1(*  Title:      HOL/Nonstandard_Analysis/HyperNat.thy
2    Author:     Jacques D. Fleuriot
3    Copyright:  1998  University of Cambridge
4
5Converted to Isar and polished by lcp
6*)
7
8section \<open>Hypernatural numbers\<close>
9
10theory HyperNat
11  imports StarDef
12begin
13
14type_synonym hypnat = "nat star"
15
16abbreviation hypnat_of_nat :: "nat \<Rightarrow> nat star"
17  where "hypnat_of_nat \<equiv> star_of"
18
19definition hSuc :: "hypnat \<Rightarrow> hypnat"
20  where hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
21
22
23subsection \<open>Properties Transferred from Naturals\<close>
24
25lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
26  by transfer (rule Suc_not_Zero)
27
28lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
29  by transfer (rule Zero_not_Suc)
30
31lemma hSuc_hSuc_eq [iff]: "\<And>m n. hSuc m = hSuc n \<longleftrightarrow> m = n"
32  by transfer (rule nat.inject)
33
34lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
35  by transfer (rule zero_less_Suc)
36
37lemma hypnat_minus_zero [simp]: "\<And>z::hypnat. z - z = 0"
38  by transfer (rule diff_self_eq_0)
39
40lemma hypnat_diff_0_eq_0 [simp]: "\<And>n::hypnat. 0 - n = 0"
41  by transfer (rule diff_0_eq_0)
42
43lemma hypnat_add_is_0 [iff]: "\<And>m n::hypnat. m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
44  by transfer (rule add_is_0)
45
46lemma hypnat_diff_diff_left: "\<And>i j k::hypnat. i - j - k = i - (j + k)"
47  by transfer (rule diff_diff_left)
48
49lemma hypnat_diff_commute: "\<And>i j k::hypnat. i - j - k = i - k - j"
50  by transfer (rule diff_commute)
51
52lemma hypnat_diff_add_inverse [simp]: "\<And>m n::hypnat. n + m - n = m"
53  by transfer (rule diff_add_inverse)
54
55lemma hypnat_diff_add_inverse2 [simp]:  "\<And>m n::hypnat. m + n - n = m"
56  by transfer (rule diff_add_inverse2)
57
58lemma hypnat_diff_cancel [simp]: "\<And>k m n::hypnat. (k + m) - (k + n) = m - n"
59  by transfer (rule diff_cancel)
60
61lemma hypnat_diff_cancel2 [simp]: "\<And>k m n::hypnat. (m + k) - (n + k) = m - n"
62  by transfer (rule diff_cancel2)
63
64lemma hypnat_diff_add_0 [simp]: "\<And>m n::hypnat. n - (n + m) = 0"
65  by transfer (rule diff_add_0)
66
67lemma hypnat_diff_mult_distrib: "\<And>k m n::hypnat. (m - n) * k = (m * k) - (n * k)"
68  by transfer (rule diff_mult_distrib)
69
70lemma hypnat_diff_mult_distrib2: "\<And>k m n::hypnat. k * (m - n) = (k * m) - (k * n)"
71  by transfer (rule diff_mult_distrib2)
72
73lemma hypnat_le_zero_cancel [iff]: "\<And>n::hypnat. n \<le> 0 \<longleftrightarrow> n = 0"
74  by transfer (rule le_0_eq)
75
76lemma hypnat_mult_is_0 [simp]: "\<And>m n::hypnat. m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"
77  by transfer (rule mult_is_0)
78
79lemma hypnat_diff_is_0_eq [simp]: "\<And>m n::hypnat. m - n = 0 \<longleftrightarrow> m \<le> n"
80  by transfer (rule diff_is_0_eq)
81
82lemma hypnat_not_less0 [iff]: "\<And>n::hypnat. \<not> n < 0"
83  by transfer (rule not_less0)
84
85lemma hypnat_less_one [iff]: "\<And>n::hypnat. n < 1 \<longleftrightarrow> n = 0"
86  by transfer (rule less_one)
87
88lemma hypnat_add_diff_inverse: "\<And>m n::hypnat. \<not> m < n \<Longrightarrow> n + (m - n) = m"
89  by transfer (rule add_diff_inverse)
90
91lemma hypnat_le_add_diff_inverse [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> n + (m - n) = m"
92  by transfer (rule le_add_diff_inverse)
93
94lemma hypnat_le_add_diff_inverse2 [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> (m - n) + n = m"
95  by transfer (rule le_add_diff_inverse2)
96
97declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
98
99lemma hypnat_le0 [iff]: "\<And>n::hypnat. 0 \<le> n"
100  by transfer (rule le0)
101
102lemma hypnat_le_add1 [simp]: "\<And>x n::hypnat. x \<le> x + n"
103  by transfer (rule le_add1)
104
105lemma hypnat_add_self_le [simp]: "\<And>x n::hypnat. x \<le> n + x"
106  by transfer (rule le_add2)
107
108lemma hypnat_add_one_self_less [simp]: "x < x + 1" for x :: hypnat
109  by (fact less_add_one)
110
111lemma hypnat_neq0_conv [iff]: "\<And>n::hypnat. n \<noteq> 0 \<longleftrightarrow> 0 < n"
112  by transfer (rule neq0_conv)
113
114lemma hypnat_gt_zero_iff: "0 < n \<longleftrightarrow> 1 \<le> n" for n :: hypnat
115  by (auto simp add: linorder_not_less [symmetric])
116
117lemma hypnat_gt_zero_iff2: "0 < n \<longleftrightarrow> (\<exists>m. n = m + 1)" for n :: hypnat
118  by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)
119
120lemma hypnat_add_self_not_less: "\<not> x + y < x" for x y :: hypnat
121  by (simp add: linorder_not_le [symmetric] add.commute [of x])
122
123lemma hypnat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)"
124  for a b :: hypnat
125  \<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close>
126proof (cases "a < b" rule: case_split)
127  case True
128  then show ?thesis
129    by (auto simp add: hypnat_add_self_not_less order_less_imp_le hypnat_diff_is_0_eq [THEN iffD2])
