Jacques D. Fleuriot and Brian Huffman
3*)
4
5section \<open>Construction of Star Types Using Ultrafilters\<close>
6
7theory StarDef
8  imports Free_Ultrafilter
9begin
10
11subsection \<open>A Free Ultrafilter over the Naturals\<close>
12
13definition FreeUltrafilterNat :: "nat filter"  (\<open>\<U>\<close>)
14  where "\<U> = (SOME U. freeultrafilter U)"
15
16lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"
17  unfolding FreeUltrafilterNat_def
18  by (simp add: freeultrafilter_Ex someI_ex)
19
20interpretation FreeUltrafilterNat: freeultrafilter \<U>
21  by (rule freeultrafilter_FreeUltrafilterNat)
22
23
24subsection \<open>Definition of \<open>star\<close> type constructor\<close>
25
26definition starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set"
27  where "starrel = {(X, Y). eventually (\<lambda>n. X n = Y n) \<U>}"
28
29definition "star = (UNIV :: (nat \<Rightarrow> 'a) set) // starrel"
30
31typedef 'a star = "star :: (nat \<Rightarrow> 'a) set set"
32  by (auto simp: star_def intro: quotientI)
33
34definition star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star"
35  where "star_n X = Abs_star (starrel `` {X})"
36
37theorem star_cases [case_names star_n, cases type: star]:
38  obtains X where "x = star_n X"
39  by (cases x) (auto simp: star_n_def star_def elim: quotientE)
40
41lemma all_star_eq: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>X. P (star_n X))"
42  by (metis star_cases)
43
44lemma ex_star_eq: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>X. P (star_n X))"
45  by (metis star_cases)
46
47text \<open>Proving that \<^term>\<open>starrel\<close> is an equivalence relation.\<close>
48
49lemma starrel_iff [iff]: "(X, Y) \<in> starrel \<longleftrightarrow> eventually (\<lambda>n. X n = Y n) \<U>"
50  by (simp add: starrel_def)
51
52lemma equiv_starrel: "equiv UNIV starrel"
53proof (rule equivI)
54  show "refl starrel" by (simp add: refl_on_def)
55  show "sym starrel" by (simp add: sym_def eq_commute)
56  show "trans starrel" by (intro transI) (auto elim: eventually_elim2)
57qed
58
59lemmas equiv_starrel_iff = eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I]
60
61lemma starrel_in_star: "starrel``{x} \<in> star"
62  by (simp add: star_def quotientI)
63
64lemma star_n_eq_iff: "star_n X = star_n Y \<longleftrightarrow> eventually (\<lambda>n. X n = Y n) \<U>"
65  by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff)
66
67
68subsection \<open>Transfer principle\<close>
69
70text \<open>This introduction rule starts each transfer proof.\<close>
71lemma transfer_start: "P \<equiv> eventually (\<lambda>n. Q) \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
72  by (simp add: FreeUltrafilterNat.proper)
73
74text \<open>Standard principles that play a central role in the transfer tactic.\<close>
75definition Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" (\<open>(_ \<star>/ _)\<close> [300, 301] 300)
76  where "Ifun f \<equiv>
77    \<lambda>x. Abs_star (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
78
79lemma Ifun_congruent2: "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})"
80  by (auto simp add: congruent2_def equiv_starrel_iff elim!: eventually_rev_mp)
81
82lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))"
83  by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star
84      UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2])
85
86lemma transfer_Ifun: "f \<equiv> star_n F \<Longrightarrow> x \<equiv> star_n X \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))"
87  by (simp only: Ifun_star_n)
88
89definition star_of :: "'a \<Rightarrow> 'a star"
90  where "star_of x \<equiv> star_n (\<lambda>n. x)"
91
92text \<open>Initialize transfer tactic.\<close>
93ML_file \<open>transfer_principle.ML\<close>
94
95method_setup transfer =
96  \<open>Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (Transfer_Principle.transfer_tac ctxt ths))\<close>
97  "transfer principle"
98
99
100text \<open>Transfer introduction rules.\<close>
101
102lemma transfer_ex [transfer_intro]:
103  "(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow>
104    \<exists>x::'a star. p x \<equiv> eventually (\<lambda>n. \<exists>x. P n x) \<U>"
105  by (simp only: ex_star_eq eventually_ex)
106
107lemma transfer_all [transfer_intro]:
108  "(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow>
109    \<forall>x::'a star. p x \<equiv> eventually (\<lambda>n. \<forall>x. P n x) \<U>"
110  by (simp only: all_star_eq FreeUltrafilterNat.eventually_all_iff)
111
112lemma transfer_not [transfer_intro]: "p \<equiv> eventually P \<U> \<Longrightarrow> \<not> p \<equiv> eventually (\<lambda>n. \<not> P n) \<U>"
113  by (simp only: FreeUltrafilterNat.eventually_not_iff)
114
115lemma transfer_conj [transfer_intro]:
116  "p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<and> q \<equiv> eventually (\<lambda>n. P n \<and> Q n) \<U>"
117  by (simp only: eventually_conj_iff)
118
