1(*  Title       : NSPrimes.thy
2    Author      : Jacques D. Fleuriot
3    Copyright   : 2002 University of Edinburgh
4    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
5*)
6
7section \<open>The Nonstandard Primes as an Extension of the Prime Numbers\<close>
8
9theory NSPrimes
10  imports "HOL-Computational_Algebra.Primes" "HOL-Nonstandard_Analysis.Hyperreal"
11begin
12
13text \<open>These can be used to derive an alternative proof of the infinitude of
14primes by considering a property of nonstandard sets.\<close>
15
16definition starprime :: "hypnat set"
17  where [transfer_unfold]: "starprime = *s* {p. prime p}"
18
19definition choicefun :: "'a set \<Rightarrow> 'a"
20  where "choicefun E = (SOME x. \<exists>X \<in> Pow E - {{}}. x \<in> X)"
21
22primrec injf_max :: "nat \<Rightarrow> 'a::order set \<Rightarrow> 'a"
23where
24  injf_max_zero: "injf_max 0 E = choicefun E"
25| injf_max_Suc: "injf_max (Suc n) E = choicefun ({e. e \<in> E \<and> injf_max n E < e})"
26
27lemma dvd_by_all2: "\<exists>N>0. \<forall>m. 0 < m \<and> m \<le> M \<longrightarrow> m dvd N"
28  for M :: nat
29  apply (induct M)
30   apply auto
31  apply (rule_tac x = "N * Suc M" in exI)
32  apply auto
33  apply (metis dvdI dvd_add_times_triv_left_iff dvd_add_triv_right_iff dvd_refl dvd_trans le_Suc_eq mult_Suc_right)
34  done
35
36lemma dvd_by_all: "\<forall>M::nat. \<exists>N>0. \<forall>m. 0 < m \<and> m \<le> M \<longrightarrow> m dvd N"
37  using dvd_by_all2 by blast
38
39lemma hypnat_of_nat_le_zero_iff [simp]: "hypnat_of_nat n \<le> 0 \<longleftrightarrow> n = 0"
40  by transfer simp
41
42text \<open>Goldblatt: Exercise 5.11(2) -- p. 57.\<close>
43lemma hdvd_by_all: "\<forall>M. \<exists>N. 0 < N \<and> (\<forall>m::hypnat. 0 < m \<and> m \<le> M \<longrightarrow> m dvd N)"
44  by transfer (rule dvd_by_all)
45
46lemmas hdvd_by_all2 = hdvd_by_all [THEN spec]
47
48text \<open>Goldblatt: Exercise 5.11(2) -- p. 57.\<close>
49lemma hypnat_dvd_all_hypnat_of_nat:
50  "\<exists>N::hypnat. 0 < N \<and> (\<forall>n \<in> - {0::nat}. hypnat_of_nat n dvd N)"
51  apply (cut_tac hdvd_by_all)
52  apply (drule_tac x = whn in spec)
53  apply auto
54  apply (rule exI)
55  apply auto
56  apply (drule_tac x = "hypnat_of_nat n" in spec)
57  apply (auto simp add: linorder_not_less)
58  done
59
60
61text \<open>The nonstandard extension of the set prime numbers consists of precisely
62  those hypernaturals exceeding 1 that have no nontrivial factors.\<close>
63
64text \<open>Goldblatt: Exercise 5.11(3a) -- p 57.\<close>
65lemma starprime: "starprime = {p. 1 < p \<and> (\<forall>m. m dvd p \<longrightarrow> m = 1 \<or> m = p)}"
66  by transfer (auto simp add: prime_nat_iff)
67
68text \<open>Goldblatt Exercise 5.11(3b) -- p 57.\<close>