130next
131  case False
132  then show ?thesis
133    by (auto simp add: linorder_not_less dest: order_le_less_trans)
134qed
135
136
137subsection \<open>Properties of the set of embedded natural numbers\<close>
138
139lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
140proof
141  show "of_nat n = star_of n" for n
142    by transfer simp
143qed
144
145lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
146  by (auto simp: Nats_def Standard_def)
147
148lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
149  by (simp add: Nats_eq_Standard)
150
151lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = 1"
152  by transfer simp
153
154lemma hypnat_of_nat_Suc [simp]: "hypnat_of_nat (Suc n) = hypnat_of_nat n + 1"
155  by transfer simp
156
157lemma of_nat_eq_add: 
158  fixes d::hypnat
159  shows "of_nat m = of_nat n + d \<Longrightarrow> d \<in> range of_nat"
160proof (induct n arbitrary: d)
161  case (Suc n)
162  then show ?case
163    by (metis Nats_def Nats_eq_Standard Standard_simps(4) hypnat_diff_add_inverse of_nat_in_Nats)
164qed auto
165
166lemma Nats_diff [simp]: "a \<in> Nats \<Longrightarrow> b \<in> Nats \<Longrightarrow> a - b \<in> Nats" for a b :: hypnat
167  by (simp add: Nats_eq_Standard)
168
169
170subsection \<open>Infinite Hypernatural Numbers -- \<^term>\<open>HNatInfinite\<close>\<close>
171
172text \<open>The set of infinite hypernatural numbers.\<close>
173definition HNatInfinite :: "hypnat set"
174  where "HNatInfinite = {n. n \<notin> Nats}"
175
176lemma Nats_not_HNatInfinite_iff: "x \<in> Nats \<longleftrightarrow> x \<notin> HNatInfinite"
177  by (simp add: HNatInfinite_def)
178
179lemma HNatInfinite_not_Nats_iff: "x \<in> HNatInfinite \<longleftrightarrow> x \<notin> Nats"
180  by (simp add: HNatInfinite_def)
181
182lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
183  by (auto simp add: HNatInfinite_def Nats_eq_Standard)
184
185lemma star_of_Suc_lessI: "\<And>N. star_of n < N \<Longrightarrow> star_of (Suc n) \<noteq> N \<Longrightarrow> star_of (Suc n) < N"
186  by transfer (rule Suc_lessI)
187
188lemma star_of_less_HNatInfinite:
189  assumes N: "N \<in> HNatInfinite"
190  shows "star_of n < N"
191proof (induct n)
192  case 0
193  from N have "star_of 0 \<noteq> N"
194    by (rule star_of_neq_HNatInfinite)
195  then show ?case by simp
196next
197  case (Suc n)
198  from N have "star_of (Suc n) \<noteq> N"
199    by (rule star_of_neq_HNatInfinite)
200  with Suc show ?case
201    by (rule star_of_Suc_lessI)
202qed
203
204lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
205  by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
206
207
208subsubsection \<open>Closure Rules\<close>
209
210lemma Nats_less_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x < y"
211  by (auto simp add: Nats_def star_of_less_HNatInfinite)
212
213lemma Nats_le_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x \<le> y"
214  by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
215
216lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
217  by (simp add: Nats_less_HNatInfinite)
218
219lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
220  by (simp add: Nats_less_HNatInfinite)
221
222lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
223  by (simp add: Nats_le_HNatInfinite)
224
225lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
226  by (simp add: HNatInfinite_def)
227
228lemma Nats_downward_closed: "x \<in> Nats \<Longrightarrow> y \<le> x \<Longrightarrow> y \<in> Nats" for x y :: hypnat
229  using HNatInfinite_not_Nats_iff Nats_le_HNatInfinite by fastforce
230
231lemma HNatInfinite_upward_closed: "x \<in> HNatInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> y \<in> HNatInfinite"
232  using HNatInfinite_not_Nats_iff Nats_downward_closed by blast
233
234lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
235  using HNatInfinite_upward_closed hypnat_le_add1 by blast
236
237lemma HNatInfinite_diff: "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
238  by (metis HNatInfinite_not_Nats_iff Nats_add Nats_le_HNatInfinite le_add_diff_inverse)
239
240lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite \<Longrightarrow> \<exists>y. x = y + 1" for x :: hypnat
241  using hypnat_gt_zero_iff2 zero_less_HNatInfinite by blast
242
243
244subsection \<open>Existence of an infinite hypernatural number\<close>
245
246text \<open>\<open>\<omega>\<close> is in fact an infinite hypernatural number = \<open>[<1, 2, 3, \<dots>>]\<close>\<close>
247definition whn :: hypnat
248  where hypnat_omega_def: "whn = star_n (\<lambda>n::nat. n)"
249
250lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
251  by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)
252
253lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
254  by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)
255
256lemma whn_not_Nats [simp]: "whn \<notin> Nats"