119lemma transfer_disj [transfer_intro]:
120  "p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<or> q \<equiv> eventually (\<lambda>n. P n \<or> Q n) \<U>"
121  by (simp only: FreeUltrafilterNat.eventually_disj_iff)
122
123lemma transfer_imp [transfer_intro]:
124  "p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p \<longrightarrow> q \<equiv> eventually (\<lambda>n. P n \<longrightarrow> Q n) \<U>"
125  by (simp only: FreeUltrafilterNat.eventually_imp_iff)
126
127lemma transfer_iff [transfer_intro]:
128  "p \<equiv> eventually P \<U> \<Longrightarrow> q \<equiv> eventually Q \<U> \<Longrightarrow> p = q \<equiv> eventually (\<lambda>n. P n = Q n) \<U>"
129  by (simp only: FreeUltrafilterNat.eventually_iff_iff)
130
131lemma transfer_if_bool [transfer_intro]:
132  "p \<equiv> eventually P \<U> \<Longrightarrow> x \<equiv> eventually X \<U> \<Longrightarrow> y \<equiv> eventually Y \<U> \<Longrightarrow>
133    (if p then x else y) \<equiv> eventually (\<lambda>n. if P n then X n else Y n) \<U>"
134  by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not)
135
136lemma transfer_eq [transfer_intro]:
137  "x \<equiv> star_n X \<Longrightarrow> y \<equiv> star_n Y \<Longrightarrow> x = y \<equiv> eventually (\<lambda>n. X n = Y n) \<U>"
138  by (simp only: star_n_eq_iff)
139
140lemma transfer_if [transfer_intro]:
141  "p \<equiv> eventually (\<lambda>n. P n) \<U> \<Longrightarrow> x \<equiv> star_n X \<Longrightarrow> y \<equiv> star_n Y \<Longrightarrow>
142    (if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)"
143  by (rule eq_reflection) (auto simp: star_n_eq_iff transfer_not elim!: eventually_mono)
144
145lemma transfer_fun_eq [transfer_intro]:
146  "(\<And>X. f (star_n X) = g (star_n X) \<equiv> eventually (\<lambda>n. F n (X n) = G n (X n)) \<U>) \<Longrightarrow>
147    f = g \<equiv> eventually (\<lambda>n. F n = G n) \<U>"
148  by (simp only: fun_eq_iff transfer_all)
149
150lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"
151  by (rule reflexive)
152
153lemma transfer_bool [transfer_intro]: "p \<equiv> eventually (\<lambda>n. p) \<U>"
154  by (simp add: FreeUltrafilterNat.proper)
155
156
157subsection \<open>Standard elements\<close>
158
159definition Standard :: "'a star set"
160  where "Standard = range star_of"
161
162text \<open>Transfer tactic should remove occurrences of \<^term>\<open>star_of\<close>.\<close>
163setup \<open>Transfer_Principle.add_const \<^const_name>\<open>star_of\<close>\<close>
164
165lemma star_of_inject: "star_of x = star_of y \<longleftrightarrow> x = y"
166  by transfer (rule refl)
167
168lemma Standard_star_of [simp]: "star_of x \<in> Standard"
169  by (simp add: Standard_def)
170
171
172subsection \<open>Internal functions\<close>
173
174text \<open>Transfer tactic should remove occurrences of \<^term>\<open>Ifun\<close>.\<close>
175setup \<open>Transfer_Principle.add_const \<^const_name>\<open>Ifun\<close>\<close>
176
177lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)"
178  by transfer (rule refl)
179
180lemma Standard_Ifun [simp]: "f \<in> Standard \<Longrightarrow> x \<in> Standard \<Longrightarrow> f \<star> x \<in> Standard"
181  by (auto simp add: Standard_def)
182
183
184text \<open>Nonstandard extensions of functions.\<close>
185
186definition starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a star \<Rightarrow> 'b star"  (\<open>*f* _\<close> [80] 80)
187  where "starfun f \<equiv> \<lambda>x. star_of f \<star> x"
188
189definition starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> 'c star"  (\<open>*f2* _\<close> [80] 80)
190  where "starfun2 f \<equiv> \<lambda>x y. star_of f \<star> x \<star> y"
191
192declare starfun_def [transfer_unfold]
193declare starfun2_def [transfer_unfold]
194
195lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))"
196  by (simp only: starfun_def star_of_def Ifun_star_n)
197
198lemma starfun2_star_n: "( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))"
199  by (simp only: starfun2_def star_of_def Ifun_star_n)
200
201lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)"
202  by transfer (rule refl)
203
204lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x"
205  by transfer (rule refl)
206
207lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard"
208  by (simp add: starfun_def)
209
210lemma Standard_starfun2 [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> starfun2 f x y \<in> Standard"
211  by (simp add: starfun2_def)
212
213lemma Standard_starfun_iff:
214  assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
215  shows "starfun f x \<in> Standard \<longleftrightarrow> x \<in> Standard"
216proof
217  assume "x \<in> Standard"
218  then show "starfun f x \<in> Standard" by simp
219next
220  from inj have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y"
221    by transfer
222  assume "starfun f x \<in> Standard"
223  then obtain b where b: "starfun f x = star_of b"
224    unfolding Standard_def ..
