1(*  Title:      HOL/Library/Nat_Bijection.thy
2    Author:     Brian Huffman
3    Author:     Florian Haftmann
4    Author:     Stefan Richter
5    Author:     Tobias Nipkow
6    Author:     Alexander Krauss
7*)
8
9section \<open>Bijections between natural numbers and other types\<close>
10
11theory Nat_Bijection
12  imports Main
13begin
14
15subsection \<open>Type \<^typ>\<open>nat \<times> nat\<close>\<close>
16
17text \<open>Triangle numbers: 0, 1, 3, 6, 10, 15, ...\<close>
18
19definition triangle :: "nat \<Rightarrow> nat"
20  where "triangle n = (n * Suc n) div 2"
21
22lemma triangle_0 [simp]: "triangle 0 = 0"
23  by (simp add: triangle_def)
24
25lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n"
26  by (simp add: triangle_def)
27
28definition prod_encode :: "nat \<times> nat \<Rightarrow> nat"
29  where "prod_encode = (\<lambda>(m, n). triangle (m + n) + m)"
30
31text \<open>In this auxiliary function, \<^term>\<open>triangle k + m\<close> is an invariant.\<close>
32
33fun prod_decode_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat"
34  where "prod_decode_aux k m =
35    (if m \<le> k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))"
36
37declare prod_decode_aux.simps [simp del]
38
39definition prod_decode :: "nat \<Rightarrow> nat \<times> nat"
40  where "prod_decode = prod_decode_aux 0"
41
42lemma prod_encode_prod_decode_aux: "prod_encode (prod_decode_aux k m) = triangle k + m"
43  apply (induct k m rule: prod_decode_aux.induct)
44  apply (subst prod_decode_aux.simps)
45  apply (simp add: prod_encode_def)
46  done
47
48lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n"
49  by (simp add: prod_decode_def prod_encode_prod_decode_aux)
50
51lemma prod_decode_triangle_add: "prod_decode (triangle k + m) = prod_decode_aux k m"
52  apply (induct k arbitrary: m)
53   apply (simp add: prod_decode_def)
54  apply (simp only: triangle_Suc add.assoc)
55  apply (subst prod_decode_aux.simps)
56  apply simp
57  done
58
59lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x"
60  unfolding prod_encode_def
61  apply (induct x)
62  apply (simp add: prod_decode_triangle_add)
63  apply (subst prod_decode_aux.simps)
64  apply simp
65  done
66
67lemma inj_prod_encode: "inj_on prod_encode A"
68  by (rule inj_on_inverseI) (rule prod_encode_inverse)
69
70lemma inj_prod_decode: "inj_on prod_decode A"
71  by (rule inj_on_inverseI) (rule prod_decode_inverse)
72
73lemma surj_prod_encode: "surj prod_encode"
74  by (rule surjI) (rule prod_decode_inverse)
75
76lemma surj_prod_decode: "surj prod_decode"
77  by (rule surjI) (rule prod_encode_inverse)
78
79lemma bij_prod_encode: "bij prod_encode"
80  by (rule bijI [OF inj_prod_encode surj_prod_encode])
81
82lemma bij_prod_decode: "bij prod_decode"
83  by (rule bijI [OF inj_prod_decode surj_prod_decode])
84
85lemma prod_encode_eq: "prod_encode x = prod_encode y \<longleftrightarrow> x = y"
86  by (rule inj_prod_encode [THEN inj_eq])
87
88lemma prod_decode_eq: "prod_decode x = prod_decode y \<longleftrightarrow> x = y"
89  by (rule inj_prod_decode [THEN inj_eq])
90
91
92text \<open>Ordering properties\<close>
93
94lemma le_prod_encode_1: "a \<le> prod_encode (a, b)"
95  by (simp add: prod_encode_def)
96
97lemma le_prod_encode_2: "b \<le> prod_encode (a, b)"
98  by (induct b) (simp_all add: prod_encode_def)
99
100
101subsection \<open>Type \<^typ>\<open>nat + nat\<close>\<close>