69lemma hyperprime_factor_exists: "\<And>n. 1 < n \<Longrightarrow> \<exists>k \<in> starprime. k dvd n"
70  by transfer (simp add: prime_factor_nat)
71
72text \<open>Goldblatt Exercise 3.10(1) -- p. 29.\<close>
73lemma NatStar_hypnat_of_nat: "finite A \<Longrightarrow> *s* A = hypnat_of_nat ` A"
74  by (rule starset_finite)
75
76
77subsection \<open>Another characterization of infinite set of natural numbers\<close>
78
79lemma finite_nat_set_bounded: "finite N \<Longrightarrow> \<exists>n::nat. \<forall>i \<in> N. i < n"
80  apply (erule_tac F = N in finite_induct)
81   apply auto
82  apply (rule_tac x = "Suc n + x" in exI)
83  apply auto
84  done
85
86lemma finite_nat_set_bounded_iff: "finite N \<longleftrightarrow> (\<exists>n::nat. \<forall>i \<in> N. i < n)"
87  by (blast intro: finite_nat_set_bounded bounded_nat_set_is_finite)
88
89lemma not_finite_nat_set_iff: "\<not> finite N \<longleftrightarrow> (\<forall>n::nat. \<exists>i \<in> N. n \<le> i)"
90  by (auto simp add: finite_nat_set_bounded_iff not_less)
91
92lemma bounded_nat_set_is_finite2: "\<forall>i::nat \<in> N. i \<le> n \<Longrightarrow> finite N"
93  apply (rule finite_subset)
94   apply (rule_tac [2] finite_atMost)
95  apply auto
96  done
97
98lemma finite_nat_set_bounded2: "finite N \<Longrightarrow> \<exists>n::nat. \<forall>i \<in> N. i \<le> n"
99  apply (erule_tac F = N in finite_induct)
100   apply auto
101  apply (rule_tac x = "n + x" in exI)
102  apply auto
103  done
104
105lemma finite_nat_set_bounded_iff2: "finite N \<longleftrightarrow> (\<exists>n::nat. \<forall>i \<in> N. i \<le> n)"
106  by (blast intro: finite_nat_set_bounded2 bounded_nat_set_is_finite2)
107
108lemma not_finite_nat_set_iff2: "\<not> finite N \<longleftrightarrow> (\<forall>n::nat. \<exists>i \<in> N. n < i)"
109  by (auto simp add: finite_nat_set_bounded_iff2 not_le)
110
111
112subsection \<open>An injective function cannot define an embedded natural number\<close>
113
114lemma lemma_infinite_set_singleton:
115  "\<forall>m n. m \<noteq> n \<longrightarrow> f n \<noteq> f m \<Longrightarrow> {n. f n = N} = {} \<or> (\<exists>m. {n. f n = N} = {m})"
116  apply auto
117  apply (drule_tac x = x in spec, auto)
118  apply (subgoal_tac "\<forall>n. f n = f x \<longleftrightarrow> x = n")
119   apply auto
120  done
121
122lemma inj_fun_not_hypnat_in_SHNat:
123  fixes f :: "nat \<Rightarrow> nat"
124  assumes inj_f: "inj f"
125  shows "starfun f whn \<notin> Nats"
126proof
127  from inj_f have inj_f': "inj (starfun f)"
128    by (transfer inj_on_def Ball_def UNIV_def)
129  assume "starfun f whn \<in> Nats"
130  then obtain N where N: "starfun f whn = hypnat_of_nat N"
131    by (auto simp: Nats_def)
132  then have "\<exists>n. starfun f n = hypnat_of_nat N" ..
133  then have "\<exists>n. f n = N" by transfer
134  then obtain n where "f n = N" ..