225  then have "\<exists>x. starfun f x = star_of b" ..
226  then have "\<exists>a. f a = b" by transfer
227  then obtain a where "f a = b" ..
228  then have "starfun f (star_of a) = star_of b" by transfer
229  with b have "starfun f x = starfun f (star_of a)" by simp
230  then have "x = star_of a" by (rule inj')
231  then show "x \<in> Standard" by (simp add: Standard_def)
232qed
233
234lemma Standard_starfun2_iff:
235  assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'"
236  shows "starfun2 f x y \<in> Standard \<longleftrightarrow> x \<in> Standard \<and> y \<in> Standard"
237proof
238  assume "x \<in> Standard \<and> y \<in> Standard"
239  then show "starfun2 f x y \<in> Standard" by simp
240next
241  have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w"
242    using inj by transfer
243  assume "starfun2 f x y \<in> Standard"
244  then obtain c where c: "starfun2 f x y = star_of c"
245    unfolding Standard_def ..
246  then have "\<exists>x y. starfun2 f x y = star_of c" by auto
247  then have "\<exists>a b. f a b = c" by transfer
248  then obtain a b where "f a b = c" by auto
249  then have "starfun2 f (star_of a) (star_of b) = star_of c" by transfer
250  with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)" by simp
251  then have "x = star_of a \<and> y = star_of b" by (rule inj')
252  then show "x \<in> Standard \<and> y \<in> Standard" by (simp add: Standard_def)
253qed
254
255
256subsection \<open>Internal predicates\<close>
257
258definition unstar :: "bool star \<Rightarrow> bool"
259  where "unstar b \<longleftrightarrow> b = star_of True"
260
261lemma unstar_star_n: "unstar (star_n P) \<longleftrightarrow> eventually P \<U>"
262  by (simp add: unstar_def star_of_def star_n_eq_iff)
263
264lemma unstar_star_of [simp]: "unstar (star_of p) = p"
265  by (simp add: unstar_def star_of_inject)
266
267text \<open>Transfer tactic should remove occurrences of \<^term>\<open>unstar\<close>.\<close>
268setup \<open>Transfer_Principle.add_const \<^const_name>\<open>unstar\<close>\<close>
269
270lemma transfer_unstar [transfer_intro]: "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> eventually P \<U>"
271  by (simp only: unstar_star_n)
272
273definition starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  (\<open>*p* _\<close> [80] 80)
274  where "*p* P = (\<lambda>x. unstar (star_of P \<star> x))"
275
276definition starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  (\<open>*p2* _\<close> [80] 80)
277  where "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"
278
279declare starP_def [transfer_unfold]
280declare starP2_def [transfer_unfold]
281
282lemma starP_star_n: "( *p* P) (star_n X) = eventually (\<lambda>n. P (X n)) \<U>"
283  by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n)
284
285lemma starP2_star_n: "( *p2* P) (star_n X) (star_n Y) = (eventually (\<lambda>n. P (X n) (Y n)) \<U>)"
286  by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n)
287
288lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x"
289  by transfer (rule refl)
290
291lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x"
292  by transfer (rule refl)
293
294
295subsection \<open>Internal sets\<close>
296
297definition Iset :: "'a set star \<Rightarrow> 'a star set"
298  where "Iset A = {x. ( *p2* (\<in>)) x A}"
299
300lemma Iset_star_n: "(star_n X \<in> Iset (star_n A)) = (eventually (\<lambda>n. X n \<in> A n) \<U>)"
301  by (simp add: Iset_def starP2_star_n)
302
303text \<open>Transfer tactic should remove occurrences of \<^term>\<open>Iset\<close>.\<close>
304setup \<open>Transfer_Principle.add_const \<^const_name>\<open>Iset\<close>\<close>
305
306lemma transfer_mem [transfer_intro]:
307  "x \<equiv> star_n X \<Longrightarrow> a \<equiv> Iset (star_n A) \<Longrightarrow> x \<in> a \<equiv> eventually (\<lambda>n. X n \<in> A n) \<U>"