257  by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
258
259lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
260  by (simp add: HNatInfinite_def)
261
262lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>"
263  by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])
264     (auto simp add: cofinite_eq_sequentially eventually_at_top_dense)
265
266lemma hypnat_of_nat_eq: "hypnat_of_nat m  = star_n (\<lambda>n::nat. m)"
267  by (simp add: star_of_def)
268
269lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
270  by (simp add: Nats_def image_def)
271
272lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
273  by (simp add: Nats_less_HNatInfinite)
274
275lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
276  by (simp add: Nats_le_HNatInfinite)
277
278lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
279  by (simp add: Nats_less_whn)
280
281lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
282  by (simp add: Nats_le_whn)
283
284lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
285  by (simp add: Nats_less_whn)
286
287lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
288  by (simp add: Nats_less_whn)
289
290
291subsubsection \<open>Alternative characterization of the set of infinite hypernaturals\<close>
292
293text \<open>\<^term>\<open>HNatInfinite = {N. \<forall>n \<in> Nats. n < N}\<close>\<close>
294
295text\<open>unused, but possibly interesting\<close>
296lemma HNatInfinite_FreeUltrafilterNat_eventually:
297  assumes "\<And>k::nat. eventually (\<lambda>n. f n \<noteq> k) \<U>"
298  shows "eventually (\<lambda>n. m < f n) \<U>"
299proof (induct m)
300  case 0
301  then show ?case
302    using assms eventually_mono by fastforce
303next
304  case (Suc m)
305  then show ?case
306    using assms [of "Suc m"] eventually_elim2 by fastforce
307qed
308
309lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
310  using HNatInfinite_def Nats_less_HNatInfinite by auto
311
312
313subsubsection \<open>Alternative Characterization of \<^term>\<open>HNatInfinite\<close> using Free Ultrafilter\<close>
314
315lemma HNatInfinite_FreeUltrafilterNat:
316  "star_n X \<in> HNatInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < X n) \<U>"
317  by (metis (full_types) starP2_star_of starP_star_n star_less_def star_of_less_HNatInfinite)
318
319lemma FreeUltrafilterNat_HNatInfinite:
320  "\<forall>u. eventually (\<lambda>n. u < X n) \<U> \<Longrightarrow> star_n X \<in> HNatInfinite"
321  by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
322
323lemma HNatInfinite_FreeUltrafilterNat_iff:
324  "(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) \<U>)"
325  by (rule iffI [OF HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite])
326
327
328subsection \<open>Embedding of the Hypernaturals into other types\<close>
329
330definition of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star"
331  where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
332
333lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
334  by transfer (rule of_nat_0)
335
336lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
337  by transfer (rule of_nat_1)
338
339lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
340  by transfer (rule of_nat_Suc)
341
342lemma of_hypnat_add [simp]: "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
343  by transfer (rule of_nat_add)
344
345lemma of_hypnat_mult [simp]: "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
346  by transfer (rule of_nat_mult)
347
348lemma of_hypnat_less_iff [simp]:
349  "\<And>m n. of_hypnat m < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m < n"
350  by transfer (rule of_nat_less_iff)
351
352lemma of_hypnat_0_less_iff [simp]:
353  "\<And>n. 0 < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> 0 < n"
354  by transfer (rule of_nat_0_less_iff)
355
356lemma of_hypnat_less_0_iff [simp]: "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"
357  by transfer (rule of_nat_less_0_iff)
358
359lemma of_hypnat_le_iff [simp]:
360  "\<And>m n. of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m \<le> n"
361  by transfer (rule of_nat_le_iff)
362
363lemma of_hypnat_0_le_iff [simp]: "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"
364  by transfer (rule of_nat_0_le_iff)
365
366lemma of_hypnat_le_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) \<le> 0 \<longleftrightarrow> m = 0"
367  by transfer (rule of_nat_le_0_iff)
368
369lemma of_hypnat_eq_iff [simp]:
370  "\<And>m n. of_hypnat m = (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m = n"
371  by transfer (rule of_nat_eq_iff)
372
373lemma of_hypnat_eq_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) = 0 \<longleftrightarrow> m = 0"
374  by transfer (rule of_nat_eq_0_iff)
375
376lemma HNatInfinite_of_hypnat_gt_zero:
377  "N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"
378  by (rule ccontr) (simp add: linorder_not_less)
379
380end
381