135  then have "starfun f (hypnat_of_nat n) = hypnat_of_nat N"
136    by transfer
137  with N have "starfun f whn = starfun f (hypnat_of_nat n)"
138    by simp
139  with inj_f' have "whn = hypnat_of_nat n"
140    by (rule injD)
141  then show False
142    by (simp add: whn_neq_hypnat_of_nat)
143qed
144
145lemma range_subset_mem_starsetNat: "range f \<subseteq> A \<Longrightarrow> starfun f whn \<in> *s* A"
146  apply (rule_tac x="whn" in spec)
147  apply transfer
148  apply auto
149  done
150
151text \<open>
152  Gleason Proposition 11-5.5. pg 149, pg 155 (ex. 3) and pg. 360.
153
154  Let \<open>E\<close> be a nonvoid ordered set with no maximal elements (note: effectively an
155  infinite set if we take \<open>E = N\<close> (Nats)). Then there exists an order-preserving
156  injection from \<open>N\<close> to \<open>E\<close>. Of course, (as some doofus will undoubtedly point out!
157  :-)) can use notion of least element in proof (i.e. no need for choice) if
158  dealing with nats as we have well-ordering property.
159\<close>
160
161lemma lemmaPow3: "E \<noteq> {} \<Longrightarrow> \<exists>x. \<exists>X \<in> Pow E - {{}}. x \<in> X"
162  by auto
163
164lemma choicefun_mem_set [simp]: "E \<noteq> {} \<Longrightarrow> choicefun E \<in> E"
165  apply (unfold choicefun_def)
166  apply (rule lemmaPow3 [THEN someI2_ex], auto)
167  done
168
169lemma injf_max_mem_set: "E \<noteq>{} \<Longrightarrow> \<forall>x. \<exists>y \<in> E. x < y \<Longrightarrow> injf_max n E \<in> E"
170  apply (induct n)
171   apply force
172  apply (simp add: choicefun_def)
173  apply (rule lemmaPow3 [THEN someI2_ex], auto)
174  done
175
176lemma injf_max_order_preserving: "\<forall>x. \<exists>y \<in> E. x < y \<Longrightarrow> injf_max n E < injf_max (Suc n) E"
177  apply (simp add: choicefun_def)
178  apply (rule lemmaPow3 [THEN someI2_ex])
179   apply auto
180  done
181
182lemma injf_max_order_preserving2: "\<forall>x. \<exists>y \<in> E. x < y \<Longrightarrow> \<forall>n m. m < n \<longrightarrow> injf_max m E < injf_max n E"
183  apply (rule allI)
184  apply (induct_tac n)
185   apply auto
186  apply (simp add: choicefun_def)
187  apply (rule lemmaPow3 [THEN someI2_ex])
188   apply (auto simp add: less_Suc_eq)
189  apply (drule_tac x = m in spec)
190  apply (drule subsetD)
191   apply auto
192  apply (drule_tac x = "injf_max m E" in order_less_trans)
193   apply auto
194  done
195
196lemma inj_injf_max: "\<forall>x. \<exists>y \<in> E. x < y \<Longrightarrow> inj (\<lambda>n. injf_max n E)"
197  apply (rule inj_onI)
198  apply (rule ccontr)
199  apply auto
200  apply (drule injf_max_order_preserving2)
201  apply (metis antisym_conv3 order_less_le)
202  done
203
204lemma infinite_set_has_order_preserving_inj:
205  "E \<noteq> {} \<Longrightarrow> \<forall>x. \<exists>y \<in> E. x < y \<Longrightarrow> \<exists>f. range f \<subseteq> E \<and> inj f \<and> (\<forall>m. f m < f (Suc m))"
206  for E :: "'a::order set" and f :: "nat \<Rightarrow> 'a"
207  apply (rule_tac x = "\<lambda>n. injf_max n E" in exI)
208  apply safe
209    apply (rule injf_max_mem_set)
210     apply (rule_tac [3] inj_injf_max)
211     apply (rule_tac [4] injf_max_order_preserving)
212     apply auto