308  by (simp only: Iset_star_n)
309
310lemma transfer_Collect [transfer_intro]:
311  "(\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow>
312    Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"
313  by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n)
314
315lemma transfer_set_eq [transfer_intro]:
316  "a \<equiv> Iset (star_n A) \<Longrightarrow> b \<equiv> Iset (star_n B) \<Longrightarrow> a = b \<equiv> eventually (\<lambda>n. A n = B n) \<U>"
317  by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem)
318
319lemma transfer_ball [transfer_intro]:
320  "a \<equiv> Iset (star_n A) \<Longrightarrow> (\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow>
321    \<forall>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<forall>x\<in>A n. P n x) \<U>"
322  by (simp only: Ball_def transfer_all transfer_imp transfer_mem)
323
324lemma transfer_bex [transfer_intro]:
325  "a \<equiv> Iset (star_n A) \<Longrightarrow> (\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>) \<Longrightarrow>
326    \<exists>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<exists>x\<in>A n. P n x) \<U>"
327  by (simp only: Bex_def transfer_ex transfer_conj transfer_mem)
328
329lemma transfer_Iset [transfer_intro]: "a \<equiv> star_n A \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))"
330  by simp
331
332
333text \<open>Nonstandard extensions of sets.\<close>
334
335definition starset :: "'a set \<Rightarrow> 'a star set" (\<open>*s* _\<close> [80] 80)
336  where "starset A = Iset (star_of A)"
337
338declare starset_def [transfer_unfold]
339
340lemma starset_mem: "star_of x \<in> *s* A \<longleftrightarrow> x \<in> A"
341  by transfer (rule refl)
342
343lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)"
344  by (transfer UNIV_def) (rule refl)
345
346lemma starset_empty: "*s* {} = {}"
347  by (transfer empty_def) (rule refl)
348
349lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)"
350  by (transfer insert_def Un_def) (rule refl)
351
352lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B"
353  by (transfer Un_def) (rule refl)
354
355lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B"
356  by (transfer Int_def) (rule refl)
357
358lemma starset_Compl: "*s* -A = -( *s* A)"
359  by (transfer Compl_eq) (rule refl)
360
361lemma starset_diff: "*s* (A - B) = *s* A - *s* B"
362  by (transfer set_diff_eq) (rule refl)
363
364lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)"
365  by (transfer image_def) (rule refl)
366
367lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)"
368  by (transfer vimage_def) (rule refl)
369
370lemma starset_subset: "( *s* A \<subseteq> *s* B) \<longleftrightarrow> A \<subseteq> B"
371  by (transfer subset_eq) (rule refl)
372
373lemma starset_eq: "( *s* A = *s* B) \<longleftrightarrow> A = B"
374  by transfer (rule refl)
375
376lemmas starset_simps [simp] =
377  starset_mem     starset_UNIV
378  starset_empty   starset_insert
379  starset_Un      starset_Int
380  starset_Compl   starset_diff
381  starset_image   starset_vimage
382  starset_subset  starset_eq
383
384
385subsection \<open>Syntactic classes\<close>
386
387instantiation star :: (zero) zero
388begin
389  definition star_zero_def: "0 \<equiv> star_of 0"
390  instance ..
391end
392
393instantiation star :: (one) one
394begin
395  definition star_one_def: "1 \<equiv> star_of 1"
396  instance ..
397end
398
399instantiation star :: (plus) plus
400begin
401  definition star_add_def: "(+) \<equiv> *f2* (+)"
402  instance ..
403end
404
405instantiation star :: (times) times
406begin
407  definition star_mult_def: "((*)) \<equiv> *f2* ((*))"
408  instance ..
409end
410
411instantiation star :: (uminus) uminus
412begin
413  definition star_minus_def: "uminus \<equiv> *f* uminus"
414  instance ..