102
103definition sum_encode :: "nat + nat \<Rightarrow> nat"
104  where "sum_encode x = (case x of Inl a \<Rightarrow> 2 * a | Inr b \<Rightarrow> Suc (2 * b))"
105
106definition sum_decode :: "nat \<Rightarrow> nat + nat"
107  where "sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))"
108
109lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x"
110  by (induct x) (simp_all add: sum_decode_def sum_encode_def)
111
112lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n"
113  by (simp add: even_two_times_div_two sum_decode_def sum_encode_def)
114
115lemma inj_sum_encode: "inj_on sum_encode A"
116  by (rule inj_on_inverseI) (rule sum_encode_inverse)
117
118lemma inj_sum_decode: "inj_on sum_decode A"
119  by (rule inj_on_inverseI) (rule sum_decode_inverse)
120
121lemma surj_sum_encode: "surj sum_encode"
122  by (rule surjI) (rule sum_decode_inverse)
123
124lemma surj_sum_decode: "surj sum_decode"
125  by (rule surjI) (rule sum_encode_inverse)
126
127lemma bij_sum_encode: "bij sum_encode"
128  by (rule bijI [OF inj_sum_encode surj_sum_encode])
129
130lemma bij_sum_decode: "bij sum_decode"
131  by (rule bijI [OF inj_sum_decode surj_sum_decode])
132
133lemma sum_encode_eq: "sum_encode x = sum_encode y \<longleftrightarrow> x = y"
134  by (rule inj_sum_encode [THEN inj_eq])
135
136lemma sum_decode_eq: "sum_decode x = sum_decode y \<longleftrightarrow> x = y"
137  by (rule inj_sum_decode [THEN inj_eq])
138
139
140subsection \<open>Type \<^typ>\<open>int\<close>\<close>
141
142definition int_encode :: "int \<Rightarrow> nat"
143  where "int_encode i = sum_encode (if 0 \<le> i then Inl (nat i) else Inr (nat (- i - 1)))"
144
145definition int_decode :: "nat \<Rightarrow> int"
146  where "int_decode n = (case sum_decode n of Inl a \<Rightarrow> int a | Inr b \<Rightarrow> - int b - 1)"
147
148lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x"
149  by (simp add: int_decode_def int_encode_def)
150
151lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n"
152  unfolding int_decode_def int_encode_def
153  using sum_decode_inverse [of n] by (cases "sum_decode n") simp_all
154
155lemma inj_int_encode: "inj_on int_encode A"
156  by (rule inj_on_inverseI) (rule int_encode_inverse)
157
158lemma inj_int_decode: "inj_on int_decode A"
159  by (rule inj_on_inverseI) (rule int_decode_inverse)
160
161lemma surj_int_encode: "surj int_encode"
162  by (rule surjI) (rule int_decode_inverse)
163
164lemma surj_int_decode: "surj int_decode"
165  by (rule surjI) (rule int_encode_inverse)
166
167lemma bij_int_encode: "bij int_encode"
168  by (rule bijI [OF inj_int_encode surj_int_encode])
169
170lemma bij_int_decode: "bij int_decode"
171  by (rule bijI [OF inj_int_decode surj_int_decode])
172
173lemma int_encode_eq: "int_encode x = int_encode y \<longleftrightarrow> x = y"
174  by (rule inj_int_encode [THEN inj_eq])
175
176lemma int_decode_eq: "int_decode x = int_decode y \<longleftrightarrow> x = y"
177  by (rule inj_int_decode [THEN inj_eq])
178
179
180subsection \<open>Type \<^typ>\<open>nat list\<close>\<close>
181
182fun list_encode :: "nat list \<Rightarrow> nat"
183  where
184    "list_encode [] = 0"
185  | "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))"
186
187function list_decode :: "nat \<Rightarrow> nat list"
188  where
189    "list_decode 0 = []"
190  | "list_decode (Suc n) = (case prod_decode n of (x, y) \<Rightarrow> x # list_decode y)"