213  done
214
215
216text \<open>Only need the existence of an injective function from \<open>N\<close> to \<open>A\<close> for proof.\<close>
217
218lemma hypnat_infinite_has_nonstandard: "\<not> finite A \<Longrightarrow> hypnat_of_nat ` A < ( *s* A)"
219  apply auto
220  apply (subgoal_tac "A \<noteq> {}")
221   prefer 2 apply force
222  apply (drule infinite_set_has_order_preserving_inj)
223   apply (erule not_finite_nat_set_iff2 [THEN iffD1])
224  apply auto
225  apply (drule inj_fun_not_hypnat_in_SHNat)
226  apply (drule range_subset_mem_starsetNat)
227  apply (auto simp add: SHNat_eq)
228  done
229
230lemma starsetNat_eq_hypnat_of_nat_image_finite: "*s* A =  hypnat_of_nat ` A \<Longrightarrow> finite A"
231  by (metis hypnat_infinite_has_nonstandard less_irrefl)
232
233lemma finite_starsetNat_iff: "*s* A = hypnat_of_nat ` A \<longleftrightarrow> finite A"
234  by (blast intro!: starsetNat_eq_hypnat_of_nat_image_finite NatStar_hypnat_of_nat)
235
236lemma hypnat_infinite_has_nonstandard_iff: "\<not> finite A \<longleftrightarrow> hypnat_of_nat ` A < *s* A"
237  apply (rule iffI)
238   apply (blast intro!: hypnat_infinite_has_nonstandard)
239  apply (auto simp add: finite_starsetNat_iff [symmetric])
240  done
241
242
243subsection \<open>Existence of Infinitely Many Primes: a Nonstandard Proof\<close>
244
245lemma lemma_not_dvd_hypnat_one [simp]: "\<not> (\<forall>n \<in> - {0}. hypnat_of_nat n dvd 1)"
246  apply auto
247  apply (rule_tac x = 2 in bexI)
248   apply transfer
249   apply auto
250  done
251
252lemma lemma_not_dvd_hypnat_one2 [simp]: "\<exists>n \<in> - {0}. \<not> hypnat_of_nat n dvd 1"
253  using lemma_not_dvd_hypnat_one by (auto simp del: lemma_not_dvd_hypnat_one)
254
255lemma hypnat_add_one_gt_one: "\<And>N::hypnat. 0 < N \<Longrightarrow> 1 < N + 1"
256  by transfer simp
257
258lemma hypnat_of_nat_zero_not_prime [simp]: "hypnat_of_nat 0 \<notin> starprime"
259  by transfer simp
260
261lemma hypnat_zero_not_prime [simp]: "0 \<notin> starprime"
262  using hypnat_of_nat_zero_not_prime by simp
263
264lemma hypnat_of_nat_one_not_prime [simp]: "hypnat_of_nat 1 \<notin> starprime"
265  by transfer simp
266
267lemma hypnat_one_not_prime [simp]: "1 \<notin> starprime"
268  using hypnat_of_nat_one_not_prime by simp
269
270lemma hdvd_diff: "\<And>k m n :: hypnat. k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m - n)"
271  by transfer (rule dvd_diff_nat)
272
273lemma hdvd_one_eq_one: "\<And>x::hypnat. is_unit x \<Longrightarrow> x = 1"
274  by transfer simp
275
276text \<open>Already proved as \<open>primes_infinite\<close>, but now using non-standard naturals.\<close>
277theorem not_finite_prime: "\<not> finite {p::nat. prime p}"
278  apply (rule hypnat_infinite_has_nonstandard_iff [THEN iffD2])
279  using hypnat_dvd_all_hypnat_of_nat
280  apply clarify
281  apply (drule hypnat_add_one_gt_one)
282  apply (drule hyperprime_factor_exists)
283  apply clarify
284  apply (subgoal_tac "k \<notin> hypnat_of_nat ` {p. prime p}")
285   apply (force simp: starprime_def)
286  apply (metis Compl_iff add.commute dvd_add_left_iff empty_iff hdvd_one_eq_one hypnat_one_not_prime
287      imageE insert_iff mem_Collect_eq not_prime_0)
288  done
289
290end
291