415end
416
417instantiation star :: (minus) minus
418begin
419  definition star_diff_def: "(-) \<equiv> *f2* (-)"
420  instance ..
421end
422
423instantiation star :: (abs) abs
424begin
425  definition star_abs_def: "abs \<equiv> *f* abs"
426  instance ..
427end
428
429instantiation star :: (sgn) sgn
430begin
431  definition star_sgn_def: "sgn \<equiv> *f* sgn"
432  instance ..
433end
434
435instantiation star :: (divide) divide
436begin
437  definition star_divide_def:  "divide \<equiv> *f2* divide"
438  instance ..
439end
440
441instantiation star :: (inverse) inverse
442begin
443  definition star_inverse_def: "inverse \<equiv> *f* inverse"
444  instance ..
445end
446
447instance star :: (Rings.dvd) Rings.dvd ..
448
449instantiation star :: (modulo) modulo
450begin
451  definition star_mod_def: "(mod) \<equiv> *f2* (mod)"
452  instance ..
453end
454
455instantiation star :: (ord) ord
456begin
457  definition star_le_def: "(\<le>) \<equiv> *p2* (\<le>)"
458  definition star_less_def: "(<) \<equiv> *p2* (<)"
459  instance ..
460end
461
462lemmas star_class_defs [transfer_unfold] =
463  star_zero_def     star_one_def
464  star_add_def      star_diff_def     star_minus_def
465  star_mult_def     star_divide_def   star_inverse_def
466  star_le_def       star_less_def     star_abs_def       star_sgn_def
467  star_mod_def
468
469
470text \<open>Class operations preserve standard elements.\<close>
471
472lemma Standard_zero: "0 \<in> Standard"
473  by (simp add: star_zero_def)
474
475lemma Standard_one: "1 \<in> Standard"
476  by (simp add: star_one_def)
477
478lemma Standard_add: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x + y \<in> Standard"
479  by (simp add: star_add_def)
480
481lemma Standard_diff: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x - y \<in> Standard"
482  by (simp add: star_diff_def)
483
484lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
485  by (simp add: star_minus_def)
486
487lemma Standard_mult: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x * y \<in> Standard"
488  by (simp add: star_mult_def)
489
490lemma Standard_divide: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x / y \<in> Standard"
491  by (simp add: star_divide_def)
492
493lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
494  by (simp add: star_inverse_def)
495
496lemma Standard_abs: "x \<in> Standard \<Longrightarrow> \<bar>x\<bar> \<in> Standard"
497  by (simp add: star_abs_def)
498
499lemma Standard_mod: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> x mod y \<in> Standard"
500  by (simp add: star_mod_def)
501
502lemmas Standard_simps [simp] =
503  Standard_zero  Standard_one
504  Standard_add   Standard_diff    Standard_minus
505  Standard_mult  Standard_divide  Standard_inverse
506  Standard_abs   Standard_mod
507
508
509text \<open>\<^term>\<open>star_of\<close> preserves class operations.\<close>
510
511lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
512  by transfer (rule refl)
513
514lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
515  by transfer (rule refl)
516
517lemma star_of_minus: "star_of (-x) = - star_of x"
518  by transfer (rule refl)
519
520lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
521  by transfer (rule refl)
522
523lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
524  by transfer (rule refl)
525
526lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
527  by transfer (rule refl)
528
529lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
530  by transfer (rule refl)
531
532lemma star_of_abs: "star_of \<bar>x\<bar> = \<bar>star_of x\<bar>"
533  by transfer (rule refl)
534
535
536text \<open>\<^term>\<open>star_of\<close> preserves numerals.\<close>
537
538lemma star_of_zero: "star_of 0 = 0"
539  by transfer (rule refl)
540
541lemma star_of_one: "star_of 1 = 1"
542  by transfer (rule refl)
543
544
545text \<open>\<^term>\<open>star_of\<close> preserves orderings.\<close>
546
547lemma star_of_less: "(star_of x < star_of y) = (x < y)"
548by transfer (rule refl)
549
550lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
551by transfer (rule refl)
552
553lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
554by transfer (rule refl)
555
556
557text \<open>As above, for \<open>0\<close>.\<close>
558
559lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
560lemmas star_of_0_le   = star_of_le   [of 0, simplified star_of_zero]
561lemmas star_of_0_eq   = star_of_eq   [of 0, simplified star_of_zero]