191  by pat_completeness auto
192
193termination list_decode
194  apply (relation "measure id")
195   apply simp_all
196  apply (drule arg_cong [where f="prod_encode"])
197  apply (drule sym)
198  apply (simp add: le_imp_less_Suc le_prod_encode_2)
199  done
200
201lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x"
202  by (induct x rule: list_encode.induct) simp_all
203
204lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n"
205  apply (induct n rule: list_decode.induct)
206   apply simp
207  apply (simp split: prod.split)
208  apply (simp add: prod_decode_eq [symmetric])
209  done
210
211lemma inj_list_encode: "inj_on list_encode A"
212  by (rule inj_on_inverseI) (rule list_encode_inverse)
213
214lemma inj_list_decode: "inj_on list_decode A"
215  by (rule inj_on_inverseI) (rule list_decode_inverse)
216
217lemma surj_list_encode: "surj list_encode"
218  by (rule surjI) (rule list_decode_inverse)
219
220lemma surj_list_decode: "surj list_decode"
221  by (rule surjI) (rule list_encode_inverse)
222
223lemma bij_list_encode: "bij list_encode"
224  by (rule bijI [OF inj_list_encode surj_list_encode])
225
226lemma bij_list_decode: "bij list_decode"
227  by (rule bijI [OF inj_list_decode surj_list_decode])
228
229lemma list_encode_eq: "list_encode x = list_encode y \<longleftrightarrow> x = y"
230  by (rule inj_list_encode [THEN inj_eq])
231
232lemma list_decode_eq: "list_decode x = list_decode y \<longleftrightarrow> x = y"
233  by (rule inj_list_decode [THEN inj_eq])
234
235
236subsection \<open>Finite sets of naturals\<close>
237
238subsubsection \<open>Preliminaries\<close>
239
240lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F"
241  apply (safe intro!: finite_vimageI inj_Suc)
242  apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"])
243   apply (rule subsetI)
244   apply (case_tac x)
245    apply simp
246   apply simp
247  apply (rule finite_insert [THEN iffD2])
248  apply (erule finite_imageI)
249  done
250
251lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A"
252  by auto
253
254lemma vimage_Suc_insert_Suc: "Suc -` insert (Suc n) A = insert n (Suc -` A)"
255  by auto
256
257lemma div2_even_ext_nat:
258  fixes x y :: nat
259  assumes "x div 2 = y div 2"
260    and "even x \<longleftrightarrow> even y"
261  shows "x = y"
262proof -
263  from \<open>even x \<longleftrightarrow> even y\<close> have "x mod 2 = y mod 2"
264    by (simp only: even_iff_mod_2_eq_zero) auto
265  with assms have "x div 2 * 2 + x mod 2 = y div 2 * 2 + y mod 2"
266    by simp
267  then show ?thesis
268    by simp
269qed
270
271
272subsubsection \<open>From sets to naturals\<close>
273
274definition set_encode :: "nat set \<Rightarrow> nat"
275  where "set_encode = sum ((^) 2)"
276
277lemma set_encode_empty [simp]: "set_encode {} = 0"
278  by (simp add: set_encode_def)
279
280lemma set_encode_inf: "\<not> finite A \<Longrightarrow> set_encode A = 0"
281  by (simp add: set_encode_def)
282
283lemma set_encode_insert [simp]: "finite A \<Longrightarrow> n \<notin> A \<Longrightarrow> set_encode (insert n A) = 2^n + set_encode A"
284  by (simp add: set_encode_def)
285
286lemma even_set_encode_iff: "finite A \<Longrightarrow> even (set_encode A) \<longleftrightarrow> 0 \<notin> A"
287  by (induct set: finite) (auto simp: set_encode_def)
288
289lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2"
290  apply (cases "finite A")