562
563lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
564lemmas star_of_le_0   = star_of_le   [of _ 0, simplified star_of_zero]
565lemmas star_of_eq_0   = star_of_eq   [of _ 0, simplified star_of_zero]
566
567
568text \<open>As above, for \<open>1\<close>.\<close>
569
570lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
571lemmas star_of_1_le   = star_of_le   [of 1, simplified star_of_one]
572lemmas star_of_1_eq   = star_of_eq   [of 1, simplified star_of_one]
573
574lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
575lemmas star_of_le_1   = star_of_le   [of _ 1, simplified star_of_one]
576lemmas star_of_eq_1   = star_of_eq   [of _ 1, simplified star_of_one]
577
578lemmas star_of_simps [simp] =
579  star_of_add     star_of_diff    star_of_minus
580  star_of_mult    star_of_divide  star_of_inverse
581  star_of_mod     star_of_abs
582  star_of_zero    star_of_one
583  star_of_less    star_of_le      star_of_eq
584  star_of_0_less  star_of_0_le    star_of_0_eq
585  star_of_less_0  star_of_le_0    star_of_eq_0
586  star_of_1_less  star_of_1_le    star_of_1_eq
587  star_of_less_1  star_of_le_1    star_of_eq_1
588
589
590subsection \<open>Ordering and lattice classes\<close>
591
592instance star :: (order) order
593proof 
594  show "\<And>x y::'a star. (x < y) = (x \<le> y \<and> \<not> y \<le> x)"
595    by transfer (rule less_le_not_le)
596  show "\<And>x::'a star. x \<le> x"
597    by transfer (rule order_refl)
598  show "\<And>x y z::'a star. \<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> x \<le> z"
599    by transfer (rule order_trans)
600  show "\<And>x y::'a star. \<lbrakk>x \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> x = y"
601    by transfer (rule order_antisym)
602qed
603
604instantiation star :: (semilattice_inf) semilattice_inf
605begin
606  definition star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
607  instance by (standard; transfer) auto
608end
609
610instantiation star :: (semilattice_sup) semilattice_sup
611begin
612  definition star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
613  instance by (standard; transfer) auto
614end
615
616instance star :: (lattice) lattice ..
617
618instance star :: (distrib_lattice) distrib_lattice
619  by (standard; transfer) (auto simp add: sup_inf_distrib1)
620
621lemma Standard_inf [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> inf x y \<in> Standard"
622  by (simp add: star_inf_def)
623
624lemma Standard_sup [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> sup x y \<in> Standard"
625  by (simp add: star_sup_def)
626
627lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
628  by transfer (rule refl)
629
630lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
631  by transfer (rule refl)
632
633instance star :: (linorder) linorder
634  by (intro_classes, transfer, rule linorder_linear)
635
636lemma star_max_def [transfer_unfold]: "max = *f2* max"
637  unfolding max_def
638  by (intro ext, transfer, simp)
639
640lemma star_min_def [transfer_unfold]: "min = *f2* min"
641  unfolding min_def
642  by (intro ext, transfer, simp)
643
644lemma Standard_max [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> max x y \<in> Standard"
645  by (simp add: star_max_def)
646
647lemma Standard_min [simp]: "x \<in> Standard \<Longrightarrow> y \<in> Standard \<Longrightarrow> min x y \<in> Standard"
648  by (simp add: star_min_def)
649
650lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
651  by transfer (rule refl)
652
653lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
654  by transfer (rule refl)
655
656
657subsection \<open>Ordered group classes\<close>
658
659instance star :: (semigroup_add) semigroup_add
660  by (intro_classes, transfer, rule add.assoc)
661
662instance star :: (ab_semigroup_add) ab_semigroup_add
663  by (intro_classes, transfer, rule add.commute)
664
665instance star :: (semigroup_mult) semigroup_mult
666  by (intro_classes, transfer, rule mult.assoc)
667
668instance star :: (ab_semigroup_mult) ab_semigroup_mult
669  by (intro_classes, transfer, rule mult.commute)
670
671instance star :: (comm_monoid_add) comm_monoid_add
672  by (intro_classes, transfer, rule comm_monoid_add_class.add_0)
673
674instance star :: (monoid_mult) monoid_mult
675  apply intro_classes
676   apply (transfer, rule mult_1_left)
677  apply (transfer, rule mult_1_right)
678  done
679
680instance star :: (power) power ..
681
682instance star :: (comm_monoid_mult) comm_monoid_mult
683  by (intro_classes, transfer, rule mult_1)
684
685instance star :: (cancel_semigroup_add) cancel_semigroup_add
686  apply intro_classes
687   apply (transfer, erule add_left_imp_eq)
688  apply (transfer, erule add_right_imp_eq)
689  done
690
691instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
692  by intro_classes (transfer, simp add: diff_diff_eq)+
693
694instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
695
696instance star :: (ab_group_add) ab_group_add
697  apply intro_classes
698   apply (transfer, rule left_minus)
699  apply (transfer, rule diff_conv_add_uminus)
700  done
701
702instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add
703  by (intro_classes, transfer, rule add_left_mono)
704
705instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
706
707instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le
708  by (intro_classes, transfer, rule add_le_imp_le_left)
709
710instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add ..
711instance star :: (ordered_ab_semigroup_monoid_add_imp_le) ordered_ab_semigroup_monoid_add_imp_le ..
712instance star :: (ordered_cancel_comm_monoid_add) ordered_cancel_comm_monoid_add ..
713instance star :: (ordered_ab_group_add) ordered_ab_group_add ..
714
715instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs
716  by intro_classes (transfer, simp add: abs_ge_self abs_leI abs_triangle_ineq)+
717
718instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add ..
719
720
721subsection \<open>Ring and field classes\<close>
722
723instance star :: (semiring) semiring
724  by (intro_classes; transfer) (fact distrib_right distrib_left)+
725
726instance star :: (semiring_0) semiring_0
727  by (intro_classes; transfer) simp_all
728
729instance star :: (semiring_0_cancel) semiring_0_cancel ..
730
731instance star :: (comm_semiring) comm_semiring
732  by (intro_classes; transfer) (fact distrib_right)
733
734instance star :: (comm_semiring_0) comm_semiring_0 ..
735instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
736
737instance star :: (zero_neq_one) zero_neq_one
738  by (intro_classes; transfer) (fact zero_neq_one)
739
740instance star :: (semiring_1) semiring_1 ..
741instance star :: (comm_semiring_1) comm_semiring_1 ..
742
743declare dvd_def [transfer_refold]
744
745instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel
746  by (intro_classes; transfer) (fact right_diff_distrib')
747
748instance star :: (semiring_no_zero_divisors) semiring_no_zero_divisors
749  by (intro_classes; transfer) (fact no_zero_divisors)
750
751instance star :: (semiring_1_no_zero_divisors) semiring_1_no_zero_divisors ..
752
753instance star :: (semiring_no_zero_divisors_cancel) semiring_no_zero_divisors_cancel
754  by (intro_classes; transfer) simp_all
755
756instance star :: (semiring_1_cancel) semiring_1_cancel ..
757instance star :: (ring) ring ..
758instance star :: (comm_ring) comm_ring ..
759instance star :: (ring_1) ring_1 ..
760instance star :: (comm_ring_1) comm_ring_1 ..
761instance star :: (semidom) semidom ..
762
763instance star :: (semidom_divide) semidom_divide
764  by (intro_classes; transfer) simp_all
765
766instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
767instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
768instance star :: (idom) idom ..
769instance star :: (idom_divide) idom_divide ..
770
771instance star :: (division_ring) division_ring
772  by (intro_classes; transfer) (simp_all add: divide_inverse)
773
774instance star :: (field) field
775  by (intro_classes; transfer) (simp_all add: divide_inverse)
776
777instance star :: (ordered_semiring) ordered_semiring
778  by (intro_classes; transfer) (fact mult_left_mono mult_right_mono)+
779
780instance star :: (ordered_cancel_semiring) ordered_cancel_semiring ..
781
782instance star :: (linordered_semiring_strict) linordered_semiring_strict
783  by (intro_classes; transfer) (fact mult_strict_left_mono mult_strict_right_mono)+
784
785instance star :: (ordered_comm_semiring) ordered_comm_semiring
786  by (intro_classes; transfer) (fact mult_left_mono)
787
788instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..
789
790instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict
791  by (intro_classes; transfer) (fact mult_strict_left_mono)
792
793instance star :: (ordered_ring) ordered_ring ..
794
795instance star :: (ordered_ring_abs) ordered_ring_abs
796  by (intro_classes; transfer) (fact abs_eq_mult)
797
798instance star :: (abs_if) abs_if
799  by (intro_classes; transfer) (fact abs_if)
800
801instance star :: (linordered_ring_strict) linordered_ring_strict ..
802instance star :: (ordered_comm_ring) ordered_comm_ring ..