291   apply (erule finite_induct)
292    apply simp
293   apply (case_tac x)
294    apply (simp add: even_set_encode_iff vimage_Suc_insert_0)
295   apply (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc)
296  apply (simp add: set_encode_def finite_vimage_Suc_iff)
297  done
298
299lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric]
300
301
302subsubsection \<open>From naturals to sets\<close>
303
304definition set_decode :: "nat \<Rightarrow> nat set"
305  where "set_decode x = {n. odd (x div 2 ^ n)}"
306
307lemma set_decode_0 [simp]: "0 \<in> set_decode x \<longleftrightarrow> odd x"
308  by (simp add: set_decode_def)
309
310lemma set_decode_Suc [simp]: "Suc n \<in> set_decode x \<longleftrightarrow> n \<in> set_decode (x div 2)"
311  by (simp add: set_decode_def div_mult2_eq)
312
313lemma set_decode_zero [simp]: "set_decode 0 = {}"
314  by (simp add: set_decode_def)
315
316lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x"
317  by auto
318
319lemma set_decode_plus_power_2:
320  "n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)"
321proof (induct n arbitrary: z)
322  case 0
323  show ?case
324  proof (rule set_eqI)
325    show "q \<in> set_decode (2 ^ 0 + z) \<longleftrightarrow> q \<in> insert 0 (set_decode z)" for q
326      by (induct q) (use 0 in simp_all)
327  qed
328next
329  case (Suc n)
330  show ?case
331  proof (rule set_eqI)
332    show "q \<in> set_decode (2 ^ Suc n + z) \<longleftrightarrow> q \<in> insert (Suc n) (set_decode z)" for q
333      by (induct q) (use Suc in simp_all)
334  qed
335qed
336
337lemma finite_set_decode [simp]: "finite (set_decode n)"
338  apply (induct n rule: nat_less_induct)
339  apply (case_tac "n = 0")
340   apply simp
341  apply (drule_tac x="n div 2" in spec)
342  apply simp
343  apply (simp add: set_decode_div_2)
344  apply (simp add: finite_vimage_Suc_iff)
345  done
346
347
348subsubsection \<open>Proof of isomorphism\<close>
349
350lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n"
351  apply (induct n rule: nat_less_induct)
352  apply (case_tac "n = 0")
353   apply simp
354  apply (drule_tac x="n div 2" in spec)
355  apply simp
356  apply (simp add: set_decode_div_2 set_encode_vimage_Suc)
357  apply (erule div2_even_ext_nat)
358  apply (simp add: even_set_encode_iff)
359  done
360
361lemma set_encode_inverse [simp]: "finite A \<Longrightarrow> set_decode (set_encode A) = A"
362  apply (erule finite_induct)
363   apply simp_all
364  apply (simp add: set_decode_plus_power_2)
365  done
366
367lemma inj_on_set_encode: "inj_on set_encode (Collect finite)"
368  by (rule inj_on_inverseI [where g = "set_decode"]) simp
369
370lemma set_encode_eq: "finite A \<Longrightarrow> finite B \<Longrightarrow> set_encode A = set_encode B \<longleftrightarrow> A = B"
371  by (rule iffI) (simp_all add: inj_onD [OF inj_on_set_encode])
372
373lemma subset_decode_imp_le:
374  assumes "set_decode m \<subseteq> set_decode n"
375  shows "m \<le> n"
376proof -
377  have "n = m + set_encode (set_decode n - set_decode m)"
378  proof -
379    obtain A B where
380      "m = set_encode A" "finite A"
381      "n = set_encode B" "finite B"
382      by (metis finite_set_decode set_decode_inverse)
383  with assms show ?thesis
384    by auto (simp add: set_encode_def add.commute sum.subset_diff)
385  qed
386  then show ?thesis
387    by (metis le_add1)
388qed
389
390end
391