803
804instance star :: (linordered_semidom) linordered_semidom
805  by (intro_classes; transfer) (fact zero_less_one le_add_diff_inverse2)+
806
807instance star :: (linordered_idom) linordered_idom
808  by (intro_classes; transfer) (fact sgn_if)
809
810instance star :: (linordered_field) linordered_field ..
811
812instance star :: (algebraic_semidom) algebraic_semidom ..
813
814instantiation star :: (normalization_semidom) normalization_semidom
815begin
816
817definition unit_factor_star :: "'a star \<Rightarrow> 'a star"
818  where [transfer_unfold]: "unit_factor_star = *f* unit_factor"
819
820definition normalize_star :: "'a star \<Rightarrow> 'a star"
821  where [transfer_unfold]: "normalize_star = *f* normalize"
822
823instance
824  by standard (transfer; simp add: is_unit_unit_factor unit_factor_mult)+
825
826end
827
828instance star :: (semidom_modulo) semidom_modulo
829  by standard (transfer; simp)
830
831
832
833subsection \<open>Power\<close>
834
835lemma star_power_def [transfer_unfold]: "(^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
836proof (rule eq_reflection, rule ext, rule ext)
837  show "x ^ n = ( *f* (\<lambda>x. x ^ n)) x" for n :: nat and x :: "'a star"
838  proof (induct n arbitrary: x)
839    case 0
840    have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1"
841      by transfer simp
842    then show ?case by simp
843  next
844    case (Suc n)
845    have "\<And>x::'a star. x * ( *f* (\<lambda>x::'a. x ^ n)) x = ( *f* (\<lambda>x::'a. x * x ^ n)) x"
846      by transfer simp
847    with Suc show ?case by simp
848  qed
849qed
850
851lemma Standard_power [simp]: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"
852  by (simp add: star_power_def)
853
854lemma star_of_power [simp]: "star_of (x ^ n) = star_of x ^ n"
855  by transfer (rule refl)
856
857
858subsection \<open>Number classes\<close>
859
860instance star :: (numeral) numeral ..
861
862lemma star_numeral_def [transfer_unfold]: "numeral k = star_of (numeral k)"
863  by (induct k) (simp_all only: numeral.simps star_of_one star_of_add)
864
865lemma Standard_numeral [simp]: "numeral k \<in> Standard"
866  by (simp add: star_numeral_def)
867
868lemma star_of_numeral [simp]: "star_of (numeral k) = numeral k"
869  by transfer (rule refl)
870
871lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"
872  by (induct n) simp_all
873
874lemmas star_of_compare_numeral [simp] =
875  star_of_less [of "numeral k", simplified star_of_numeral]
876  star_of_le   [of "numeral k", simplified star_of_numeral]
877  star_of_eq   [of "numeral k", simplified star_of_numeral]
878  star_of_less [of _ "numeral k", simplified star_of_numeral]
879  star_of_le   [of _ "numeral k", simplified star_of_numeral]
880  star_of_eq   [of _ "numeral k", simplified star_of_numeral]
881  star_of_less [of "- numeral k", simplified star_of_numeral]
882  star_of_le   [of "- numeral k", simplified star_of_numeral]
883  star_of_eq   [of "- numeral k", simplified star_of_numeral]
884  star_of_less [of _ "- numeral k", simplified star_of_numeral]
885  star_of_le   [of _ "- numeral k", simplified star_of_numeral]
886  star_of_eq   [of _ "- numeral k", simplified star_of_numeral] for k
887
888lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"
889  by (simp add: star_of_nat_def)
890
891lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
892  by transfer (rule refl)
893
894lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"
895  by (rule int_diff_cases [of z]) simp
896
897lemma Standard_of_int [simp]: "of_int z \<in> Standard"
898  by (simp add: star_of_int_def)
899
900lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
901  by transfer (rule refl)
902
903instance star :: (semiring_char_0) semiring_char_0
904proof
905  have "inj (star_of :: 'a \<Rightarrow> 'a star)"
906    by (rule injI) simp
907  then have "inj (star_of \<circ> of_nat :: nat \<Rightarrow> 'a star)"
908    using inj_of_nat by (rule inj_compose)
909  then show "inj (of_nat :: nat \<Rightarrow> 'a star)"
910    by (simp add: comp_def)
911qed
912
913instance star :: (ring_char_0) ring_char_0 ..
914
915
916subsection \<open>Finite class\<close>
917
918lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"
919  by (erule finite_induct) simp_all
920
921instance star :: (finite) finite
922proof intro_classes
923  show "finite (UNIV::'a star set)"
924    by (metis starset_UNIV finite finite_imageI starset_finite)
925qed
926
927end
928